
Complete Finite Prefixes of Symbolic Unfoldings
of Time Petri Nets

Thomas Chatain1 and Claude Jard2

1 IRISA/INRIA,
Campus de Beaulieu, F-35042 Rennes cedex, France

Thomas.Chatain@irisa.fr

2 IRISA/ENS Cachan-Bretagne,
Campus de Beaulieu, F-35042 Rennes cedex, France

Claude.Jard@bretagne.ens-cachan.fr

Abstract. Monitoring real-time concurrent systems is a challenging
task. In this paper we formulate (model-based) supervision by means
of hidden state history reconstruction, from event (e.g. alarm) observa-
tions. We follow a so-called true concurrency approach using time Petri
nets: the model defines explicitly the causal and concurrency relations
between the observable events, produced by the system under supervi-
sion on different points of observation, and constrained by time aspects.
The problem is to compute on-the-fly the different partial order histories,
which are the possible explanations of the observable events. We do not
impose that time is observable: the aim of supervision is to infer the par-
tial ordering of the events and their possible firing dates. This is achieved
by considering a model of the system under supervision, given as a time
Petri net, and the on-the-fly construction of an unfolding, guided by the
observations. Using a symbolic representation, this paper presents a new
definition of the unfolding of time Petri nets with dense time.

1 Introduction and Related Work

Monitoring real-time concurrent systems is a challenging task. In this paper we
formulate model-based supervision by means of hidden state history reconstruc-
tion, from event (e.g. alarm) observations. We follow a so-called true concurrency
approach using time Petri nets: the model defines explicitly the causality and
concurrency relations between the observable events, produced by the system
under supervision on different points of observation, and constrained by time
aspects. The problem is to compute on-the-fly the different partial order histo-
ries, which are the possible explanations of the observable events. An important
application is the supervision of telecommunications networks, which motivated
this work.

Without considering time, a natural candidate to formalize the problem are
safe Petri nets with branching processes and unfoldings. The previous work of
our group used this framework to define the histories and a distributed algorithm
to build them as a collection of consistent local views [3]. The approach defines

the possible explanations as the underlying event structure of the unfolding of
the product of the Petri net model and of an acyclic Petri net representing the
partial order of the observed alarms.

In this paper we extend our method to time Petri nets, allowing the designer
to model time constraints, restricting by this way the set of possible explanations,
We do not impose that time is observable: the aim of supervision is to infer the
partial ordering of the events and their possible firing dates. Using a symbolic
representation, this paper presents a new definition of the unfolding of time Petri
nets with dense time.

Model-based diagnosis using time Petri nets and partial orders has already
been addressed in [12]. In this work, temporal reasoning is based on (linear)
logic. The first reference to time Petri net unfolding seems to be in 1996, by
A. Semenov, A. Yakovlev and A. Koelmans [13] in the context of hardware
verification. They deal only with a quite restricted class of nets, called time in-
dependent choice time Petri net, in which any choice is resolved independently
of time. In [1], T. Aura and J. Lilius give a partial order semantics to time Petri
nets, based on the nonsequential processes semantics for untimed net systems. A
time process of a time Petri net is defined as a traditionally constructed causal
process that has a valid timing. An algorithm for checking validness of a given
timing is presented. It is proved that the interleavings of the time processes are in
bijection with the firing schedules. But unfortunately, they do not provide a way
to represent all the valid processes using the notion of unfolding of time Petri
net, as usual in the untimed case. A few years later (in 2002), H. Fleischhack
and C. Stehno in [10] give the first notion of a finite prefix of the unfolding
of a time Petri net. Their method relies on a translation towards an ordinary
place/transition net. This requires to consider only discrete time and to enu-
merate all the situations. This also relies on the introduction of new transitions,
which represent the clock ticks. Although relevant for model-checking, it is not
clear that it allows us to recover causalities and concurrencies, as required in
the diagnosis application. Furthermore, we are convinced that time constraints
must be treated in a symbolic way, using the analog of state class constructions
of B. Berthomieu [4,5].

The rest of the paper is organized as follows. Section 2 defines the different
ingredients of our model-based supervision, namely the diagnosis setup, the time
Petri net model and its partial order semantics. Section 3 describes the symbolic
unfolding technique used to compute the symbolic processes, which serve as
explanations. Before entering the general case, we consider the simplest case of
extended free-choice time Petri nets [6]. We conclude in Section 5.

2 Time Petri nets and Partial Order Semantics

2.1 Time Petri nets: Definition

Notations. We denote f−1 the inverse of a bijection f . We denote f|A the
restriction of a mapping f to a set A. The restriction has higher priority than

Diagnoser

System
under
super-
vision

αΥαΥ

ββ

Sensor
B

Sensor
A

P1
●

P2
●

P3 P4

t1

t3

t2
t4

[0,∞[
α

[2,2]
γ

[1,2]
β[0,0]

γ

t1

t2

t4

t1

t2

t3

e1(α)

e2(β)

e3(γ)
e4(α)

e5(β)

e6(γ)

t1

t2

t4

t1

t2

t4

Explanations

P5

e1(α)

e2(β)

e3(γ)
e4(α)

e5(β)

e7(γ)

Fig. 1. A time Petri net.

the inverse: f−1
|A = (f|A)−1. We denote ◦ the usual composition of functions. Q

denotes the set of nonnegative rational numbers.

Time Petri nets were introduced in [11].
A time Petri net is a tuple N = 〈P, T, pre, post , efd , lfd〉 where P and T are

finite sets of places and transitions respectively, pre and post map each transition
t ∈ T to its preset often denoted •t

def= pre(t) ⊆ P (•t &= ∅) and its postset often
denoted t•

def= post(t) ⊆ P ; efd : T −→ Q and lfd : T −→ Q ∪ {∞} associate
the earliest firing delay efd(t) and latest firing delay lfd(t) with each transition
t. A time Petri net is represented as a graph with two types of nodes: places
(circles) and transitions (bars). The closed interval [efd(t), lfd(t)] is written near
each transition.

2.2 Interleaving Semantics

A state of a time Petri net is given by a triple 〈M, dob, θ〉, where M ⊆ P is a
marking denoted with tokens (thick dots), θ ∈ Q is its date and dob : M −→ Q
associates a date of birth dob(p) ≤ θ with each token (marked place) p ∈ M .
A transition t ∈ T is enabled in the state 〈M, dob, θ〉 if all of its input places
are marked: •t ⊆ M . Its date of enabling doe(t) is the date of birth of the
youngest token in its input places: doe(t) def= maxp∈•t dob(p). All the time Petri
nets we consider in this article are safe, i.e. in each reachable state 〈M, dob, θ〉,
if a transition t is enabled in 〈M, dob, θ〉, then t• ∩ (M \ •t) = ∅.

A time Petri net starts in an initial state 〈M0, dob0, θ0〉, which is given by
the initial marking M0 and the initial date θ0. Initially, all the tokens carry the
date θ0 as date of birth: for all p ∈ M0, dob0(p) def= θ0.

The transition t can fire at date θ′ ≥ θ from state 〈M, dob, θ〉, if:
– t is enabled: •t ⊆ M ;
– the minimum delay is reached: θ′ ≥ doe(t) + efd(t);
– the enabled transitions do not overtake the maximum delays:

∀t′ ∈ T •t′ ⊆ M =⇒ θ′ ≤ doe(t′) + lfd(t′).

The firing of t at date θ′ leads to the state 〈(M \ •t) ∪ t•, dob ′, θ′〉, where
dob ′(p) def= dob(p) if p ∈ M \ •t and dob ′(p) def= θ′ if p ∈ t•.

We call firing sequence starting from the initial state S0 any sequence
((t1, θ1), . . . , (tn, θn)) where there exist states S1, . . . , Sn such that for all i ≥ 1,
firing ti from Si at date θi is possible and leads to Si+1. The empty firing se-
quence is denoted ε.

Finally we assume that time diverges: when infinitely many transitions fire,
time necessarily diverges to infinity.

In the initial state of the net of Figure 1, p1 and p2 are marked and their
date of birth is 0. t1 and t2 are enabled and their date of enabling is the initial
date 0. t2 can fire in the initial state at any time between 1 and 2. Choose time
1. After this firing p1 and p4 are marked, t1 is the only enabled transition and it
has already waited 1 time unit. t1 can fire at any time θ, provided it is greater
than 1. Consider t1 fires at time 3. p3 and p4 are marked in the new state, and
transitions t3 and t4 are enabled, and their date of enabling is 3 because they
have just been enabled by the firing of t1. To fire, t3 would have to wait 2 time
units. But transition t4 cannot wait at all. So t4 will necessarily fire (at time 3),
and t3 cannot fire.

Remark. The semantics of time Petri nets are often defined in a slightly different
way: the state of the net is given as a pair 〈M, I〉, where M is the marking, and I
maps each enabled transition t to the delay that has elapsed since it was enabled,
that is θ− doe(t) with our notations. It is more convenient for us to attach time
information on the tokens of the marking than on the enabled transitions. We
have chosen the date of birth of the tokens rather than their age, because we
want to make the impact of the firing of transitions as local as possible. And
the age of each token in the marking must be updated each time a transition t
fires, whereas the date of birth has to be set only for the tokens that are created
by t. Furthermore, usual semantics often deal with the delay between the firing
of two consecutive transitions. In this paper we use the absolute firing date of
the transitions instead. This fits better to our approach in which we are not
interested in the total ordering of the events.

2.3 Partial Order Semantics

Processes. We will define the mapping Π from the firing sequences of a safe
time Petri net to their partial order representation as processes. These processes
are those described in [1]. We use a canonical coding like in [8].

Each process will be a pair x
def= 〈E, Θ〉, where E is a set of events, and

Θ : E −→ Q maps each event to its firing date. Θ is sometimes represented as a
set of pairs (e, Θ(e)). Each event e is a pair (•e, τ(e)) that codes an occurrence of
the transition τ(e) in the process. •e is a set of pairs b

def= (•b, place(b)) ∈ E ×P .
Such a pair is called a condition and refers to the token that has been created by
the event •b in the place place(b). We say that the event e

def= (•e, τ(e)) consumes
the conditions in •e. Symmetrically the set {(e, p) | p ∈ τ(e)•} of conditions that
are created by e is denoted e•.

For all set B of conditions, we denote Place(B) def= {place(b) | b ∈ B}, and
when the restriction of place to B is injective, we denote place−1

|B its inverse, and

for all P ⊆ Place(B), Place−1
|B (P) def= {place−1

|B (p) | b ∈ P}. We also denote dobB

the mapping defined as: for all p ∈ Place(B), dobB(p) def= Θ(•(place−1
|B (p))).

The set of conditions that remain at the end of the process 〈E, Θ〉 (meaning
that they have been created by an event of E, and no event of E has consumed
them) is ↑(E) def=

⋃
e∈E e• \

⋃
e∈E

•e (it does not depend on Θ).

The function Π that maps each firing sequence ((t1, θ1), . . . , (tn, θn)) to a
process is defined as follows:

– Π(ε) def= 〈{⊥}, {(⊥, θ0)}〉, where ⊥ def= (∅, -) represents the initial event. Notice
that the initial event does not actually represent the firing of a transition,
which explains the use of the special value - /∈ T . For the same reason,
the set of conditions that are created by ⊥ is defined in a special way:
⊥• def= {(⊥, p) | p ∈ M0}.

– Π(((t1, θ1), . . . , (tn+1, θn+1)))
def= 〈E ∪ {e}, Θ ∪ {(e, θn+1)}〉, where 〈E, Θ〉 def=

Π(((t1, θ1), . . . , (tn, θn))) and the event e
def= (Place−1

|↑(E)(
•tn+1), tn+1) repre-

sents the last firing of the sequence.

The set of all the processes obtained as the image by Π of a firing sequence
is denoted X .

We define the relation → on the events as: e → e′ iff e• ∩ •e′ &= ∅. The reflex-
ive transitive closure →∗ of → is called the causality relation. For all event e, we
denote 4e5 def= {f ∈ E | f →∗ e}, and for all set E of events, 4E5 def=

⋃
e∈E4e5. We

also define cnds(E) def=
⋃

e∈E e• the set of conditions created by the events of E.
Two events of a process that are not causally related are called concurrent.

Symbolic Processes. We choose to group the processes that differ only by
their firing dates to obtain what we call a symbolic process.

A symbolic process of a time Petri net is a pair 〈E, pred〉 with
pred : (E −→ Q) −→ bool, such that for all mapping Θ : E −→ Q, if pred(Θ),
then 〈E, Θ〉 ∈ X .

In practice, pred is described by linear inequalities. Examples of symbolic
processes are given in Figure 1. The first explanation groups all the processes
formally defined as 〈E, Θ〉 where E contains the six following events, with the

associated firing dates (the initial event ⊥ is not represented):

1 = ({(⊥, P1)}, t1) Θ(1) ≥ Θ(⊥)
2 = ({(⊥, P2)}, t2) 1 ≤ Θ(2) − Θ(⊥) ≤ 2
3 = ({(1, P3), (2, P4)}, t4) Θ(3) = max{Θ(1), Θ(2)}
4 = ({(3, P1)}, t1) Θ(4) = Θ(3)
5 = ({(3, P2)}, t2) Θ(5) = Θ(3) + 2
6 = ({(4, P3)}, t3) Θ(6) = Θ(4) + 2

3 Symbolic Unfoldings of Time Petri nets

Symbolic unfoldings have already been addressed in the context of high-level
Petri nets [7]. In this section we define the symbolic unfolding of time Petri
nets, i.e. a quite compact structure that contains all the possible processes and
exhibits concurrency.

3.1 Pre-processes

For the construction of symbolic unfoldings of time Petri nets, we need the notion
of pre-process, that extends the notion of process.

For all process 〈E, Θ〉, and for all nonempty, causally closed set of events
E′ ⊆ E (⊥ ∈ E′ and 4E′5 = E′), 〈E′, Θ|E′〉 is called a pre-process. We often
write 〈E′, Θ〉 instead of 〈E′, Θ|E′〉 for short. The definition of the state that is
reached after a process is also used for pre-processes. We define the prefix relation
≤ on pre-processes as follows:

〈E, Θ〉 ≤ 〈E′, Θ′〉 iff E ⊆ E′ ∧ Θ = Θ′
|E

3.2 Symbolic Unfoldings of Extended Free Choice Time Petri nets

An extended free choice time Petri net is a time Petri net such that:

∀t, t′ ∈ T •t ∩ •t′ &= ∅ =⇒ •t = •t′.

We define the symbolic unfolding U of an extended free choice time Petri net
by collecting all the events that appear in its processes: U

def=
⋃

〈E,Θ〉∈X E.
This unfolding has two important properties in the case of extended free

choice time Petri nets.
We first remark that:

Theorem 1. {τ(e) | e ∈ U} ⊆ T ′ where

T ′ def= {t ∈ T | ∀t′ ∈ T •t′ = •t =⇒ efd(t) ≤ lfd(t′)}.

Then we have:

Theorem 2. Let E ⊆ U be a nonempty finite set of events and Θ : E −→ Q
associate a firing date with each event of E. 〈E, Θ〉 is a pre-process iff:





4E5 = E (E is causally closed)
!e, e′ ∈ E e &= e′ ∧ •e ∩ •e′ &= ∅ (E is conflict free)
∀e ∈ E \ {⊥} efd(τ(e)) ≤ Θ(e) − max

b∈•e
Θ(•b) ≤ max

t′∈T
•t′=•τ(e)

lfd(t′)

(all the events respect the firing delays)

Theorem 3. For all e
def= (B, t) ∈ cnds(U) × T ,

e ∈ U iff






Place(B) = •t
!f, f ′ ∈ 4e5 f &= f ′ ∧ •f ∩ •f ′ &= ∅
t ∈ T ′

The first theorem gives a way to extract processes from the unfolding, while
the second theorem gives a direct construction of the unfolding. The unfolding
we define for extended free choice time Petri nets is exactly the unfolding of the
underlying Petri net without time constraints, from which the transitions that
are not in T ′ are removed.

We do not give proofs for the theorems 2 and 3 as they are particular cases of
the theorems 4 and 5: the symbolic unfolding of extended free choice time Petri
nets as defined in this section is the same as the symbolic unfolding we obtain
if we use the general definition of the next section.

3.3 Symbolic Unfoldings of Time Petri nets: General Case

Introduction. If we define the symbolic unfolding of a time Petri net in the
general case as we have done for extended free choice time Petri nets, none of
the two previous theorems hold: extracting a process from the unfolding becomes
complex (see [1]); and especially we do not know any direct way to build the
unfolding. It is also interesting to notice that the union of two pre-processes
〈E, Θ〉 and 〈E′, Θ′〉 is not necessarily a pre-process, even if Θ|E∩E′ = Θ′

|E∩E′

and E ∪E′ is conflict free. In the example of Figure 1, we observe this if 〈E, Θ〉
is the process which contains a firing of t1 at time 0 and a firing of t2 at time 1,
and 〈E′, Θ′〉 is the pre-process that we obtain by removing the firing of t2 from
the process made of t1 at time 0, t2 at time 2 and t3 at time 2.

These difficulties come from the fact that the condition that allows us to
extend a process x

def= 〈E, Θ〉 with a new event e concerns all the state reached
after the process x, and however the conditions in •e refer only to the tokens in
the input places of τ(e).

Although the semantics of time Petri nets requires to check time conditions
for all the enabled transitions in the net, before firing a transition, there are
cases when we know that a transition can fire at a given date θ, even if other
transitions will fire before θ in other parts of the net. As an example consider
the net of Figure 1 starting at date 0 with the marking {p1, p2}. Although the

semantics forbids to fire t1 at date 10 before firing t2, we feel that nothing can
prevent t1 from firing at date 10, because only t1 can remove the token in place
p1. By contrast, the firing of t3 highly depends on the firing date of t2 because
when t4 is enabled it fires immediately and disables t3. So if we want to fire t3
we have to check whether p2 or p4 is marked.

Assumption. From now on we assume that we know a partition of the set P of
places of the net in sets Pi ⊆ P of mutually exclusive places3; more precisely we
demand that for all reachable marking M , Pi ∩ M is a singleton. For all place
p ∈ Pi, we denote p̄

def= Pi \ {p}. In the example of Figure 1, we will use the
partition {p1, p3, p5}, {p2, p4}.

Definition 1 (partial state). A partial state of a time Petri net is a triple
〈L, dob, lrd〉 where L ⊆ P is a partial marking and dob, lrd : L −→ Q associate
a date of birth dob(p) and a latest reading date lrd(p) with each token (marked
place) p ∈ L.

Definition 2 (maximal partial state). A partial state 〈L, dob, lrd〉 is maxi-
mal if L contains one place per set of mutually exclusive places (see the assumtion
before). From now on the notion of maximal partial state or maximal state will
replace the notion of global state.

Definition 3 (age of an enabled transition in a maximal state). Let
S

def= 〈M, dob, lrd〉 be a maximal state and let t ∈ T a transition that is enabled
in the marking M (•t ⊆ M). The date of enabling of t is max

p∈•t
dob(p), and the

date that is reached by the system can be defined as max
p∈P

lrd(p). We define the

age IS(t) of t in the state S as the difference:

IS(t) def= max
p∈P

lrd(p) − max
p∈•t

dob(p).

Definition 4 (temporally complete maximal state (or complete
state)). A maximal state S

def= 〈M, dob, lrd〉 is temporally complete if for all
transition t ∈ T which is enabled in the marking M (•t ⊆ M), IS(t) ≤ lfd(t). A
temporally complete maximal state is also called a complete state for short.

Definition 5 (local firing condition). A local firing condition is a triple
(L, dob, t, θ) where L ⊆ P is a partial marking, dob : L −→ Q associate a
date of birth dob(p) with each token (marked place) p ∈ L, t is a transition such
that •t ⊆ L and θ ≥ maxp∈L dob(p) is a date.
3 If we do not know any such partition, a solution is to extend the structure of the net

with one complementary place for each place of the net and to add these new places
in the preset and in the postset of the transitions such that in any reachable marking
each place p ∈ P is marked iff its complementary place is not. This operation does
not change the behaviour of the time Petri net.

We expect that each local firing condition (L, dob, t, θ) is chosen such that
knowing that the net is in a state that contains a local state 〈L, dob, lrd〉 with
lrd(p) ≤ θ for all p ∈ L is enough to be sure that t can fire at date θ.

It will be crucial in the following to know how to select local firing conditions.
However several choices are possible. If we are given a predicate LFC on local
firing conditions, we can build extended processes by using only the local firing
conditions that satisfy LFC . Then we will try to map these extended processes
into pre-processes. If LFC is valid, then all the pre-processes we obtain are
correct.

Semantics of Local Firings. We will define formally the semantics that we
obtain when we allow only local firing conditions that satisy a given predicate
LFC on local firing conditions.

The time Petri net starts in an initial maximal state 〈M0, dob0, lrd0〉, which
is given by the initial marking M0 and the initial date θ0. Initially, all the tokens
carry the date θ0 as date of birth and latest reading date: for all p ∈ M0,
dob0(p) def= lrd0(p) def= θ0.

The transition t can fire at date θ using the partial marking L ⊆ M , from
the maximal state 〈M, dob, lrd〉 if (L, dob |L, t, θ) satisfies LFC and for all p ∈ L,
θ ≥ lrd(p).

This action leads to the maximal state 〈(M \ •t) ∪ t•, dob ′, lrd ′〉 with

dob ′(p) def=
{

dob(p) if p ∈ M \ •t
θ if p ∈ t•

and lrd ′(p) def=
{

lrd(p) if p ∈ M \ L
θ if p ∈ (L \ •t) ∪ t•.

We call sequence of local firings (w.r.t. LFC) starting from the initial state
S0 any sequence ((t1, L1, θ1), . . . , (tn, Ln, θn)) where there exist states S1, . . . , Sn

such that for all i ≥ 1, ti can fire from Si at date θi using the partial marking
Li and this leads to Si+1. The empty firing sequence is denoted ε.

Extended Processes. Let LFC be a predicate on local firing conditions.
We will define a notion of extended process (parameterized by LFC), which

is close to the notion of process, but the events are replaced by extended events
which represent firings from partial states and keep track of all the conditions
corresponding to the partial state, not only those that are consumed by the
transition: the other conditions will be treated as context of the event. This
uses classical techniques of contextual nets or nets with read arcs (see [2,14]). It
would also be possible to consume and rewrite the conditions in the context of
an event, but we feel that the notion of read arc or contextual net is a good way
to capture the idea that we develop here.

For all extended event ė
def= (B, t), we use the notations τ(ė) def= t,

•ė
def= Place−1

|B (•t), ė
def= B \ •e and ė•

def= {(ė, p) | p ∈ t•}. We define the relations
→ and ↗ between extended events as:

– ė → ḟ iff ė• ∩ (•ḟ ∪ ḟ) &= ∅ and
– ė ↗ ḟ iff (ė → ḟ) ∨ (ė ∩ •ḟ &= ∅).

Like for processes, we define the set of conditions that remain at the end of
the extended process 〈Ė, Θ〉 as ↑(Ė) def=

⋃
ė∈Ė ė• \

⋃
ė∈Ė

•ė.
The function Π̇ that maps each sequence of local firings

((t1, L1, θ1), . . . , (tn, Ln, θn)) to an extended process is defined as follows:

– Like for processes, Π̇(ε) def= 〈{⊥}, {(⊥, θ0)}〉, where ⊥ def= (∅, -) represents
the initial event. The set of conditions that are created by ⊥ is defined as:
⊥• def= {(⊥, p) | p ∈ M0}.

– Π̇(((t1, L1, θ1), . . . , (tn+1, Ln+1, θn+1)))
def= 〈Ė ∪ {ė}, Θ ∪ {(ė, θn+1)}〉, where

〈Ė, Θ〉 def= Π̇(((t1, L1, θ1), . . . , (tn, Ln, θn))) and the extended event ė
def=

(Place−1
|↑(Ė)

(Ln+1), tn+1) represents the last local firing of the sequence.

The set of all the extended processes obtained as the image by Π̇ of a se-
quence of local firings (w.r.t. LFC) is denoted ẊLFC . The maximal state that
is reaches after an extended process 〈Ė, Θ〉 is denoted RS(〈Ė, Θ〉). We say that
〈Ė, Θ〉 is temporally complete if RS(〈Ė, Θ〉) is temporally complete. The set of
all temporally complete extended processes is denoted ẎLFC .

Corectness of LFC . Each extended event ė can be mapped to the correspond-
ing event

h(ė) def=
({

(h(ḟ), p) | (ḟ , p) ∈ •ė
}
, τ(ė)

)
.

We say that LFC is a valid predicate on local firing conditions iff for all
extended process 〈Ė, Θ〉 ∈ ẊLFC , 〈h(Ė), Θ ◦ h−1

|Ė 〉 is a pre-process (notice that
h|Ė is injective). In other terms there exists a process 〈E ′, Θ′〉 ∈ X such that
〈h(Ė), Θ ◦ h−1

|Ė 〉 ≤ 〈E′, Θ′〉.

Symbolic Unfolding. As we did for extended free choice time Petri nets with
events in Section 3.2, we define the symbolic unfolding ULFC of a time Petri
net by collecting all the extended events that appear in its extended processes:
ULFC

def=
⋃

〈Ė,Θ〉∈ẊLFC
Ė.

We have equivalents of the two theorems we had with symbolic unfoldings of
extended free choice time Petri nets.

Theorem 4. Let Ė ⊆ ULFC be a nonempty finite set of extended events and
Θ : Ė −→ Q associate a firing date with each extended event of Ė. 〈Ė, Θ〉 is an
extended process iff:





4Ė5 = Ė (Ė is causally closed)
!ė, ė′ ∈ Ė ė &= ė′ ∧ •ė ∩ •ė′ &= ∅ (Ė is conflict free)
!ė0, ė1, . . . , ėn ∈ Ė ė0 ↗ ė1 ↗ · · · ↗ ėn ↗ ė0 (↗ is acyclic on Ė)
∀ė, ė′ ∈ Ė ė ↗ ė′ =⇒ Θ(ė) ≤ Θ(ė′) (Θ is compatible with ↗)
∀ė = (B, t) ∈ Ė \ {⊥} LFC (Place(B), dobB, t, Θ(ė))

(ė corresponds to a local firing condition)

Proof. Let 〈Ė, Θ〉 ∈ ẊLFC be an extended process that satisfies the condi-
tions in the curly brace, let ė

def= (B, t) with B ⊆ ↑(Ė) and t ∈ T and
θ′ ≥ maxḟ∈Ė, ḟ↗ė Θ(ḟ) such that LFC (RSΘ(B), t, θ′) holds. Then we will show
that the extended process 〈Ė′, Θ′〉 def= 〈Ė ∪ {ė}, Θ ∪ {(ė, θ′)}〉 also satisfies the
conditions in the curly brace. By construction Ė′ is causally closed. Moreover
for each condition b ∈ •ė that is consumed by ė, b ∈ ↑(Ė), which implies that b
has not been consumed by any event of Ė. Thus for all ḟ ∈ Ė, •ė ∩ •ḟ = ∅ and
¬(ė ↗ ḟ). So Ė′ is conflict free and ↗ is acyclic on Ė′. Θ′ is compatible with
↗ because Θ is compatible with ↗ and Θ′(ė) = θ′ ≥ maxḟ∈Ė, ḟ↗ė Θ(ḟ).

Conversely let 〈Ė′, Θ′〉 satisfy the conditions in the curly brace. If Ė′ =
{⊥}, then 〈Ė′, Θ′〉 ∈ ẊLFC . Otherwise let ė ∈ Ė′ be an extended event
that has no successor by ↗ in Ė′ (such an extended event exists since
↗ is acyclic on Ė′). 〈Ė, Θ〉 def= 〈Ė′ \ {ė}, Θ′

|Ė′\{ė}〉 satisfies the conditions

in the curly brace. Assume that 〈Ė, Θ〉 ∈ ẊLFC . As Ė is conflict free,
•ė ⊆ ↑(Ė). And as ė has no successor by ↗ in Ė′, ė ⊆ ↑(Ė). Furthermore
Θ′(ė) ≥ maxḟ∈Ė, ḟ↗ė Θ(ḟ) and LFC (RSΘ′(•ė ∪ ė), τ(ė), Θ′(ė)) holds. Thus
〈Ė′, Θ′〉 = 〈Ė ∪ {ė}, Θ ∪ {(ė, Θ′(ė))}〉 ∈ ẊLFC .

Theorem 5. For all ė
def= (B, t) ∈ cnds(ULFC) × T , ė ∈ ULFC iff






!ḟ , ḟ ′ ∈ 4ė5 ḟ &= ḟ ′ ∧ •ḟ ∩ •ḟ ′ &= ∅ (1)
!ė0, ė1, . . . , ėn ∈ 4ė5 ė0 ↗ ė1 ↗ · · · ↗ ėn ↗ ė0 (2)

∃Θ : 4ė5 −→ Q






∀ḟ , ḟ ′ ∈ 4ė5 ḟ ↗ ḟ ′ =⇒ Θ(ḟ) ≤ Θ(ḟ ′)
∀ḟ = (B′, t′) ∈ 4ė5 \ {⊥}

LFC
(
Place(B′), dobB′ , t, Θ(ḟ)

)





(3)

Proof. Let ė ∈ ULFC . There exists 〈Ė, Θ′〉 ∈ ẊLFC such that ė ∈ Ė. 〈Ė, Θ′〉
satisfies the conditions in the curly brace of Theorem 4. As 4Ė5 ⊆ Ė, 4ė5 also
satisfies them. Then (1) and (2) hold. For (3) a possible Θ is Θ′

|*ė+.

Conversely if ė
def= (B, t) satisfies (1), (2) and (3), consider a possi-

ble Θ for (3). 〈4ė5 \ {ė}, Θ〉 satisfies the curly brace of Theorem 4. Then
〈4ė5 \ {ė}, Θ〉 ∈ ẊLFC . Moreover (1) implies that B ⊆ ↑(4ė5 \ {ė}). In ad-
dition Θ(ė) ≥ maxḟ∈*ė+, ḟ↗ė Θ(ḟ) and LFC (RSΘ(B), t, Θ(ė)) holds. Thus
〈4ė5, Θ〉 ∈ ẊLFC and therefore ė ∈ ULFC .

Selecting Local Firing Conditions. The definition of extended processes is
parameterized by a predicate LFC on local firing conditions: each extended event
must correspond to a local firing condition that satisfies LFC , the others are
forbidden. A good choice for LFC takes three notions into account: completeness,
redundancy and preservation of concurrency.

Completeness. A predicate LFC on local firing conditions is complete if for all
process 〈E, Θ〉 ∈ X , there exists an extended process 〈Ė, Θ′〉 ∈ ẊLFC such that
〈h(Ė), Θ′ ◦ h−1

|Ė 〉 = 〈E, Θ〉.

Redundancy. Given a predicate LFC on local firing conditions and a process
〈E, Θ〉 ∈ X, there may exist several extended processes 〈Ė, Θ′〉 ∈ ẊLFC such
that 〈h(Ė), Θ′ ◦ h−1

|Ė 〉 = 〈E, Θ〉. This is called redundancy. In particular, if LFC
contains two local firing conditions (L, dob, t, θ) and (L′, dob ′, t, θ) with L′ " L
and dob ′ = dob |L′ , then all the extended processes involving (L, dob, t, θ′) are
redundant.

A trivial choice for LFC which does not preserve any concurrency. A trivial
complete predicate LFC is the predicate that demands that the state S is a
maximal partial state, and then check that t can fire at date θ from S. In
addition, this choice gives little redundancy. But the extended events of the
extended processes that we obtain in this case are totally ordered by causality.
In other words, these extended processes do not exhibit any concurrency at all.
Actually we retrieve here all the firing sequences of the interleaving semantics.

A proposition for LFC . What we want is a complete predicate on local firing
conditions that generates as little redundancy as possible and that exhibits as
much concurrency as possible.

We first define a predicate LFC ′ on local firing conditions as follows:
LFC ′(L, dob, t, θ) iff

– t is enabled: •t ⊆ L;
– the minimum delay is reached: θ ≥ doe(t) + efd(t);
– the transitions that may consume tokens of L are disabled or do not overtake

the maximum delays:

∀t′ ∈ T •t′ ∩ L &= ∅ =⇒
{

∃p ∈ •t′ p̄ ∩ L &= ∅
∨ θ′ ≤ max

p∈•t′∩L
dob(p) + lfd(t′)

Now we define LFC by eliminating some redundancy in LFC ′:
LFC (L, dob, t, θ) holds iff LFC ′(L, dob, t, θ) holds and there exists no L′ " L
such that LFC ′(L′, dob |L′ , t, θ).

It is important that the constraints (see Theorems 4 and 5) can be solved
automatically: with the definition of LFC we have proposed here, the quantifiers
(∀ and ∃) on places and transitions expand into disjunctions and conjunctions.
The result is a disjunction of conjunctions of linear inequalities on the Θ(ė).
When a “max” appears in an inequality, this inequality can be rewritten into
the desired form. These systems are shown near the events in Figure 2.

Theorem 6. Let 〈Ė, Θ〉 ∈ ẊLFC . 〈h(Ė), Θ ◦ h−1
|Ė 〉 ∈ X iff RS(〈Ė, Θ〉) is tem-

porally complete.

Theorem 7. LFC is a valid, complete predicate on local firing conditions.

Proof. The proof of the validity is done in two parts:

1. For all 〈Ė, Θ〉 ∈ ẊLFC , denote 〈M, dob, θ〉 the global state reached after
〈Ė, Θ〉. 〈h(Ė), Θ ◦ h−1

|Ė 〉 ∈ X iff

∀t ∈ T •t ⊆ M =⇒ θ ≤ doe(t) + lfd(t). (1)

2. For all 〈Ė, Θ〉 ∈ ẊLFC , there exists 〈Ė′, Θ′〉 ∈ ẊLFC which satisfies (1) and
such that 〈Ė, Θ〉 ≤ 〈Ė′, Θ′〉.
Consequently 〈h(Ė), Θ ◦ h−1

|Ė 〉 ≤ 〈h(Ė′), Θ′ ◦ h−1
|Ė′〉 ∈ Ẋ.

Here are the proofs for these two points:

1. Let 〈Ė, Θ〉 ∈ ẊLFC and denote 〈M, dob, θ〉 the global state reached after
〈Ė, Θ〉.
It follows from the definition of the processes that if 〈h(Ė), Θ ◦ h−1

|Ė 〉 ∈ X ,
then (1) holds.
Conversely, assume that 〈Ė, Θ〉 satisfies (1); choose ė ∈ Ė such that Θ(ė) = θ
and !ḟ ∈ Ė such that ė ↗ ḟ . Then denote 〈M ′, dob ′, θ′〉 the global state
reached after 〈Ė \ {ė}, Θ〉 and let t ∈ T such that •t ⊆ M ′. If •t∩ •τ(ė) = ∅,
then doe ′(t) = doe(t) ≥ θ − lfd(t) ≥ θ′ − lfd(t). Otherwise let L

def= •ė∪ ė. As
LFC (RSΘ(L), τ(ė), Θ(ė)) holds, then

{
∃p ∈ •t p̄ ∩ L &= ∅

∨ θ ≤ max
p∈•t∩L

dob ′(p) + lfd(t)

As •t ⊆ M ′, then !p ∈ •t such that p̄∩L &= ∅; thus θ ≤ max
p∈•t∩L

dob ′(p)+lfd(t).

Hence doe ′(t) = max
p∈•t

dob ′(p) ≥ max
p∈•t∩L

dob ′(p) ≥ θ − lfd(t) ≥ θ′ − lfd(t). As

a result 〈Ė \ {ė}, Θ〉 ∈ ẊLFC and satisfies (1).
Assume now that 〈E, Θ′〉 def= 〈h(Ė \ {ė}), Θ ◦ h−1

|Ė 〉 ∈ X . It leads to
〈M ′, dob ′, θ′〉. As •τ(ė) ⊆ M ′ and θ ≥ θ′ and θ ≥ doe ′(τ(ė)) + efd(τ(ė)) and
for all t ∈ T , •t ⊆ M ′ =⇒ θ ≤ doe ′(t) + lfd(t), then τ(ė) can fire at date
θ from 〈M ′, dob ′, θ′〉, which is coded by the event (Place−1

|↑(E)(τ(ė)), τ(ė)) =
h(ė). Thus 〈h(Ė), Θ ◦ h−1

|Ė 〉 ∈ X .

2. Let 〈Ė, Θ〉 ∈ ẊLFC . If 〈Ė, Θ〉 satifies (1), then 〈Ė′, Θ′〉 def= 〈Ė, Θ〉 fits.
Otherwise, choose t ∈ T such that •t ⊆ M ∧ θ > doe(t) + lfd(t) and
such that t minimizes θt

def= doe(t) + lfd(t). Let Ḟ
def= {ḟ ∈ Ė | Θ(ḟ) ≤ θt}.

〈Ḟ , Θ|Ḟ 〉 ∈ ẊLFC . Denote 〈M ′, dob ′, θ′〉 the global state reached after
〈Ḟ , Θ|Ḟ 〉. LFC ′(〈M ′, dob ′, θ′〉, t, θt) holds. Thus there exists L ⊆ M ′ such

that LFC (〈L, dob ′
|L, θ′〉, t, θt) holds. Let ė

def= (Place−1
|↑(Ḟ)

(L), t). We will show

that 〈Ė ∪ {ė}, Θ ∪ {(ė, θt)}〉 ∈ ẊLFC . Θ ∪ {(ė, θt)} is compatible with ↗:
if an extended event ḟ ∈ Ė is such that ḟ ∩ •ė &= ∅, then Θ(ḟ) ≤ θt and if
•ḟ∩ė &= ∅, then Θ(ḟ) > θt. The strict inequality in the second case also guar-
antees that ↗ is acyclic on Ė ∪ {ė}. As a result, we have built an extended
process 〈Ė ∪ {ė}, Θ ∪ {(ė, θt)}〉 ∈ ẊLFC by adding the event to 〈Ė, Θ〉.
Iterating this until 〈Ė, Θ〉 satisfies (1) terminates if we assume that time
diverges: at each step 〈Ḟ , Θ|Ḟ 〉 satisfies (1), so 〈h(Ḟ), Θ◦h−1

|Ḟ 〉 ∈ X ; moreover
this process has strictly more events at each step and the dates remain below
θ, which does not increase.

This ends the proof of the validity of LFC . Now we have to prove that
LFC is complete. Let 〈E, Θ〉 ∈ X leading to the global state 〈M, dob, θ〉,
let t ∈ T be a transition that can fire at date θ′ ≥ θ from 〈M, dob, θ〉,
and assume that there exists an extended process 〈Ė, Θ′〉 ∈ ẊLFC such that
〈h(Ė), Θ′ ◦ h−1

|Ė 〉 = 〈E, Θ〉. LFC ′(〈M, dob, θ〉, t, θ′) holds. Thus there exists

L ⊆ M such that LFC (〈L, dob |L, θ〉, t, θ′) holds. Define ė
def= (Place−1

|↑Ė
(L), t).

〈Ė ∪ {ė}, Θ′ ∪ {(ė, θ′)}〉 ∈ ẊLFC and the event h(ė) codes the firing of t at date
θ′ after 〈E, Θ〉.

3.4 Example of Unfolding

We come back to our simple example of time Petri net given in Figure 1. Figure 2
shows a prefix of its symbolic unfolding. In this figure the rectangles represent
the extended events, and the circles represent the conditions. An arrow from
a condition b to an extended event ė means that b ∈ •ė. An arrow from an
extended event ė to a condition b means that b ∈ ė•. A line without arrow
between a condition b and an extended event ė means that b ∈ ė.

The constraint LFC (Place(B), dobB, t, Θ(ė)) is represented near each ex-
tended event ė = (B, t) of Figure 2. While extracting an extending process
from this unfolding, we can solve the conjunction of the constraints appearing
on the extended events of the extended process, plus the constraints that en-
sure that Θ is compatible with ↗. This gives all the possible values for the
dates of the extended events. For example, considering the extended events
Ė

def= {e1, e2, e3, e4, e5, e6}, 〈Ė, Θ〉 is an extended process iff Θ satisfies:





0 ≤ Θ(e1) − Θ(⊥)
1 ≤ Θ(e2) − Θ(⊥) ≤ 2
Θ(e3) = max{Θ(e1), Θ(e2)}
Θ(e3) − Θ(e1) ≤ 2 (t3 has not consumed

the token in p3 before t4 fires.)
0 ≤ Θ(e4) − Θ(e3)
1 ≤ Θ(e5) − Θ(e3) ≤ 2
Θ(e6) − Θ(e4) = 2
Θ(e6) − Θ(e3) ≤ 2 (t2 has not consumed

the token in p2 before t3 fires.)






∀ė = (B, t) ∈ Ė \ {⊥}
LFC (Place(B), dobB, t, Θ(ė))

Θ(⊥) ≤ Θ(e1)
Θ(⊥) ≤ Θ(e2)
Θ(e1) ≤ Θ(e3)
Θ(e2) ≤ Θ(e3)
Θ(e3) ≤ Θ(e4)
Θ(e3) ≤ Θ(e6)
Θ(e4) ≤ Θ(e6)
Θ(e3) ≤ Θ(e5)
Θ(e6) ≤ Θ(e5)






∀ė, ė′ ė ↗ ė′ =⇒ Θ(ė) ≤ Θ(ė′).
Notice that e6 ↗ e5.

These constraints can be simplified into:






Θ(⊥) ≤ Θ(e1)
1 ≤ Θ(e2) − Θ(⊥) ≤ 2
Θ(e3) = max{Θ(e1), Θ(e2)}
Θ(e4) = Θ(e3)
Θ(e6) = Θ(e4) + 2
Θ(e5) = Θ(e3) + 2

P1 P2

P3 P4

t1 t2

t4

e1 :
0≤θ(e1)-θ(!!

e2 :
1≤θ(e2)-θ(!!≤2

P1 P2

e3 :
θ(e3)=max(θ(e1),θ(e2))

θ(e3)-θ(e1)≤2

P4

t2 e5 :
1≤θ(e5)-θ(e3)≤2

P3

t1e4 :
0≤θ(e4)-θ(e3)

t3 t4 t3

P1 P2 P5

e8 :
θ(e8)-θ(e4)=2

θ(e8)≤max(θ(e4),θ(e5))

P5

e6 :
θ(e6)-θ(e4)=2
θ(e6)-θ(e3)≤2 e7 :

θ(e7)=max(θ(e4),θ(e5))
θ(e7)-θ(e4)≤2

!

Fig. 2. A prefix of the symbolic unfolding of the time Petri net of Figure 1.

The three maximal extended processes of Figure 2 share the prefix
{e1, e2, e3, e4, e5}. The first extended process contains also e7. It corresponds
to the second explanation of Figure 1. The second extended process contains the
prefix, plus e6 and the third contains the prefix, plus e8. These two extended
processes correspond to the same explanation: the first of Figure 1. This is what
we have called redundancy. After solving the linear constraints we see that the
second occurrence of t1 must have occured immediately after t4 has fired and the
second occurrence of t2 must have fired 2 time units later. Actually the extended
process with e6 and the one with e8 only differ by the fact that transition t3 has
fired before t2 in the first one, whereas t3 has fired after t2 in the second one.
Because of transition t4, the firing of t2 has a strong influence on the firing of
t3. This is the reason why there are too distinct cases in the unfolding.

4 Complete Finite Prefixes

4.1 Equivalence of Two Maximal States

Definition 6 (bound for the age of a transition). For all transition t ∈ T ,
we define

bound(t) def=
{

efd(t) if lfd(t) = ∞
lfd(t) otherwise.

Definition 7 (reduced age of an enabled transition). Let S
def=

〈M, dob, lrd〉 be a complete state and t ∈ T a transition that is enabled in the
marking M (•t ⊆ M). We define the reduced age JS(t) of t in the state S as:

JS(t) def= max{IS(t), bound(t)}.

Definition 8 (equivalence of two maximal states). Two complete states
S1

def= 〈M1, dob1, lrd1〉 and S2
def= 〈M2, dob2, lrd2〉 are equivalent (denoted S1 ∼

S2) iff:
{

M1 = M2
def= M

∀t ∈ T •t ⊆ M =⇒ JS1(t) = JS2(t).

Theorem 8 (firing a transition from two equivalent maximal states).
Let S1 and S2 be two equivalent complete states. Let M be their marking. A
transition t can fire from S1 at date θ1 ≥ max

p∈P
lrd1(p) using the partial marking

L ⊆ M iff it can fire from S2 at date θ1 − max
p∈P

lrd1(p) + max
p∈P

lrd2(p) using the

same partial marking L.

4.2 Composition of Extended Processes

Definition 9 (composition of extended processes).
Let ẋ1

def= 〈Ė1, Θ1〉, ẋ2
def= 〈Ė2, Θ2〉 ∈ ẊLFC be two extended processes, and

Ė′
2 ⊆ Ė2 such that 〈Ė1, Θ1〉 and 〈Ė′

2, Θ2|Ė′
2
〉 are complete extended processes

and RS(〈Ė′
2, Θ2|Ė′

2
〉) ∼ RS(〈Ė1, Θ1〉).

We define the composition which replaces 〈Ė′
2, Θ2|Ė′

2
〉 by ẋ1 in ẋ2 as:

tr(ẋ1, Ė
′
2, ẋ2)

def= 〈Ė, Θ〉

where Ė
def= Ė1 ∪ f(Ė2 \ Ė′

2) and

Θ(ė) def=





Θ1(ė) if ė ∈ Ė1

Θ2(f−1(ė)) − max
ḟ∈Ė′

2

Θ2(ḟ) + max
ḟ∈Ė′

1

Θ1(ḟ) if ė ∈ f(Ė2 \ Ė′
2)

and ∀ė
def= (B, t) ∈ Ė2 \ Ė′

2 f(ė) def= (g(B), t) and

∀b
def= (ė, p) ∈

⋃

ė∈Ė2\Ė′
2

•ė ∪ ė g(b) def=

{
(f(ė), p) if ė /∈ Ė′

2

place−1
|↑(Ė1)

(p) if ė ∈ Ė′
2

We generalize this notation to the composition of more than two extended
processes as:

tr(ẋ0, Ė
′
1, ẋ1, . . . , Ė

′
n, ẋn) def= tr(tr(ẋ0, Ė

′
1, ẋ1, . . . , Ė

′
n−1, ẋn−1), Ė′

n, ẋn)

Theorem 9 (composition of extended processes).
tr(ẋ0, Ė′

1, ẋ1, . . . , Ė′
n, ẋn) ∈ ẊLFC .

4.3 Study of the Form of the Constraints

define pred (and find a better name).
Let M

def= Place(Ė). For all j : {t ∈ T | •t ⊆ M} −→ Q,

pred(Ė)(j) def= (∃Θ : Ė → Q 〈Ė, Θ〉 ∈ ẎLFC ∧ j = JRS(〈Ė,Θ〉)).

We show that there is a finite set of pred(Ė).

4.4 Definition of the Complete Finite Prefixes

Definition 10 (equivalence of two configurations). Two configurations Ė1

and Ė2 are equivalent if Place(Ė1) = Place(Ė2) and pred(Ė1) = pred(Ė2).

Theorem 10. Let Ė1 and Ė2 be two equivalent configurations, and 〈Ė, Θ〉 ∈
ẊLFC such that Ė1 ⊆ Ė and 〈Ė1, Θ|Ė1

〉 ∈ ẎLFC . Then there exists Θ2 : Ė2 −→ Q

such that tr(〈Ė2, Θ2〉, Ė1, 〈Ė, Θ〉) ∈ ẊLFC .

Definition 11 (complete finite prefix). The complete finite prefix is denoted
ŪLFC .
The set of processes 〈Ė, Θ〉 with Ė ⊆ ŪLFC is denoted X̄LFC .

Theorem 11 (decomposition of an extended process in Ū). Let 〈Ė, Θ〉 ∈
ẊLFC . There exists n extended processes in X̄LFC such that their composition
is 〈Ė, Θ〉.

4.5 Example

5 Conclusion

We have presented a possible approach to the supervision/diagnosis of timed
systems, using safe time Petri nets. In such nets, time constraints are given by
interval of nonnegative rationals and are used to restrict the set of behaviours.
The diagnosis problem is to recover the possible behaviours from a set of obser-
vations. We consider that the observations are given as a partial order (without
any timing information) from the activity of several sensors. The goal of the
supervisor is to select the possible timed behaviours of the model, which do not
contradict the observations: i.e. presents the same set of events labelled by the
alarms and orders the events in the same direction that the sensors do. This
goal is achevied by considering a symbolic unfolding of time Petri nets, which is
restricted by the observations. The result is a set of explanations, which explicit
the causalities (both structural and temporal) between the observations. At the
same time, our algorithm infers the possible delays before the firing of the transi-
tions associated with them. Up to our knowledge, our symbolic unfolding for safe
time Petri nets is original, and its application to compute symbolic explanations
too.

A prototype implementation exists (a few thousands lines of Lisp code) and
we plan to use it on real case studies. Another project is to define an algorithm
to produce a complete finite prefix of the unfolding [9], which could be used for
other applications than diagnosis (for which we do not need this notion since
the observations are finite sets).

At longer term, the notion of temporal diagnosis could be refined and revis-
ited when considering timed distributed systems, in which alarms could bring a
time information.

References

1. Tuomas Aura and Johan Lilius. Time processes for time Petri nets. In ICATPN,
volume 1248 of LNCS, pages 136–155, 1997.

2. Paolo Baldan, Andrea Corradini, and Ugo Montanari. Contextual petri nets, asym-
metric event structures, and processes. Inf. Comput., 171(1):1–49, 2001.

3. A. Benveniste, E. Fabre, C. Jard, and S. Haar. Diagnosis of asynchronous discrete
event systems, a net unfolding approach. IEEE Transactions on Automatic Control,
48(5):714–727, May 2003.

4. Bernard Berthomieu and Michel Diaz. Modeling and verification of time dependent
systems using time Petri nets. IEEE Trans. Software Eng., 17(3):259–273, 1991.

5. Bernard Berthomieu and François Vernadat. State class constructions for branch-
ing analysis of time Petri nets. In TACAS, pages 442–457, 2003.

6. Eike Best. Structure theory of Petri nets: the free choice hiatus. In Proceedings of
an Advanced Course on Petri Nets: Central Models and Their Properties, Advances
in Petri Nets 1986-Part I, pages 168–205, London, UK, 1987. Springer-Verlag.

7. Thomas Chatain and Claude Jard. Symbolic diagnosis of partially observable
concurrent systems. In FORTE, pages 326–342, 2004.

8. Joost Engelfriet. Branching processes of Petri nets. Acta Inf., 28(6):575–591, 1991.
9. Javier Esparza, Stefan Römer, and Walter Vogler. An improvement of McMillan’s

unfolding algorithm. In TACAS, pages 87–106, 1996.
10. Hans Fleischhack and Christian Stehno. Computing a finite prefix of a time Petri

net. In ICATPN, pages 163–181, 2002.
11. P.M. Merlin and D.J. Farber. Recoverability of communication protocols – impli-

cations of a theorical study. IEEE Transactions on Communications, 24, 1976.
12. B. Pradin-Chézalviel, R. Valette, and L.A. Künzle. Scenario duration character-

ization of t-timed Petri nets using linear logic. In IEEE PNPM, pages 208–217,
1999.

13. Alexei Semenov and Alexandre Yakovlev. Verification of asynchronous circuits us-
ing time Petri net unfolding. In DAC’96: Proceedings of the 33rd annual conference
on Design automation, pages 59–62, New York, NY, USA, 1996. ACM Press.

14. Walter Vogler, Alexei L. Semenov, and Alexandre Yakovlev. Unfolding and finite
prefix for nets with read arcs. In International Conference on Concurrency Theory,
pages 501–516, 1998.

