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Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the 
myxococcal family ‘Haliangiaceae’. Members of the genus Haliangium are the first halophilic 
myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly 
organized biofilms, called swarms, they decompose bacterial and yeast cells as most  
myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H.  
ochraceum encodes the first actin homologue identified in a bacterial genome. Here we  
describe the features of this organism, together with the complete genome sequence, and an-
notation. This is the first complete genome sequence of a member of the myxococcal  
suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 
protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and  
Archaea project. 

Introduction 
Strain SMP-2T (DSM 14365 = CIP 107738 = JCM 

11303) is the type strain of the species Halian-

gium ochraceum and was first described in 2002 

by Fudou et al. [1]. In 1998 strain SMP-2T was de-

scribed as swarming myxobacteria-like microor-

ganism isolated from a dry seaweed sample (La-

minariales)with optimum growth at NaCl concen-

trations of 2%. The attempt to isolate halophilic 

myxobacteria was initiated by the detection of 

myxobacterial phylotypes in marine sediments 

[2]. A second species of the genus Haliangium, H. 

tepidum, was described along with H. ochraceum 

[1]. 

Only two other genera of marine myxobacteria, 

each comprising one species, have been described 

to date: Plesiocystis pacifica and Enhygromyxa sa-

lina [3,4]. All marine myxobacteria are phyloge-

netically grouped within one of the three subord-

ers within the order Myxococcales, the Nannocys-

tineae. INSDC databases indicate (as of December 

2009) that members of Haliangium are very rare 

in the environment, with the most closely related 



Haliangium ochraceum type strain (SMP-2T) 

97 Standards in Genomic Sciences 

16S rRNA gene sequences from uncultured bacte-

ria being less than 94% similar to H. ochraceum SMP-2T. 

Classification and features 
At the time of species description of the two Ha-

liangium species, the most similar 16S rRNA gene 

sequence from cultivated strains originated from 

strain Pl vt1T. This strain was published with the 

name Polyangium vitellinum [5], hence the acces-

sion entry of its sequence (AJ233944) was also 

registered with this species name up to November 

2009. However, Reichenbach perceived that these 

organisms meet perfectly Kofler’s description of 

“Polyangium flavum”, but do not conform to the 

description of the genus Polyangium. Thus Rei-

chenbach revived Kofler’s “Polyangium flavum” in 

a new genus, Kofleria, and designated strain Pl 

vt1T the type strain of the species Kofleria flava 

[6]. Subsequently, the species name was changed 

in the Genbank entry for AJ233944. The 16S rRNA 

gene sequences of the two Haliangium species 

were less than 94% similar to this nearest neigh-

bor [1], and thus far no sequences of cultivated or 

uncultivated bacteria with higher similarities to 

SMP-2T were deposited in GenBank. 

In 2005, the family Kofleriaceae was created by 

Reichenbach, containing the single species K. flava 

[6], and the author mentioned in a note added 

during the edition of Bergey’s Manual that he re-

garded the two Haliangium species as members of 

the family Kofleriaceae. This family name has 

standing in nomenclature [7]. Albeit, Haliangium 

ochraceum is listed in the Taxonomic Outline of 

the Prokaryotes [8] as member of the family “Ha-

liangiaceae”, that has no standing in nomencla-

ture. From a phylogenetic point of view, the gene-

ra Kofleria (terrestrial) and Haliangium (marine) 

should be members of a single family. 

Myxobacteria are distinct because of two excep-

tional features. The first is their high potential to 

produce secondary metabolites, most of them af-

fecting prokaryotic or eukaryotic cells and hence 

awaiting exploitation for pharmaceutical applica-

tions or in plant protection. They encode genes for 

key enzymes in the biosynthesis of polyketide and 

peptide metabolites, polyketide synthases and 

nonribosomal peptide synthetases, respectively 

[9]. Their second distinctive characteristic is their 

morphogenesis, i.e. the formation of fruiting bo-

dies and development of myxospores, that is 

based on cell-to-cell signaling among the single 

cells of the population in a swarm. The genetic 

background of the so called ‘social motility’ and 

morphogenesis is understood best for Myxococcus 

xanthus [10]. It is no surprise that these pheno-

mena are regulated by sophisticated networks 

including two-component regulatory systems 

[11]. 

Figure 1 shows the phylogenetic neighborhood of 

H. ochraceum SMP-2T in a 16S rRNA based tree. 

The sequences of the two 16S rRNA gene copies in 

the genome of do not differ from each other, and 

do not differ from the previously published 16S 

rRNA sequence of DSM 14365 (AB016470). 

Vegetative cells of H. ochraceum stain Gram-

negative and form cylindrical rods with blunt ends 

(Table 1). They are embedded in an extracellular 

matrix and measure 0.5-0.6 by 3-8 µm (Figure 2). 

This cell form is characteristic for members of the 

suborder Nannocystineae [6]. The colonies exhibit 

spreading on solid surfaces such as agar as film-

like layers and thus are called ‘swarms’. The ex-

tending motion is propelled by gliding. On aging 

culture plates, the cells do no more spread to ex-

plore new substrates (so called adventurous or A 

motility) but also gather on specific points of the 

swarms to form fruiting bodies (social or S motili-

ty) [10]. The fruiting bodies of strain SMP-2T are 

light yellow to yellowish-brown, irregular, sessile 

knobs with a diameter of 50-200 µm and contain 

one or more oval-shaped sporangioles, each 20-60 

µm in size [1,2]. The spherical to ovoid myxos-

pores within the sporangioles measure 0.5-0.7 µm. 

Thus they resemble the myxospores of Nannocys-

tis species in being very tiny [1]. The myxospores 

tolerate heat treatment at 55-60°C for 5 minutes 

and storage in a desiccated stage for at least 3 

months [23]. 

The strain requires NaCl for growth with an opti-

mum concentration of 2% and good growth in the 

range of 0.5-4% NaCl in agar or in liquid medium 

[1,2,23]. Fruiting body formation was observed at 

salt concentrations corresponding to 40-100% sea 

water concentration but not at lower salt concen-

trations [23]. Media supporting growth are CY 

medium, diluted 1:5, (DSMZ medium 67) or VY/2 

medium (DSMZ medium 9) [26], each supple-

mented with seawater salts. No growth was ob-

tained in tryptic soy broth with seawater salts [1]. 

Corresponding to the multicellular lifestyle, new 

agar or liquid cultures of strain SMP-2T can only 

be successfully started with very high inoccula. 

The minimum cell load on a plate in order to in-

duce a swarm is 105 [23]. The temperature range 

for growth is 20-40°C with an optimum at 30-34°C [1].  
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Figure 1. Phylogenetic tree highlighting the position of H. ochraceum SMP-2T relative to the other type strains with-
in the genus and the type strains of the other genera within the order Myxococcales. The tree was inferred from 
1,463 aligned characters [12,13] of the 16S rRNA gene sequence under the maximum likelihood criterion [14] and 
rooted in accordance with the current taxonomy. The branches are scaled in terms of the expected number of  
substitutions per site. Numbers above branches are support values from 1,000 bootstrap replicates if larger than 
60%. Lineages with type strain genome sequencing projects registered in GOLD [15] are shown in blue, published 
genomes in bold. 

 

 

Cells of strain SMP-2T are strictly aerobic with 

weak oxidase and catalase reactions. They do not 

grow in mineral media with carbohydrates or or-

ganic acids but are specialized decomposers of 

macromolecules such as starch, DNA, casein, chitin 

or gelatin. Cellulose, however is not cleaved. The 

cells are equipped to decompose cells of other 

bacteria or yeasts [1]. Correspondingly, enzymes 

such as lipase (C14), trypsin, chymotrypsin, valine 

or leucine arylamidases are active [1]. Whether or 

not H. ochraceum actively hunt for prey bacteria 

as shown for M. xanthus [27] has not been studied 

yet. 

Chemotaxonomy 
The fatty acid profile of strain SMP-2T reveals sa-

turated straight chain C16:0 (38.3%) and branched 

chain iso-C16:0 (15.3%) acids as the major fatty ac-

ids. No hydroxylated fatty acids were detected, a 

feature shared with members of the genera Nan-

nocystis, Sorangium [1], Plesiocystis [4] and Enhy-

gromyxa [3]. While the two Haliangium species 

also contain anteiso-branched fatty acids as dis-

tinctive compounds [1], the specific feature of the 

two other marine genera Plesiocystis and Enhy-

gromyxa is the presence of polyunsaturated C20:4 

acids [3,4]. A novel pathway for the biosynthesis 

of iso-even fatty acids (by α-oxidation of iso-odd 

fatty acids) was detected for the myxobacterium 

Stigmatella aurantiaca [28]. In members of the 

genus Nannocystis and Polyangium, true steroids 

were detected, a very unusual trait among proka-

ryotes [6,29]. It would be interesting to study 

whether these pathways are also found in H. och-

raceum. 

MK-8 is the predominant menaquinone in SMP-2T 

as it is in all terrestrial myxobacterial taxa studied 

[1,29]. It is noteworthy that the members of the 

other marine genera Plesiocystis and Enhygromyxa 

contain MK-8(H2) and MK-7, respectively [3,4]. 

The compositions of polyamines and the polar li-

pids of Haliangium strains have not been  

analyzed. 

http://standardsingenomics.org/�
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Table 1. Classification and general features of H. ochraceum SMP-2T according to the MIGS recommendations [16] 

MIGS ID Property Term Evidence code 

 
Current classification 

 

Domain Bacteria TAS [17] 

Phylum Proteobacteria TAS [18] 

Class Deltaproteobacteria TAS [19] 

Order Myxococcales TAS [20,21] 

Suborder Nannocystineae TAS [6,22] 

Family ‘Haliangiaceae’/Kofleriaceae TAS [6,8] 

Genus Haliangium TAS [1] 
Species Haliangium ocharaceum TAS [1] 
Type strain SMP-2 TAS [1] 

 Gram stain negative TAS [1] 

 Cell shape rods TAS [1] 

 Motility gliding TAS [1] 

 Sporulation myxospores TAS [1] 

 Temperature range mesophile, 20-40°C TAS [1] 

 Optimum temperature 30-34°C TAS [1] 

 Salinity halophile, optimum 2% NaCl TAS [1] 

  tolerates up to 6% NaCl TAS [2,23] 

MIGS-22 Oxygen requirement strictly aerobic TAS [1] 

 Carbon source macromolecules such as proteins TAS [1] 

 Energy source chemoorganotrophic TAS [1] 

MIGS-6 Habitat marine TAS [1,23] 

MIGS-15 Biotic relationship isolated from seaweed TAS [2] 

MIGS-14 Pathogenicity non pathogenic NAS 

 Biosafety level 1 TAS [24] 

 Isolation dry sample of seaweed (Laminariales) TAS [1] 

MIGS-4 Geographic location Miura Peninsula, Japan TAS [2] 

MIGS-5 Sample collection time 1997 TAS [2] 

MIGS-4.1 
MIGS-4.2 

Latitude, 
Longitude 

35.259, 139.629 NAS 

MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude sea-level  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author  
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not direct-
ly observed for the living, isolated sample, but based on a generally accepted property for the species, or 
anecdotal evidence). These evidence codes are from of the Gene Ontology project [25]. If the evidence 
code is IDA, then the property was directly observed for a live isolate by one of the authors or an expert 
mentioned in the acknowledgements.  

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 

basis of its phylogenetic position, and is part of the 

Genomic Encyclopedia of Bacteria and Archaea 

project [30]. The genome project is deposited in 

the Genome OnLine Database [15] and the com-

plete genome sequence is deposited in GenBank. 

Sequencing, finishing and annotation were per-

formed by the DOE Joint Genome Institute (JGI). A 
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summary of the project information is shown in 

Table 2. 

Growth conditions and DNA isolation 
H. ochraceum SMP-2T, DSM 14365, was grown in 

CY medium with seawater salts (in grams per li-

ter: casitone 3.0, yeast extract 1.0, NaCl 21.1, KCl 

0.6, CaCl2 × 2 H2O 1.2, MgCl2 × 6 H2O 3.6, NaHCO3 

0.09, MgSO4 × 7H2O 2.6, agar 15 g) [26] at 28°C. 

DNA was isolated from 0.5-1 g of cell paste using 

Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, 

Germany), with a modified protocol for cell lysis 

(st/LALMP), as described in Wu et al. [30]. 

 
Figure 2. Scanning electron micrograph of H. ochraceum SMP-2T 

 
Genome sequencing and assembly 
The genome was sequenced using a combination 

of Sanger and 454 sequencing platforms. All gen-

eral aspects of library construction and sequenc-

ing performed at the JGI can be found at the JGI 

website (http://www.jgi.doe.gov/). 454 Pyrose-

quencing reads were assembled using the Newb-

ler assembler version 1.1.02.15 (Roche). Large 

Newbler contigs were broken into 10,273 over-

lapping fragments of 1,000 bp and entered into 

the final assembly as pseudo-reads. The sequences 

were assigned quality scores based on Newbler 

consensus q-scores with modifications to account 

for overlap redundancy and to adjust inflated q-

scores. A hybrid 454/Sanger assembly was made 

using the parallel phrap assembler (High Perfor-

mance Software, LLC). Possible mis-assemblies 

were corrected with Dupfinisher or transposon 

bombing of bridging clones [31]. Gaps between 

contigs were closed by editing in Consed, custom 

primer walk or PCR amplification. A total of 2,013 

Sanger finishing reads were produced to close 

gaps, to resolve repetitive regions, and to raise the 

quality of the finished sequence. The error rate of 

the completed genome sequence is less than 1 in 

100,000. Together all sequence types provided 

24.3× coverage of the genome. The final assembly 

contains 90,757 Sanger and 689,516 pyrose-

quencing reads. 

Genome annotation 
Genes were identified using Prodigal [32] as part 

of the Oak Ridge National Laboratory genome an-

notation pipeline, followed by a round of manual 

curation using the JGI GenePRIMP pipeline 

(http://geneprimp.jgi-psf.org/) [33]. The pre-

dicted CDSs were translated and used to search 

the National Center for Biotechnology Information 

(NCBI) nonredundant database, UniProt, TIGR-

Fam, Pfam, PRIAM, KEGG, COG, and InterPro data-

bases. Additional gene prediction analysis and 

functional annotation was performed within the 

Integrated Microbial Genomes - Expert Review 

(http://img.jgi.doe.gov/er) platform [34]. 

Genome properties 
The genome is 9,446,314 bp long and comprises 

one main circular chromosome with a 69.5% GC 

content (Table 3 and Figure 3). Of the 6,951 genes 

predicted, 6,898 were protein coding genes, and 

53 RNAs. Fifty-three pseudogenes were also iden-

tified. The majority of the protein-coding genes 

http://standardsingenomics.org/�
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(62.1%) were assigned with a putative function 

while the remaining ones were annotated as  

hypothetical proteins. The percentage of genes 

which were not assigned to COGs is relatively 

high, 42%, a proportion similar to that in the ge-

nome of Sorangium cellulosum So ce56 [11]. This 

fact suggests that the genome harbors many yet 

unknown genes. The distribution of genes into 

COGs functional categories is presented in Table 4. 

 
 
Table 2. Genome sequencing project information 

MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two Sanger genomic libraries – 6 kb 
pMCL200 and fosmid pcc1Fos and one 
454 pyrosequencing standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX 

MIGS-
31.2 

Sequencing coverage 7.8× Sanger; 16.5× pyrosequence 

MIGS-30 Assemblers Newbler version 1.1.02.15, phrap 
MIGS-32 Gene calling method Prodigal, GenePRIMP 

 INSDC ID CP001804 

 Genbank Date of Release October 28, 2009 

 GOLD ID Gc01135 

 NCBI project ID 41425 

 Database: IMG-GEBA 2502082105 

MIGS-13 Source material identifier DSM 14365 

 Project relevance Tree of Life, GEBA 

 
 
Starting from one of the conspicuous features of 

the myxobacteria, the diversity of secondary me-

tabolism, the number of known genes putatively 

assigned to the COG category “Secondary metabo-

lites biosynthesis, transport and catabolism” is not 

exceptionally high: 174 genes in comparison to, 

for example, 136 genes in Pseudomonas putida F1. 

The number of COG genes involved in “Replica-

tion, recombination and repair”, however, are re-

markably increased: in H. ochraceum: 439 genes 

were assigned to this category, in S. cellulosum 

there are 541, whereas P. putida only contains 157 

genes assigned to this category. 

Insights from genome sequence 
The genomes of two other myxobacteria, M. xan-

thus DK1622 and S. cellulosum strain So ce56, 

were analyzed in depth [11,35-37] and may serve 

as a roadmap to explore the genome of strain 

SMP-2T. 

Sixteen genes of strain SMP-2T were putatively 

assigned to the COG category ‘Cytoskeleton’. Re-

cognizing that almost all other bacteria do not 

harbor any genes assigned to this category it is 

worth mentioning that all myxobacterial genomes 

studied so far include several copies in this cate-

gory. Fifteen of the cytoskeleton genes of SMP-2T 

belong to COG 5184 ’Alpha-tubulin suppressor 

and related RCC1 domain-containing proteins‘. 

Strain SMP-2T and P. pacifica, another rare marine 

myxobacterium, together with Salinispora arenico-

la are the prokaryotes with the highest degree of 

similarity of these genes, 15, 12, 14 and 15, re-

spectively. Whereas RCC1 was known as a euka-

ryotic cell cycle regulator, RCC1-like repeats were 

recently also detected in several prokaryotic ge-

nomes [38]. Future studies will have to elucidate 

whether the SMP-2T sequences, automatically as-

signed to a RCC1 domain, are related to these re-

peats in particular. As the genes most similar to 

the H. ochraceum RCC1-like proteins, as deter-

mined by protein BLAST with the NCBI database, 

derive exclusively from other myxobacteria such 

as P. pacifica or Stigmatella aurantiaca, it seems 

plausible that they build a myxobacterial branch 

within the RCC1 superfamily. 
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Table 3. Genome Statistics 

Attribute Value % of Total 
Genome size (bp) 9,446,314 100.00% 
DNA coding region (bp) 8,424,350 89.18% 
DNA G+C content (bp) 6,563,619 69.48% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 6,951 100.00% 
RNA genes 53 0.76% 
rRNA operons 2  
Protein-coding genes 6,898 99.24% 
Pseudo genes 53 0.76% 
Genes with function prediction 4,318 62.12% 
Genes in paralog clusters 1,329 19.12% 
Genes assigned to COGs 4,036 58.06% 
Genes assigned Pfam domains 4,167 59.95% 
Genes with signal peptides 1,786 25.69% 
Genes with transmembrane helices 1,371 19.72% 
CRISPR repeats 3  

 

 
Figure 3. Graphical circular map of the genome. From outside to the center: Genes on 
forward strand (color by COG categories), Genes on reverse strand (color by COG cate-
gories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 

Code Value %age Description 

J 182 2.6 Translation, ribosomal structure and biogenesis 

A 2 0.0 RNA processing and modification 

K 488 7.1 Transcription 

L 439 6.4 Replication, recombination and repair 

B 3 0.0 Chromatin structure and dynamics 

D 54 0.8 Cell cycle control, mitosis and meiosis 

Y 0 0.0 Nuclear structure 

V 83 1.2 Defense mechanisms 

T 549 8.0 Signal transduction mechanisms 

M 250 3.6 Cell wall/membrane biogenesis 

N 55 0.8 Cell motility 

Z 16 0.2 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 89 1.3 Intracellular trafficking and secretion 

O 194 2.8 Posttranslational modification, protein turnover, chaperones 

C 265 3.8 Energy production and conversion 

G 186 2.7 Carbohydrate transport and metabolism 

E 308 4.5 Amino acid transport and metabolism 

F 78 1.1 Nucleotide transport and metabolism 

H 183 2.7 Coenzyme transport and metabolism 

I 204 3.0 Lipid transport and metabolism 

P 163 2.4 Inorganic ion transport and metabolism 

Q 174 2.5 Secondary metabolites biosynthesis, transport and catabolism 

R 754 10.9 General function prediction only 

S 332 4.8 Function unknown 

- 2915 42.3 Not in COGs 

 

The most striking finding in the H. ochraceum ge-

nome was a sequence coding for a protein of the 

actin family (COG 5277) within the Cytoskeleton 

category [30]. Only eight years ago, it became ob-

vious that bacterial cells contain a cytoskeleton at 

least as active as in eukaryotic cells. The bacterial 

functional and structural homologues to the euka-

ryotic actin compound are the proteins MreB and 

ParM [39]. However, the prokaryotic and eukaryo-

tic genes coding for these proteins, or their amino 

acid sequences, are not related on the sequence 

level. In contrast, the sequence detected in H. och-

raceum shows a striking sequence similarity to 

actin and is the very first report of an actin homo-

log in a bacterial genome. The protein was called 

BARP, bacterial actin-related protein. The genomic 

context of barP, its sequence, the putative struc-

ture of the protein and evidence that the gene is 

expressed were recently described by Wu et al. 

[30]. Interestingly, several hits for proteins of the 

actin family are given for Archaea by IMG. 

Myxobacteria became known for their potential to 

synthesize a vast array of secondary metabolites. 

Polyketide synthases (PKS) and nonribosomal 

peptide synthetases play the key role in the build-

ing pathways [37]. PKS multidomain complexes 

are listed in COG 3221 in the category ‘Secondary 

metabolites’. The sum of automatic assignments to 

this category is not extraordinarily increased for 

H. ochraceum in comparison to other bacteria 

(174 hits as compared to, e.g., 136 in P. putida 

strain F1), and the search for the gene product 
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‘polyketide synthase’ does not find any gene for H. 

ochraceum. However, the genome of H. ochraceum, 

like the other myxobacteria studied, contains a 

high number of stretches assigned to COG 3321. 

The number of hits in COG is less than 10 in bacte-

ria except for the myxobacteria, Burkholderia mal-

lei, B. pseudomallei, Mycobacterium spp. and mem-

bers of the Streptomyces. The annotations in COG 

3321 for H. ochraceum identify the homologues as 

known domains of PKS (for example acyltransfe-

rases or ketoreductases) or of a distinct PKS syn-

thesizing the aglycone precursor of erythromycin 

B. A search for PKS in different myxobacteria us-

ing PCR unfortunately did not include H. ochra-

ceum but it included a strain representing the 

second species in the genus, H. tepidum [40]. The 

authors found the highest percentage of yet unde-

scribed PKS sequences (50% of all newly detected 

PKS sequences) in the marine myxobacteria (as 

compared to terrestrial myxobacteria). In H. tepi-

dum, all 10 PKS sequences represented novel PKS 

genes (threshold 70% identity to known se-

quences). These findings suggest that an in-depth 

search for novel genes coding for isoprenoid me-

tabolites in H. ochraceum has a very good prospect 

of success. 

Other promising fields of gene mining in H. ochra-

ceum, as a representative of the marine myxobac-

teria, most likely are the genes of energy metabol-

ism and the genes coding for the coordinated 

movement of cells during fruiting body and myx-

ospore formation. This morphogenesis is con-

ducted by cell-to-cell cross-talk, signal transduc-

tion and induction of ‘social motility’ [10,41]. 
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