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Abstract

Novosphingobium pentaromativorans US6-1T is a species in the family Sphingomonadaceae. According to the phylogenetic

analysis based on 16S rRNA gene sequence of the N. pentaromativorans US6-1T and nine genome-sequenced strains in

the genus Novosphingobium, the similarity ranged from 93.9 to 99.9 % and the highest similarity was found with

Novosphingobium sp. PP1Y (99.9 %), whereas the ANI value based on genomes ranged from 70.9 to 93 % and the

highest value was 93 %. This microorganism was isolated from muddy coastal bay sediments where the environment is

heavily polluted by polycyclic aromatic hydrocarbons (PAHs). It was previously shown to be capable of degrading

multiple PAHs, including benzo[a]pyrene. To further understand the PAH biodegradation pathways the previous draft

genome of this microorganism was revised to obtain a complete genome using Illumina MiSeq and PacBio platform.

The genome of strain US6-1T consists of 5,457,578 bp, which includes the 3,979,506 bp chromosome and five

megaplasmids. It comprises 5110 protein-coding genes and 82 RNA genes. Here, we provide an analysis of the

complete genome sequence which enables the identification of new characteristics of this strain.
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Introduction

The polycyclic aromatic hydrocarbons are widely distrib-

uted in the environment as one of the persistent organic

pollutants and are generated by natural combustion pro-

cesses as well as human activities [1]. Benzo(a)pyrene is

of environmental concern due to its high carcinogenic [2]

and bioaccumulation potential [3]. Biodegradation in con-

taminated environments is one of the important processes

of remediation. Therefore, isolation of potent biodegrad-

ation strains and elucidation of the biodegradation

pathways have drawn attention for a long time [4–6].

Novosphingobium pentaromativorans US6-1T, a Gram

negative halophilic marine bacterium, is one of the

potent strains capable of utilizing a series of high molecu-

lar weight PAHs as sole carbon and energy sources. Strain

US6-1T showed an especially high degradation ability

for benzo(a)pyrene [7]. To understand the PAH biodeg-

radation pathways, genomic and proteomic approaches

were conducted on this strain [8, 9]. In the genomic

study it was reported that strain US6-1T contained at

least two large plasmids and most of the coding genes

associated with PAH degradation were located in the

larger plasmid pLA1 [8]. However, the draft genome

sequence was inadequate to understanding the deg-

radation processes for high-molecular-weight com-

pounds of PAH and their regulation mechanism.

Therefore, completion of the strain US6-1T genome

was carried-out and the genomic repertoire is reported

in here.

Organism information

Classification and features

At the time of writing, the genus Novosphingobium

contains 30 species including N. pentaromativorans

US6-1T. Phylogenetic analysis based on the 16S rRNA

gene sequences using the neighbor-joining, maximum-

likelihood and maximum-parsimony methods showed

that N. pentaromativorans US6-1T formed a clade with
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other members within the genus Novosphingobium

(Fig. 1). N. pentaromativorans US6-1T shared the 16S

rRNA gene identity with the type strains, N.

aquaticum FNE08-86T and N. mathurense SM117T, in

the range of 93.9 and 98.7 %, respectively. The strain

PP1Y [10], one of the whole-genome sequenced

Fig. 1 Phylogenetic tree highlighting the position of Novosphingobium pentaromativorans US6-1T (in bold) relative to the other validly published

28 type strains, and 4 non-type strains that have their whole genome sequences (indicated with *) within genus Novosphingobium. A total of

1305 unambiguously aligned sequences were compared and phylogenetic trees were reconstructed using the neighbor-joining [26], maximum-likelihood

[27] and maximum-parsimony [28] methods. Bootstrap values (%) are based on 1000 replicates and are indicated at the nodes when they are higher than

50 % [29]. The evolutionary distances were calculated by the Jukes-Cantor method [30] using MEGA5 [31]. The nodes are marked with filled or open circles

when the node was recovered by all three or by two treeing methods, respectively. Sphingosinicella microcystinivorans Y2T was used as an outgroup. Scale

bar; 0.005 changes per nucleotide position
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strains in genus Novosphingobium, was most closely

related to N. pentaromativorans US6-1T with 99.9 %

similarity.

Strain US6-1T cells are Gram-negative, non-motile rods

(Table 1). Cells are 0.36–0.45 μm in width and 0.97–

1.95 μm in length. Colonies on ZoBell 2216 agar and tryp-

ticase soy agar medium are yellowish and circular. Optimal

growth occurred at 30 °C and was retarded below 20 °C.

The organism tolerates pH values from 6 to 9 and optimal

growth occurs at pH 6.5. Strain US6-1T grows in the range

of 1–6 % NaCl with optimal growth at 2.5 % NaCl. The

isolate can grow under anaerobic conditions but growth is

retarded [7].

N. pentaromativorans US6-1T utilizes cyclodextrin,

dextrin, Tween 40, Tween 80, α-D-glucose, maltose,

D-trehalose, sucrose, psicose, methyl pyruvate, β-

hydroxybutyric acid, α-ketobutyric acid, propionic

acid, acetic acid, quinic acid, L-alanine, L-alanyl gly-

cine, L-aspartic acid, L-glutamic acid, L-proline, L-

threonine and L-phenylalanine [7]. These phenotypes

were confirmed by genomic methods.

Genome sequencing information

Genome project history

The genome of N. pentaromativorans US6-1T was se-

quenced in 2009 using a 454 GS FLX Titanium sequen-

cing platform. The assembly and annotation of draft

genome sequences were completed on August 11, 2011

and the GenBank data was released on September 5, 2011.

The genome project has been deposited at DDBJ/EMBL/

GenBank under the accession number AGFM00000000

[8]. On January 1, 2014, N. pentaromativorans US6-1T

was selected for complete genome sequencing using

Illumina MiSeq and PacBio RS II sequencing

Table 1 Classification and general features of N. pentaromativorans US6-1T

MIGS ID Property Term Evidence codea

Current classification Domain Bacteria TAS [33]

Phylum Proteobacteria TAS [34]

Class Alphaproteobacteria TAS [35, 36]

Order Sphingomonadales TAS [36, 37]

Family Sphingomonadaceae TAS [38, 39]

Genus Novosphingobium TAS [40, 41]

Species Novosphingobium pentaromativorans TAS [7]

Type strain US6-1T TAS [7]

Gram stain negative TAS [7]

Cell shape rod TAS [7]

Motility non-motile TAS [7]

Sporulation not reported NAS

Temperature range 15-40 °C IDA [7]

Optimum temperature 30 °C TAS [7]

pH range; Optimum 6–9; 6.5 TAS [7]

Carbon source cyclodextrin, dextrin, glucose, maltose, sucrose,
psicose, propionic acid,alanine, glutamic acid, proline

TAS [7]

MIGS-6 Habitat muddy sediment TAS [7]

MIGS-6.3 Salinity requires (2.5 %) TAS [7]

MIGS-22 Oxygen requirement Facultative anaerobic TAS [7]

MIGS-15 Biotic relationship free-living TAS [7]

MIGS-14 Pathogenicity non-pathogen TAS [7]

MIGS-4 Geographic location Ulsan Bay, Republic of Korea TAS [7]

MIGS-5 Sample collection time 2000 NAS

MIGS-4.1 Latitude 129°23′14″ NAS

MIGS-4.2 Longitude 35°29′48.5″N NAS

MIGS-4.4 Altitude −8 m NAS

aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement

(i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are

from the Gene Ontology project [42]
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technology. The complete genome was annotated on

May 26, 2014 by ChunLab Inc., South Korea and the

sequence was deposited in GenBank on October 10,

2014 (CP009291, CP009292, CP009293, CP009294,

CP009295, CP009296). Table 2 represents the project

information and its association with MIGS version 2.0

compliance [11].

Growth conditions and genomic DNA preparation

US6-1T (=KCTC 10454T) was cultivated for 1 day at 30 °C

in 100 ml ZoBell medium (5 g peptone, 1 g yeast extract,

0.01 g FePO4 per liter of 20 % distilled water and 80 % fil-

tered aged seawater) by shaking incubation (150 rpm). Cell

was harvested by centrifugation at 6000 × g for 15 min at

4 °C and then washed twice with sterilized seawater. The

genomic DNA isolation prepared by using a Wizard® gen-

omic DNA purification kit (Promega, USA) according to

the manufacturer’s instructions. Genomic DNA quantified

using the PicoGreen® fluometric quantification kit

(Molecular Probes) and preserved at −20 °C for

sequencing.

Genome sequencing and assembly

The genomic DNA was fragmented using dsDNA frag-

mentase to generate DNA pieces suitable for library con-

struction. The DNA fragments were processed with a

TruSeq DNA sample preparation kit v2 (Illumina Inc.,

USA) following the manufacturer’s instructions. The final

library was quantified by a Bioanalyzer 2100 (Agilent,

USA) and the average library size was 300 bp. The genomic

library was sequenced by Illumina MiSeq (Illumina Inc.,

USA) and a PacBio RS II sequencer (Pacific Biosciences,

USA). Generated Illumina sequencing reads (8,767,104

reads, total read length 2,156,191,562 bp) and PacBio reads

(1,362,072 reads, total read length 703,045,197 bp) were as-

sembled using the CLC genomics workbench 7.0.4 (CLC

bio, Denmark) and the PacBio SMRT Analysis Pipeline

2.2.0. Finally, we obtained 6 contigs. The contigs and PCR-

based long reads were combined through manual curation

using CodonCode Aligner 3.7.1 (CodonCode Corp., USA).

The final plasmid sequences were corrected by remapping

with raw reads to check errors and dubious regions.

Genome annotation

The genes in the assembled genome were predicted

using Prodigal [12] as part of the DOE-JGI genome an-

notation pipeline [13, 14], followed by a round of man-

ual curation using the JGI GenePRIMP pipeline [15].

tRNAs were identified by tRNA-Scan-SE [16], and the

search for rRNAs used HMMER with EzTaxon-e rRNA

profiles [17, 18]. The predicted CDSs were compared to

catalytic families, NCBI COG by rpsBLAST, NCBI refer-

ence sequences and SEED databases by BLASTP, for

functional annotation [19–22]. Additional gene predic-

tion analysis and functional annotation were performed

within the Integrated Microbial Genomes-Expert Review

(IMG-ER) platform [23].

Genome properties
The total length of the complete genome sequence is

5,457,578 bp, which includes a 3,979,506 bp chromo-

some and five plasmids pLA 1 (0.18 Mb), pLA 2

(0.06 Mb), pLA 3 (0.75 Mb), pLA 4 (0.33 Mb), and pLA

5 (0.13 Mb) (Table 3). The DNA G +C content was de-

termined to be 63.02 %. There are 82 RNA genes which

includes 9 rRNAs, 54 tRNAs and 19 miscRNAs (Table 4).

All of the amino acid coding genes are located on the

chromosome. From the gene prediction results, 5110

CDSs were identified. The statistics of the genome based

on the IMG (ID: 59347) are summarized in Table 4 and

the distribution of genes into COG functional categories

is presented in Fig. 2 and Table 5.

Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality Finished

MIGS-28 Libraries used Illumina MiSeq, PacBio 10 K

MIGS-29 Sequencing platforms Illumina MiSeq, PacBio 10 K

MIGS-31.2 Fold coverage 395.08 × Illumina, 128.82 × PacBio

MIGS-30 Assemblers Roche gsAssembler 2.6, PacBio SMRT

Analysis 2.2.0, CLCbio CLC Genomics

Workbench version 7.0.4

MIGS-32 Gene calling method Prodigal, tRNA-Scan-SE, HMMER

Locus Tag JI59

GenBank ID CP009291-6

GenBank Date of
Release

October 10, 2014

GOLD ID Gs0114422

BIOPROJECT PRJNA257352

MIG-13 Source Material
Identifier

KCTC 10454T

Project relevance Bioremediation, PAHs biodegradation
pathway, Environmental

Table 3 Summary of genome: one chromosome and five plasmids

Label Size (Mb) GC (%) No. genes Topology INSDC
identifier

Chromosome 3.98 63.5 3811 circular CP009291

pLA1 0.18 62.6 191 circular CP009294

pLA2 0.06 60.29 85 circular CP009296

pLA3 0.75 61.44 654 circular CP009292

pLA4 0.33 62.4 326 circular CP009293

pLA5 0.13 61.06 125 circular CP009295
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Insights from the genome sequence

In this study, the relationship between 16S rRNA

gene sequence similarity and ANI value of the N.

pentaromativorans US6-1T was examined for nine

genome-sequenced strains in the genus Novosphingo-

bium. The 16S rRNA gene sequence similarity ranged

from 93.9 to 99.9 % whereas the ANI values ranged from

70.9 to 93 % (Fig. 3). All interspecies relations (plot number

1–8 in Fig. 3) coincided with the species delineation, while

the relation (plot number 9 in Fig. 3) between N. pentaro-

mativorans US6-1T and Novosphingobium sp. PP1Y showed

the discrepancy of the species delineation in terms of 16S

rRNA gene sequence similarities and ANI values. This evi-

dence suggests that the strains US6-1T and PP1Y are likely

different species, because ANI (93 %) is lower than 95 % in

spite of the 99.9 % 16S rRNA gene sequence similarity [24].

However, Gan et al. [25] demonstrated that these two

strains may belong to the same species on the basis of aver-

age amino acid identity, dinucleotide relative abundance

values and genome signature dissimilarity. Kim et al. [24]

reported several exceptional cases of the proposed

standard for species delineation. Among them a high

number of cases (39 %) with >98.65 % 16S rRNA gene

sequence similarity, and <95 % ANI, were found for

strains that are known to have high intraspecific or intra-

genomic variations between multiple 16S rRNA genes in

the genome. The same case was found between N. pentar-

omativorans US6-1T and Novosphingobium sp. PP1Y in

the current study even though the intraspecific or

intragenomic variations between multiple 16S rRNA

genes in those genomes were low. At present, it is not

clear how 16S rRNA gene sequence similarity between

these two strains has been conserved despite having

relatively divergent genomes.

Strain US6-1T has two different extradiol pathways

[9]. A previous analysis found that genes involved in

the catechol 2,3-dioxygenase pathway are encoded in

plasmid pLA1, whereas those of the protocatechuate

Table 4 Genome statistics

Attribute Value % of totala

Genome size (bp) 5,457,578 100.00

DNA coding (bp) 4,910,346 89.97

DNA G + C (bp) 3,439,297 63.02

DNA scaffolds 6 100.00

Total genes 5192 100.00

Protein coding genes 5110 98.42

RNA genes 82 1.58

Pseudo genes 59 1.14

Genes in internal clusters 4183 80.57

Genes with function prediction 4036 77.73

Genes assigned to COGs 3787 72.94

Genes with Pfam domains 4124 79.43

Genes with signal peptides 486 9.36

Genes with transmembrane helices 1073 20.67

CRISPR repeats 0 0

aThe total is based on either the size of the genome in base pairs or the total

number of protein coding genes in the annotated genome

Fig. 2 Circular maps and genetic features of the chromosome and its plasmids of N. pentaromativorans US6-1T displaying relevant genome features. From

outside to center; Genes on forward strand (colored by COG categories), genes on reverse strand (colored by COG categories), GC content and GC skew.

Order and size counterclockwise from an upper map: Chr, 3.98 Mb; pLA 1, 0.18 Mb; pLA 2, 0.06 Mb; pLA 3, 0.75 Mb; pLA 4, 0.33 Mb; pLA 5, 0.13 Mb
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Table 5 Number of genes associated with general COG functional categories

Code Value % age Description

J 167 3.1 Translation, ribosomal structure and biogenesis

A 1 0.0 RNA processing and modification

K 267 4.9 Transcription

L 289 5.3 Replication, recombination and repair

B 0 0.0 Chromatin structure and dynamics

D 36 0.7 Cell cycle control, Cell division, chromosome partitioning

V 50 0.9 Defense mechanisms

T 122 2.2 Signal transduction mechanisms

M 245 4.5 Cell wall/membrane/envelope biogenesis

N 64 1.2 Cell motility

U 76 1.4 Intracellular trafficking and secretion

O 172 3.1 Posttranslational modification, protein turnover, chaperones

C 294 5.4 Energy production and conversion

G 177 3.2 Carbohydrate transport and metabolism

E 272 5.4 Amino acid transport and metabolism

F 67 3.2 Nucleotide transport and metabolism

H 131 5.0 Coenzyme transport and metabolism

I 260 4.8 Lipid transport and metabolism

P 264 4.8 Inorganic ion transport and metabolism

Q 100 1.8 Secondary metabolite biosynthesis, transport and catabolism

R 382 7.0 General function prediction only

S 351 6.4 Function unknown

- 1676 30.7 Not in COGs

The total is based on the total number of protein coding genes in the annotated genome

Fig. 3 The relationship between 16S rRNA gene sequence similarities and ANI values for strains in the genus of Novosphingobium. The species

boundary of 16S rRNA gene sequence similarity and ANI value are indicated at 97–98.65 % [24] and 95–96 % [32], respectively. 1, N. acidiphilum

DSM 19966T; 2, N. tardaugens NBRC 16725T; 3, N. aromaticivorans DSM 12444T; 4, Novosphingobium sp. B-7; 5, N. nitrogenifigens DSM 19370T; 6,

Novosphingobium sp. Rr 2-17; 7, N. lindaniclasticum LE124T; 8, Novosphingobium sp. AP12; 9, Novosphingobium sp. PP1Y
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4,5-dioxygenase pathway are located in the chromo-

somal genome. Based on the completed genome data,

however, it was discovered that most of the protoca-

techuate 4,5-dioxygenase genes are encoded in pLA3

(three alpha-subunits and two beta-subunits are in pLA3,

with one beta-subunit in the chromosome) and that both

extradiol biodegradation pathways are encoded separately

in two plasmids. Additional gene such as a copy of naph-

thalene 1,2-dioxygenase involved in aromatic hydrocarbon

degradation is encoded in the chromosomal genome.

Conclusions

N. pentaromativorans US6-1T was isolated from marine

sediments and it showed halophilic characteristics. This

strain is capable of degrading multi-ring aromatic com-

pounds including benzo[a]pyrene. By completing the

genome sequencing, the genomic composition of N. pen-

taromativorans US6-1T was revised from one chromo-

some and two plasmids to one chromosome and five

plasmids, and the total size was changed from approxi-

mately 5.1 to 5.5 Mb. The relationship between 16S

rRNA gene sequence similarities and ANI values of the N.

pentaromativorans US6-1T and nine genome-sequenced

strains in the genus Novosphingobium indicated that all in-

terspecies relations coincided with the species delineation,

while the relation between N. pentaromativorans US6-1T

and Novosphingobium sp. PP1Y did not. The two extradiol

pathways are distributed on two of the plasmids and some

dioxygenase genes such as a copy of protocatechuate 4,5-

dioxygenase beta-subunit and naphthalene 1,2-dioxygenase

genes involved in aromatic hydrocarbon degradation are

encoded in chromosomal DNA. The current findings

using this complete genome sequence of N. pentaromati-

vorans US6-1T show that the PAHs biodegradation path-

way genes are distributed on two plasmids. This result

differs from the findings of the draft genome sequence we

previously reported [8]. Further research is required to re-

veal the full pathway of high-molecular-mass aromatic

hydrocarbon degradation and its regulation mechanism.
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