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Abstract

Pseudomonas brassicacearum strain L13-6-12 is a rhizosphere colonizer of potato, lettuce and sugar beet.
Previous studies have shown that this motile, Gram-negative, non-sporulating bacterium is an effective
biocontrol agent against different phytopathogens. Here, we announce and describe the complete genome
sequence of P. brassicacearum L13-6-12 consisting of a single 6.7 Mb circular chromosome that consists of 5773
protein coding genes and 85 RNA-only encoding genes. Genome analysis revealed genes encoding specialized
functions for pathogen suppression, thriving in the rhizosphere and interacting with eukaryotic organisms.
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Introduction

Pseudomonas brassicacearum strain L13-6-12 was iso-

lated from the rhizosphere of a field grown potato plant

[1]. L13-6-12 was selected as effective biological control

agent with disease-suppressing effects against Rhizoctonia

solani Kühn in treated lettuce and potato plants in green-

house and field trials [2]. It has additional antifungal activ-

ity against the phytopathogenic fungi Alternaria alternata,

Botrytis cinerea Pers. DSM5145, Penicillium italicum,

Phoma betae, Sclerotinia sclerotiorum,Verticillium dahliae

Kleb. V25 (all Ascomycota) and Rhizoctonia solani AG2-

2IIIB and AG4 and Sclerotium rolfsii (Basidiomycota).

This biocontrol activity is linked to the production of sec-

ondary metabolites, including 2,4-diacetylphloroglucinol

and hydrogen cyanide. For various strains of plant-

associated pseudomonads the production of antifungal

metabolites like DAPG and recombinase genes were

identified as the major trait for biological control of

soilborne pathogens and plant root colonization [3].

Genes in L13-6-12 predicting functions for biocontrol

include factors such as secreted proteases and comprehen-

sive secretion systems. It also supports plant growth by

nutrient delivery by phosphate solubilization, production

of indole-3-acetic acid as well as by aminocyclopropane-1-

carboxylate deaminase activity. Additionally, L13-6-12

copes with abiotic stresses such as desiccation and high

salt concentrations. To gain insight into ecological rele-

vant traits and to improve its biotechnological applications

we sequenced the complete genome of this bacterium.

Organism information

Classification and features

P. brassicacearum L13-6-12 is a motile, Gram-negative,

non-sporulating rod in the order Pseudomonadales of

the class Gammaproteobacteria. The rod-shaped cells are

approximately 0.4 μm in width and 0.8–1.5 μm in length

(Fig. 1 left). The strain is moderately fast-growing, forming

1 mm colonies within 1–2 days at 25 °C. Colonies formed

on NBII agar plates are yellow shining, domed and

moderately mucoid with smooth margins (Fig. 1 right).

Cultivation for more than two weeks on NA result in a

color change of the medium to dark brown. L13-6-12
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was isolated from a potato rhizosphere from plants grown

in a field trial in Groß Lüsewitz, Germany, in 1997 [1].

Even though the optimal growth temperature is 30 °C,

L13-6-12 can also slowly replicate at 5 °C in liquid Luria

Bertani medium. Growth was observed at 37 °C and

slightly at 40 °C in this culturing medium as well as on

solidified medium after 24 h. The strain grows in com-

plex media, but not in Standard Succinate Medium

(pH 7.0). Optimum pH for growth in LB is pH 7.0. The

bacterium is an efficient colonizer of lettuce, potato [2,

3] and sugar beet plants, where microcolonies consisted

of tens to hundreds of bacterial cells, forming an inter-

connected network between epidermal cells in the rhizo-

plane [3]. It does not cause any deleterious effect on its

original host plant potato or lettuce [1, 2] and sugar beet

[4] or on the nematode Caenorhabditis elegans [5]. Strain

L13-6-12 has natural resistance to gentamycin (10 μg mL
−1), trimethoprim (50 μg mL−1) and is able to develop

spontaneous rifampicin-resistance.

Minimum Information about the Genome Sequence of

P. brassicacearum L13-6-12 is summarized in Table 1.

The phylogenetic relationship of P. brassicacearum L13-

6-12 to other species within the genus Pseudomonas is

visualized in a 16S rRNA based tree (Fig. 2) [6].

Genome sequencing information
Genome project history

Strain L13-6-12 was originally assigned to P. fluorescens

based on 16S rRNA gene sequencing and alignments

with NCBI database [1, 2, 4, 5]. After average nucleotide

identity [7] comparison of the genome sequence against

the genomes of the type strains and proxytype strains

that are already in GenBank, L13-6-12 showed 99.604%

identity to the type genome of P. brassicacearum with

95.5% coverage of the genome. The genome of P. brassi-

cacearum strain L13-6-12 was selected for sequencing

based on its ability to exert biocontrol abilities against

fungal pathogens and to promote plant growth [1, 3].

This whole-genome shotgun project has been deposited in

the NCBI database under the accession no. CP014693.

The version described in this paper is the first version

(Table 2).

Growth conditions and genomic DNA preparation

P. brassicacearum strain L13-6-12 was grown in 50 mL

of NBII (Sifin, Berlin, Germany) medium and incubated

for 20 h at 30 °C. 1.0 mL was centrifuged at 2500 × g for

5 min at 4 °C and genomic DNA was extracted using

the MasterPure DNA purification kit (Epicentre, Madison,

WI, USA). DNA quality and quantity were validated by

agarose gel electrophoresis and spectrophotometry using a

UV-Vis spectrophotometer (NanoDrop 2000c, Thermo

Fisher Scientific, Waltham, MA USA). In total, 54 μg gen-

omic DNA (1.8 μg μL−1) was sent on dry ice to the se-

quencing service. PacBio RS libraries with inserts of 8 to

20 kb were constructed and sequenced at GATC Biotech

(Konstanz, Germany).

Genome sequencing and assembly

PacBio RS libraries with inserts of 8 to 20 kb were con-

structed and sequenced at GATC Biotech (Konstanz,

Germany) using single molecule, real-time sequencing.

Assembly was completed with the Hierarchical Genome

Assembly Process algorithm implemented in the PacBio

SMRT Analysis software (Pacific Biosciences, Menlo Park,

CA, USA). The assembly of L13-6-12 genome based on

130,283 quality reads with a mean length of 4995 bp

resulting in a single circular chromosome consisting of

Fig. 1 Photomicrographs of source organism. Images of P. brassicacearum L13-6-12 cells using confocal laser scanning microscopy (CLSM, left) and the
appearance of colony morphology after 48 h growing on NB agar at 25 °C (right). Image was obtained using acridin orange (0.4 mg ml−1 water) stained
L13-6-12 cells with 40× magnification. Cells were visualized with Leica TCS SP CLSM (Leica Microsystems, Wetzlar, Germany) and analysed using
Leica Application Suite Advanced Fluorescence (LAS AF) software Version 3.5
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6,715,909 bp, with 84.9-fold overall coverage and a GC

content of 60.7%.

Genome annotation

Automatic annotation was conducted on the RAST Web

server (version 36) using RAST gene calling based on

FIGfam version Release70 [8, 9], and additional anno-

tation for using the automated assignment of COG-

functions to protein-coding genes was completed on

the BASys web server using Glimmer gene prediction

[10, 11]. Pseudogenes were predicted using the NCBI

Prokaryotic Genome Annotation Pipeline. Signal pep-

tides and transmembrane helices were predicted using

SignalP [12, 13] and TMHMM [14, 15].

Genome properties
The genome of L13-6-12 is composed of one circular

chromosome consisting of 6,715,909 bp with an average

GC content of 60.7% (Table 3 and Fig. 3), which is simi-

lar to that of other P. brassicacearum strains. Among

the 5887 predicted genes, 5773 were identified as protein

coding genes. Of the last, 4801 (83.2%) were assigned a

putative function, while the other 972 (16.8%) were des-

ignated as hypothetical proteins. The classification of

CDSs into functional categories according to the COG

[16, 17] database is summarized in Table 4 based on

BASys gene prediction. Beside the predicted genes, the

genome annotation contained 65 tRNA, five rRNA loci

(5S, 16S, 23S) with one additional 5S rRNA, four ncRNAs

and 284 predicted SEED subsystem features.

Insights from the genome sequence

The genome-wide phylogenetic analysis on different

Pseudomonas species with the L13-6-12 genome showed

that strain L13-6-12 clusters closely to P. fluorescens

Q8r1-96 (NCBI Accession no. PRJNA67537) (Fig. 2).

Table 1 Classification and general features of P. brassicacearum strain L13-6-12 according to the MIGS recommendation [29]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [30]

Phylum Proteobacteria TAS [31]

Class Gammaproteobacteria TAS [32]

Order Pseudomonadales TAS [33, 34]

Family Pseudomonadaceae TAS [31, 35]

Genus Pseudomonas TAS [36–39]

Species Pseudomonas brassicacearum TAS [39]

Strain: L13-6-12 TAS [1]

Gram stain Negative IDA, TAS [39]

Cell shape Rod IDA, TAS [39]

Motility Motile TAS [39]

Sporulation Not reported NAS

Temperature range 5 °C–40 °C IDA

Optimum temperature 30 °C IDA

pH range; Optimum 5.0–9.0; 7 IDA

Carbon source Heterotrophic TAS [39]

MIGS-6 Habitat Potato, Rhizosphere TAS [1]

MIGS-6.3 Salinity 1.0–9.0% NaCl (w/v) IDA, TAS [1]

MIGS-22 Oxygen requirement Aerobic TAS [39]

MIGS-15 Biotic relationship Rhizospheric TAS [1, 2, 4]

MIGS-14 Pathogenicity Non-pathogen TAS [1, 5]

MIGS-4 Geographic location Gross Luesewitz, Germany TAS [1]

MIGS-5 Sample collection 2001 TAS [1]

MIGS-4.1 Latitude 54°4′15.4704” N NAS

MIGS-4.2 Longitude 12°20′19.9248” E NAS

MIGS-4.4 Altitude 37 m NAS
aEvidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e.,

not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from

the Gene Ontology project [40]
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Recently, Q8r1-96 was described as a biological con-

trol strain that produces the antibiotic DAPG and that

exceptionally colonizes the roots of wheat and pea [18, 19].

The genome of L13-6-12 contains several genes, which are

important contributors to biological control. They are re-

lated to the biosynthesis of secondary metabolites or anti-

microbial products that are similar to those found in the

genomes of other Pseudomonads [20]. We detected genes

for the biosynthesis of DAPG (Locus tags: A0U95_04640,

A0U95_04655, A0U95_04660, A0U95_04665) and produc-

tions of exoproteases (A0U95_00125, A0U95_02755). The

suppression of hyphal growth of S. rolfsii by volatile organic

compounds produced by L13-6-12 was observed in a test

system developed by Cernava et al. [21]. Volatile compo-

nents have been shown to act as antibiotics and to induce

plant growth [22, 23]. Hydrogen cyanide (HCN) is an inor-

ganic volatile compound with antagonistic effects against

soil microbes [24]. The production of HCN was observed

in L13-6-12 (A0U95_28525) by applying an assay according

to Blom et al. [25]. Genes predicting biosynthesis of other

volatile components such as 2,3-butanediol (A0U95_29290)

and acetoin (A0U95_29285) were found as well.

We further identified genes most probably involved in

the direct promotion of plant growth, such as biosynthesis

or carrier gene clusters for spermidine (A0U95_07830), pyo-

verdine (e.g. A0U95_07605, A0U95_25745, A0U95_25750)

and aminocyclopropane-1-carboxylate (ACC) deaminase

Fig. 2 Phylogenetic tree showing the position of P. brassicacearum
L13-6-12 in relationships among other strains of Pseudomonas spp.
including P. aeruginosa PAO1 as outgroup. The tree is based on 16S
rRNA gene alignments and was conducted in MEGA6 [41]. Initial tree
for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances
estimated using the Maximum Composite Likelihood approach, and
then selecting the topology with superior log likelihood value

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Finished

MIGS-28 Libraries used PacBio RS libraries with inserts of 8 to 20 kb

MIGS 29 Sequencing
platforms

PacBio RS II sequencer

MIGS 31.2 Fold coverage 84.9

MIGS 30 Assemblers Hierarchical Genome Assembly Process
algorithm implemented in the PacBio
SMRT Analysis software

MIGS 32 Gene calling
method

Glimmer gene prediction, NCBI Prokaryotic
Genome Annotation Pipeline

Locus Tag A0U95

Genbank ID CP014693

GenBank Date
of Release

September 20, 2016

GOLD ID Gs0118536, Gp0137088

BIOPROJECT PRJNA311625

MIGS 13 Source Material
Identifier

L13-6-12

Project relevance Plant-bacteria interaction, agricultural,
environmental

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 6,715,909 100

DNA coding (bp) 6,050,433 90.1

DNA G + C (bp) 4,091,158 60.7

DNA scaffolds 1 –

Total genes 5887 100

Protein coding genes 5773 98.1

RNA genes 85 1.4

Pseudo genes 29 0.5

Genes in internal clusters NA –

Genes with function prediction 4801 83.2

Genes assigned to COGs 4481 77.6

Genes with Pfam domains 3770 65.3

Genes with signal peptides 390 6.8

Genes with transmembrane helices 1389 24.1

CRISPR repeats NA –
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(A0U95_06530). ACC deaminase is suggested to be a key in

the modulation of ethylene levels in plants by bacteria [26].

For secretion of extracellular proteins in the surrounding

environment genes putatively encoding general secretory

pathway proteins (Gsp) belonging to the type two secretion

systems were found in L13-6-12 (e.g. A0U95_29195,

A0U95_29200, A0U95_29205). Type six secretion systems

have evolved in Gram-negative bacteria enabling them to

interact with their host and to adapt to various microenvi-

ronments and specialized functions [27, 28]. Genes encod-

ing components of the type six secretion system were

found in L13-6-12 (e.g. A0U95_16935, A0U95_28720,

A0U95_28755) putatively for interaction with eukaryotic

organisms.

Fig. 3 Graphical map of the chromosome. The outer scale is marked every 50 kb. Circles range from 1 (outer circle) to 7 (inner circle). Circle 1 and 2,
ORFs encoded by leading and lagging strand respectively, with color code for functions: salmon, translation, ribosomal structure and biogenesis;
aquamarine, RNA processing and modification; light blue, transcription; cyan, DNA replication, recombination and repair; tan, chromatin structure and
dynamics; turquoise, cell division; dark orange, defense mechanisms; deep pink, post-translational modification, protein turnover and chaperones; dark
olive green, cell envelope biogenesis; purple, cell motility and secretion; lavender, intracellular trafficking, secretion, and vesicular transport; forest green,
inorganic ion transport and metabolism; pink, signal transduction; red, energy production; sienna, carbohydrate transport and metabolism; yellow,
amino acid transport; orange, nucleotide transport and metabolism; gold, co-enzyme transport and metabolism; cornflower blue, lipid metabolism;
blue, secondary metabolites, transport and catabolism; gray, general function prediction only; yellow green, unknown function; black, function
unclassified or unknown. Circle 3 and 4, distributions of tRNA genes and rrn operons respectively. Circle 5, distribution of pseudogenes.
Circle 6 and 7, G + C content and GC skew (G-C/G + C) respectively
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Conclusions

In this report, we describe the complete genome se-

quence of Pseudomonas brassicacearum strain L13-6-12,

a strain that was originally isolated from the rhizosphere

of potato grown in Groß Lüsewitz, Germany and which

was originally assigned as P. fluorescens. This strain was

selected for sequencing based on its ability to protect

plants from biotic stresses and to promote plant growth.

It also has a collection of genes predicting volatile com-

ponents and enzymes such as a protease, ACC deami-

nase and spermidine enabling L13-6-12 to protect and

promote its host plant. Genes, encoding putative T2SS,

T4SS and T6SS, allowing interactions with the host and

the environment were detected, too. Further functional

studies and comparative genomics with related isolates

will provide insights into mechanisms useful for novel

biotechnological processes for seed and root applications

since the strain represent a promising candidate for im-

proving of plant performance.
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