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Abstract

Sporisorium scitamineum is a biotrophic fungus responsible for the sugarcane smut, a

worldwide spread disease. This study provides the complete sequence of individual chro-

mosomes of S. scitamineum from telomere to telomere achieved by a combination of Pac-

Bio long reads and Illumina short reads sequence data, as well as a draft sequence of a

second fungal strain. Comparative analysis to previous available sequences of another

strain detected few polymorphisms among the three genomes. The novel complete se-

quence described herein allowed us to identify and annotate extended subtelomeric re-

gions, repetitive elements and the mitochondrial DNA sequence. The genome comprises

19,979,571 bases, 6,677 genes encoding proteins, 111 tRNAs and 3 assembled copies of

rDNA, out of our estimated number of copies as 130. Chromosomal reorganizations were

detected when comparing to sequences of S. reilianum, the closest smut relative, potentially

influenced by repeats of transposable elements. Repetitive elements may have also direct-

ed the linkage of the two mating-type loci. The fungal transcriptome profiling from in vitro

and from interaction with sugarcane at two time points (early infection and whip emergence)

revealed that 13.5% of the genes were differentially expressed in planta and particular to

each developmental stage. Among them are plant cell wall degrading enzymes, proteases,

lipases, chitin modification and lignin degradation enzymes, sugar transporters and tran-

scriptional factors. The fungus also modulates transcription of genes related to surviving

against reactive oxygen species and other toxic metabolites produced by the plant. Previ-

ously described effectors in smut/plant interactions were detected but some new candidates
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are proposed. Ten genomic islands harboring some of the candidate genes unique to S. sci-

tamineum were expressed only in planta. RNAseq data was also used to reassure gene

predictions.

Introduction

Sugarcane is an important crop worldwide due to its capability to store large amounts of su-

crose in the stem, supplying more than half of the world’s sugar consumption for centuries [1].

Currently, it is also considered the most efficient bioenergy crop for ethanol production [2].

One important factor impairing the increase of sugarcane production is the severity of some

diseases affecting the crop [3]. Sporisorium scitamineum, causal agent of the sugarcane smut

disease, is a constant concern among producers and breeders, since the disease has been found

at low levels in all cultivated areas. There are three distinct phases during the fungal life cycle:

haploid yeast-like sporidia, dikaryotic hyphae and diploid teliospores (Fig 1). To infect the

host, a combination of two haploid sporidia belonging to opposite mating-types is necessary to

form an infective hyphae. Fungal hyphae differentiate appressorium structures to penetrate

plant tissues. Sugarcane infected plants show a profound metabolic modification resulting in

the development of a whip-like structure from the stalk apex composed of a mixture of plant

and fungal tissues. Within these structures millions of dark teliospores develop and are respon-

sible for disseminating the disease [4]. Under appropriate environmental conditions, telio-

spores germinate promycelia leading to meiosis and production of haploid sporidia that will

become infective after the fusion of compatible sporidial cells [5]. Hyphal fusion and sexual

cycle are crucial for disease establishment and dissemination. In vitro, S. scitamineum is main-

tained easily as colonies of yeast-like cells derived of budding sporidia and hyphal colonies,

which facilitates genetic studies [6]. The only part of the life cycle restricted to host tissues so

far is the development of teliospores. Sugarcane plants are prone to pathogen attack in the

early stages of growth, however, whips are observed only after 45 days in more susceptible vari-

eties. Infected sugarcane plants have abnormal grass-like growth, reduced culm diameter, and

very fibrous stalks which are poor in sugar content [4].

Although little information is available from S. scitamineum biology, more is known about

its close relative Ustilago maydis, a smut fungus of corn. Noteworthy in the latter, are a number

of genes arranged in groups encoding uncharacterized secreted proteins associated with the

control of fungal colonization in host plants [7]. Although among various smut fungi the ge-

nomes are similar in size and gene content, disease symptoms related to the formation of fungal

sporangial structures and host specificity are unique to each smut species/plant interaction,

and therefore comparative analysis may help to uncover genes that trigger specific host re-

sponses [8]. This work presents the fully sequenced genome of S. scitamineum SSC39B and a

draft of isolates BSES, which enabled us to perform comparative analysis to another genome se-

quence recently published [9]. The complete sequence of each chromosome of S. scitamineum

SSC39B also enabled comparisons regarding genome organization to the closest smut species

S. reilianum[10]. Fungal transcriptome profiles during in vitro growth and throughout its life

cycle in planta at two time points revealed candidate genes unique to the interaction with

sugarcane.
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Materials and Methods

Ethics Statement

S. scitamineum SSC39B haploid cells derived from a single mating-type were used for complete

genome sequencing. The cells were obtained from a teliospore (SSC39) isolated from a whip

developed in the sugarcane susceptible clone IACSP98-2053. The whip was collected from an

experimental area of “Centro de Cana—Instituto Agronômico de Campinas” (21°12004@S; 47°

52020@W), and no specific permissions were required for sampling diseased plants in this loca-

tion. The isolates BSESs were isolated from a teliospore isolated from a whip developed in a

susceptible sugarcane clone Q117. The whip was collected from an experimental field at the

Sugar Research Australia pathology farm at Woodford, Australia (26°55043”S; 152°46038.3”E),

no specific permissions were required for sampling diseased plants in this location.

Strains and sequencing strategies

S. scitamineum haploid cells derived from a single mating-type were used for complete genome

sequencing. A single yeast-like colony was isolated and mating-type was assigned as described

in Bölker et al. (1992) [11]. The S. scitamineum SSC39B genome was sequenced using the long

reads PacBio technology [12]. DNA was extracted using “DNeasy Blood and Tissue Kit” (Qia-

gen). Five SMRT cells (P5-C3 chemistry) were used in the sequencing process, generating 2.2

Gbp of raw data corresponding to more than 100 fold of sampling depth (738,568 reads with

average length of 3,047 bp). Besides PacBio sequencing, paired-end libraries of the same strain

were sequenced using Illumina HiSeq 2000. A whole cell DNA library was prepared for se-

quencing using the kit Nextera DNA Sample Preparation Workflow (Illumina paired-end). A

total of 85,465,786 reads of 100 bp in length (approximately 8.5 Gb) corresponding to more

Fig 1. (A) Developmental stages in the S. scitamineum life cycle: diploid teliospores (2n); haploid yeast-like sporidia (n) after meiosis (R!); hyphal fusion. (B)
Scanning electron micrograph of spores adhered to sugarcane bud surface. (C) Germination of spores on bud scale epidermis and tube-like promycelium
formation at 6 hai (hours after inoculation); photomicrograph of tube-like promycelium stained with lactophenol-cotton. (D) Photomicrograph of apressorium
formation 48 hai stained with lactophenol-cotton blue; (E) Photomicrograph of S. scitamineum growth on parenchyma cells of bud tissue observed at 120 hr
stained with lactophenol-cotton blue. (F) Photomicrograph of S. scitamineum intracellular growth on parenchyma cells of white whip portion; stained with
lactophenol-cotton blue. (G) Photomicrograph of black whip portion showing the mature spore liberation. Scale bar = 5 μm

doi:10.1371/journal.pone.0129318.g001
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than 400 fold of sampling depth were analyzed using FASTQC (ver. 0.10.1) and Seqyclean (ver.

1.8.10) to filter low quality sequences (phred quality below 20).

In addition, an isolate of the opposite mating-type (SSC39A) was partially sequenced using

a BAC genomic library that was constructed using the protocol described by Peterson et al.

(2000) [13] and the “CopyControlT BAC Cloning Kit” (Epicentre). The genomic library is

composed of 2,880 clones with an insert size average of 92 kbp representing 10 X coverage of

the genome. Forty-eight BAC clones were selected from pools of 30 plates (96 clones each). In-

cluded in this analysis were PCR amplifications for the mating-type genes using the enzyme

“GenomiPhi” (GE Healthcare Life Sciences) in combination with following primers for: Locus

b (UsibEF 5’ -GCTGGTCCAACATTCTCC- 3’ and UsibER 5’ -CGCTTGCTCTCTGCTTAG-

3’) and Locus a (SSC39AF 5’ -AGATCGGGAAGAAAATG-AGC- 3’ and SSC39AR 5’

-TTGTATCATCGTGGGTCTCTGG- 3’). Sequencing data were generated with Illumina

HiSeq technology, also with paired-end reads of 100 bp in length. These reads were used to as-

semble the mating loci sequence of SSC39A.

Two additional Australian isolates, BSES15 and BSES17, which represent contrasting mat-

ing-types, were also sequenced using the Illumina platform. Illumina sequencing generated

paired-end 90bp reads on an Illumina GAIIx and 5,588,889 read pairs (1.01 Gbp) and

4,335,980 read pairs (0.78 Gbp) were generated for isolates BSES15 and BSES17 respectively.

Genome Assembly

Given the high coverage of PacBio reads, the HGAP.2 assembler [14] was used with default pa-

rameters. The resulting assembly was composed of 59 contigs (19 Mbp) and 11 singletons (88

kbp). A final genome version was built manually with the alignment results, generating 26 final

contigs (genome V0). CLC Genomics Workbench V7.01 (CLC Bio) was then used to align all

Illumina reads against this assembly. The consensus of the aligned Illumina paired-end reads

(parameters: global alignment, minimum of 0.9 read length with minimum 90% identity)

against the V0 genome was then saved as the V1 S. scitamineum genome. This assembly was

aligned against the S. reilianum genome using cross_match (www.phrap.org). The mitochon-

drial genome was assembled individually (CLC Genomics Workbench V7.01) by using the mi-

tochondrial sequence of S. reilianum as reference. The DNA data of BSES15 and BSES17 was

analyzed using the Blue error correcting algorithm [15] and assembled using the Velvet Opti-

miser algorithm of the Velvet assembler [16] at an optimal k-mer length of 77.

Pulse field gel electrophoresis and hybridization

DNA plugs for pulse-field gel electrophoresis were prepared using CHEF Genomic DNA Plug

Kit (Bio-Rad Laboratories Inc.) as described previously [17]. Fragments from 200 to 2200 kbp

were separated in contour-clamped homogeneous electric field electrophoresis, conducted in a

CHEF II (Bio-Rad Laboratories Inc.) apparatus. Pulse-field electrophoresis was carried out as fol-

lows: a 1% agarose gel in 0.5x TBE buffer was held at 14°C by a temperature-controlled cooling

unit for 15 h, at 6 V x cm-1, electric current was regulated with the initial pulse = final pulse = 70

s, and a second step for 11 h, 6 V x cm-1 (initial pulse = final pulse = 120 s). Size of bands were

estimated by the software Kodak Digital Science 1D 3.0.2, using Pulse Marker 225-2200 kbp

(Sigma-Aldrich Corp.). Hybridizations were performed using “AlkPhos”Direct Labeling and

Detection System’ (GE). Probes used were sequences of a telomere insert of pTEL13 [18] and a

PCR amplicon containing the rDNA internal transcribed spacer region (ITS1, 5.8S and ITS2) of

S. scitamineum generated with primers: Hs 5’ -AACACGGTTGCATCGGTTGGGTC- 3’ and Ha

5’ -GCTTCTTGCTCATCCTCACCACCAA- 3’) [19].
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Genome and Proteome Annotations

Gene prediction was accomplished by using theU. maydis gene model calculated by the Augus-

tus software [20] integrating the RNAseq paired-end reads (see further below). The tRNAs

were identified by the tRNAscan-SE program [21]. Repetitive elements were identified using

RECON [22], setting BLASTn to a cutoff of e-value� 1 × 10-10. Only families with more than

15 members with sequences ranging from 500 to 2,500 bp were considered to be repetitive ele-

ments. BLASTx searches against UNIREF50 were performed to identify transposable elements

containing one of the following PFAM domains: PF00078, PF01498, PF03108, PF03184,

PF03221, PF10551, PF13359 [23]. RepeatMasker [24] annotation supplied with our custom li-

brary (RECON + RepBase v. 19.11) was used to define repetitive elements.

Telomeric repeats were identified by the Tandem Repeat Database (TRDB) tool [25]. The

length and localization of each telomere as well as the subtelomeric predicted genes within the

chromosome ends (50 kbp) were manually checked.

Predicted proteins were analyzed using the Blast2Go tool V2.7.2 (BLASTp with cutoff e-

value< 1 x 10-5) [26] and Fisher’s exact test was used to detect enrichment of GO terms (p-

value� 0.05). The programs SignalP V4.0.1c [27], TMHMMV2.0c [28] and predGPI [29]

were used to predict those proteins that are potentially secreted and to define the secretome.

The HMMs from dbCAN [30] were used to predict and classify the CAZymes. Reference pro-

teins of the PHI-base (Pathogen-Host Interaction database) [31] were used to obtain experi-

mental evidences to our predicted proteins using BLASTp e-value< 1 x 10-14 and query

coverage of more than 80%.

The mitochondrial genome was annotated with the MFannot program combined with

RNAweasel [32]. The potential rnl gene and putative ORFs, including intron/exon junctions,

were further resolved with ORFfinder and by comparative sequence analysis using the BLAST

suite of programs and by aligning intron containing genes with orthologs that lack insertions.

Alignments were performed with the MAFFT program [33] with settings that allow for long in-

sertions and short conserved regions and these alignments were manually adjusted with the

Genedoc program to narrow intron/exon junctions [34]. Intergenic regions were examined

with ORFfinder to identify potential remnants of ORFs, in particular eroded homing endonu-

clease coding segments.

Comparative genome analysis

Synteny studies between chromosomes of S. reilianum and S. scitamineum were performed

using BLASTn (cutoff e-value� 1 x 10-5) combined with Circos [35] to draw the relationships

between chromosomes. In addition the complete genome of strain SSC39B was compared to

the BSES assembly using cross_match. The scaffolds from the genome assembly of the strain

2014001 (Genbank: JFOL00000000.1) [9] was aligned using MUMmer (V3.0), and BEDTools

[36] merging local similarities in a range of 1,500 bp of the genome alignment.

Comparisons of predicted coding sequences among the three strains were performed using

BLASTn. Genes particular to the SSC39B were defined by considering either “no hit” or an e-

value> 1 x 10-5.

The S. scitamineum SSC39B proteome was compared to all predicted proteins of U. maydis,

U. hordei and S. reilianum (MIPS database [37]). OrthoMCL with default parameters was used

to determine the orthologous groups among the proteomes [38]. Visualization of the

OrthoMCL results was obtained with a four-way-Venn-diagram drawn in R language using

the Venn diagram package [39].
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Phylogenetic analysis of mating-type protein sequences were performed based on a multiple

sequence alignment generated by T-COFFEE [40]. The best amino acids substitution model

that fits the data was determined by using the Akaike Information Criterion (AIC) in the soft-

ware ProtTest v3.2 [41]. Maximum likelihood trees were obtained for each protein considering

the heuristic method NNI (Nearest Neighbor Interchange) for searching through treespace

and aLRT SH-like (approximate Likelihood-Ratio Test with Shimodaira-Hasegawa-like proce-

dure) for quantifying branch support using PhyML v3.0 [42]. S. scitamineum protein sequences

of both mating-types and sequences for close related species available on GenBank were in-

cluded in the analysis.

Transcriptome assay and analysis

The S. scitamineum SSC39 teliospores (> 90% viability) were mixed with saline solution and

used to inoculate sugarcane plants of the smut susceptible variety “RB92-5345”. Single budded

sets of 7 month-old plants were surface disinfected, heat treated (52°C for 30 min in water

bath, 1 kg of buds/6L of water) and incubated for 16 h at 28°C. Sets were then placed on trays

with buds facing upwards, and inoculated using the wound-paste method [43]. Pots were kept

in the greenhouse arranged into a completely randomized experimental design. Fungal tran-

scriptome profiles were obtained 5 days after inoculation (DAI) from tissues of the breaking

buds and at 200 DAI from the base of the whip-like structure emission (where intense fungal

cell division and sporogenesis occurs). For in vitro transcriptome analysis, haploid yeast-like

cells of opposite mating-types were grown separately in liquid medium [44] in a orbital shaker

for 15 h at 28°C. Cells of both mating-types were mixed prior to RNA extraction. All samples

were frozen in liquid nitrogen immediately after collection and stored at -80°C. Three biologi-

cal replicates were systematically used.

Total RNA extraction from 5 DAI samples was performed using the lithium chloride based

method [45, 46]. TRIzol Reagent (Life Technologies, UK) was used for RNA extraction from

200 DAI samples and control cells. DNA was extracted from the same 5 DAI samples to con-

firm infection before the construction of RNAseq libraries. The rDNA ITS region was ampli-

fied with primers Hs and Ha [19] to confirm the presence of S. scitamineum.

Libraries were constructed following Illumina manufacturer’s protocol of the “TruSeq RNA

Sample Prep v2 Low Throughput (LT)” kit. Paired-end sequencing was performed on the Illu-

mina platform (HiScanSQ). Reads were analyzed by FASTQC (ver. 0.10.1) and low quality

bases (phred � 20), Illumina adapters and poly-A tails were removed using the Seqyclean pro-

gram (ver. 1.8.10). The RNAseq fungal reads from the 5 DAI and 200 DAI plant materials were

recovered from the total reads by mapping to the complete genome of S. scitamineum SSC39B

strain using Bowtie2 [47]. RNAseq reads were also aligned to all S. scitamineum coding se-

quences, using Bowtie2 with default parameters to determine the % of CDSs length coverage.

Differential transcript accumulation among treatments (5 DAI and 200 DAI and controls)

was observed using the CLC Genomics Workbench V7.01. Fungal reads were mapped to CDSs

of S. scitamineum (100% of nucleotide identity and 98% of coverage). The mapping of at least

one read pair in all three replicates was considered to be a positive match. Scaling approach as

implemented in the CLC software was used as the normalization method. Baggerley’s test and

the false discovery rate (FDR) with a significance level of� 0.01 and Log2FoldChange� 2 or�

-2 (treatment/control) were applied to generate a set of differentially expressed genes. Tran-

scripts were considered specific to the interaction with sugarcane if at least one pair of reads

mapped to all three replicates of each of the treatments and none to the control. Enrichment

test of GO terms were performed with the BLAST2GO tool using the two-side Fisher’s Exact

Test (p-value< 0.05).
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Results

General Results

PacBio sequencing allowed us to determine the complete sequence of S. scitamineum SSC39B

chromosomes. The final assembly comprises 19,979,571 nucleotides distributed in 26 contigs

(no gaps within contigs). Telomere motifs were identified for 23 chromosomes longer than 475

kbp in length (Table A in S1 File). The other three contigs (24, 25, 26) have 87,293, 82,225 and

99,152 kbp, respectively, and are also found in the assemblies of 2014001 and BSESs genomes

(Figure A in S1 File). The results of PFGE hybridized with telomeric probes (Figure B in S1

File) confirmed the presence of a DNA band of around 100 kbp. Sequence analysis revealed

that these contigs are composed of repetitive elements (Figure A in S1 File) and have few pre-

dicted genes supported by RNAseq. At this time remains to be established if all of the three as-

sembled contigs are chromosomes of S. scitamineum or if they are misassembles of one or

more small chromosomes.

The rDNA cluster was found to be close to the end of chromosome numbered 23 and three

copies were assembled. Hybridization data (Figure B in S1 File) together with the coverage of

Illumina reads allowed us to estimate that there were 130 copies of rDNA units comprising the

rDNA region. Unexpectedly, the length of the chromosome harboring the rDNA sequence var-

ied between the two isolates of the same genetic background but with opposite mating types

(Figure B in S1 File). This result was confirmed using hybridizations with probes prepared

from two independent regions of the rDNA (data not shown). The rDNA gene cluster is com-

posed of 5,979 bp (18S—5.8 S—28S) and the first copy is located at coordinates 119,074 of

chromosome 23. The 5 S rDNA genes are scattered among the chromosomes and 14 copies

were identified. Similarly, 111 tRNA genes corresponding to all 20 amino acids were found to

be dispersed among the chromosomes (Table B in S1 File).

Assemblies of the BSES15 and BSES17 isolates generated 5,331 contigs. A total of

19,234,547 bp (99%) aligned to the strain SSC39B genome with the following variation: 0.075%

substitutions, 0.007% deletions and 0.038% insertions. The comparison between the genome

sequences of the SSC39B and 2014001 strains (the last presenting 19,619,026 bp organized in

35 scaffolds [9]) showed that most of the chromosomes assembled are covered. However, the

mitochondrial genome was poorly represented in the 2014001 assembly and nuclear genome

derived scaffolds do not extend over repetitive regions as well as subtelomeric regions (Fig 2).

The S. scitamineum strain SSC39 genome comprises 6,677 protein coding genes, with an av-

erage number of introns per gene of 1.94, and 51% of the genes (3,415) have no introns

(Table C in S1 File). Most of the CDSs are between 500 and 2,000 kbp in length (3,861) and

only a few are larger than 7 kbp (34) (Figure C in S1 File). In general most of the CDSs have an

ortholog in the S. reilianum genome (Fig 3).

Of the total S. scitamineum predicted genes, 6,479 (97%) are supported by mapping the

reads produced by RNAseq analysis. A total of 198 have no coverage, but 72 of these have sig-

nificant matches (BLASTn e-value� 1 x 10-14 and query coverage� 75%) to putative CDSs of

U. maydis, S. reilianum or U. hordei genomes. Repetitive elements represented 1.24% of the S.

scitamineum genome. Gene Ontology was used to assign GO terms to the set of predicted pro-

teins to improve the organization of the annotation data [26]. GO terms were successfully as-

signed to 3,682 proteins (55.2%) (Table A in S2 File). As expected, top hit species results

(5,078) are with S. reilianum proteins (Figure B in S2 File).
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Telomeric and subtelomeric regions

Telomeric arrays of tandem repeats were localized at both ends of all chromosomes, with an av-

erage repeat length of 76 bp that range from 32 bp to 140 bp (Table A in S1 File). The subtelo-

meric gene set comprises 800 predicted genes coding for proteins. Thirty-five helicase genes

located in 22 chromosome ends were found, which include 3 predicted telomere-linked RecQ-

helicase (TLH) genes, a typical feature of subtelomeric regions. As observed in other fungi, a

notable group of genes related to niche adaptation (carbon utilization and catabolism) and

pathogenicity were also reported (Table D in S1 File). Yet, some of the uncharacterized genes

located near the chromosome ends are potentially associated with interaction with sugarcane

(discussed later) (Fig 3).

Chromosomal rearrangements and mating-type analysis

Comparative genomics showed that among the four smut fungi genomes used here S. scitami-

neum and S. reilianum are the closest, with an average nucleotide identity of 85.4% among all

predicted CDSs. Eight S. scitamineum chromosomes display different arrangements with re-

gards to S. reilianum as well as breaking points enriched with transposable elements (Figs. in

S3 File). One of such breaking points is a region relevant to the biology of S. scitamineum that

links the two mating-type loci referred to as a and b. In S. scitamineum, both loci are located 59

kbp apart on chromosome 2, characteristic of a bipolar mating system [48] (Fig 4). Chromo-

some 2 of S. scitamineum is homologous to chromosomes 1 and 20 of S. reilianum, which also

harbor the mating-type loci b and a, respectively, in a tetrapolar arrangement [49]. Pairwise

comparisons of these chromosomes revealed that the breakpoint occurred at the position

825,021 of S. scitamineum chromosome 2 (Fig 4). Within this inter-mating-type loci several

remnants of DDE_1 and LINE transposons were noted. In addition, 20% of the sequence in be-

tween bases 801,345 and 854,308 is composed of repetitive elements, a much larger percentage

when compared to the respective 1.24% of the genome.

Fig 2. Representation of all chromosomes and contigs assembled of the strain SSC39 genome compared to the strain 2014001 scaffolds. Regions
present in the strain 2014001 are shown in green blocks, delimited by black borders. White regions represent sequences unique to the strain SSC39
assembly. The analysis was performed using MUMmer 3 and parameters = -maxmatch -c -L -b -l 500. Red line above the chromosome 2 indicates the region
containing the mating-type loci

doi:10.1371/journal.pone.0129318.g002
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The mating-type loci of the SSC39B complete genome sequence are equivalent to MAT1 of

U. hordei and a1 of U. maydis, as determined by the similarity to genes of the mating loci

(Figure A in S4 File). Based on the percentage of sequence identity, phylogenetic analysis and

gene organization comparisons (Figures A and B and Table A in S4 File), the mating-type pro-

teins of close and distantly related smut species differ substantially. BLASTp analysis shows

that predicted proteins from whole genome of S. scitamineum have, on average, 82.5, 75.4 and

72.4% of identity with proteins of S. reilianum, U. maydis and U. hordei, respectively. In con-

trast, their mating-type proteins have lower percentages of identity (Table A in S4 File).

Phylogenetic analysis was performed including other smut mating-type protein sequences

extracted from databases and proteins encoded by the opposite mate pair of S. scitamineum

Fig 3. Syntenic view of two chromosomes of S. reilianum that merged as one in S. scitamineum. Links represents alignment length of more than 1 kbp
obtained by BLASTn (e-value < 1 x 10-5). The first outer circle represents the chromosome and scale is coordinates in base pairs. The second indicates the
GC content followed by predicted coding regions of the plus and minus strands. Bars display the % of identity to orthologous in S. reilianum. The most inner
circle represents the RNAseq coverage of each chromosome region. Red lines are RNAseq data of S. scitamineum growing in planta and blue lines growing
in vitro. Circle images of all chromosomes are available in the Supporting Information S3 File.

doi:10.1371/journal.pone.0129318.g003
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obtained by sequencing BAC genomic library inserts (Figure B in S4 File). Proteins encoded by

b locus (bE1/bE2 and bW1/bW2) of S. scitamineum (SSC39A and SSC39B) are more close relat-

ed to each other than to the bE and bW proteins from related species; whereas proteins en-

coded by its a locus (pra1/pra2 andmfa1.2/mfa1.3/mfa2.1/mfa2.3) cluster preferentially with

alleles from others species (Figure A in S4 File). The genomic context indicates that the order

and orientation of the genes in the b locus are conserved (Figure B in S4 File). Otherwise for the

a locus, these settings vary among species and between alleles of the same species, especially by

the presence of rga2 and lga2 genes in the a2-type alleles that are absent in the a1-type

(Figure B in S4 File). The a locus of S. scitamineum and S. reilianum also differs from that of U.

maydis and U. hordei by the presence of a second pheromone gene, named mfa1.3 in S. scitami-

neum due to its similarity to the pheromone mfa2.3 from S. reilianum. It is noteworthy that

this extra copy of mfa in S. scitamineum lacks the characteristic CAAXmotif (C, cysteine; A, al-

iphatic amino acid; X, any amino acid) at its carboxyl terminus. Pheromone response elements

(PREs), with a binding motif “ACAAAGGGA” for transcription factor prf1, were found close

to the mating-type genes in S. scitamineum and in the others fungi analyzed, with the exception

ofMalassezia species (Figure B in S4 File).

The mtDNA Annotation

The mitochondrial genome has 88,018 bp and presents the standard 14 protein coding genes

(nad2, nad3, nad4, nad4L, nad5, nad6, cox1, cox2, cox3, cob, atp2, atp6, atp9 and rps3) along

with 11 unknown hypothetical ORFs (Table A and B in S5 File). The last nucleotide of the

nad2 gene is the first one of the nad3 gene. Among the RNA encoding genes, 22 tRNA genes

Fig 4. Blocks of synteny between chromosome 2 of S. scitamineum and chromosomes 1 and 20 of S. reilianum and schematic representation of
the linkedmating-type loci in S. scitamineum. Blue areas correspond to syntenic regions considering BLASTn e-value� 1 x 10-5. Red lines represent the
expansion of the region containing the mating type genes in S. scitamineum located at positions 792,295 bp to 863,606 bp of the chromosome 2. The
chromosome breakpoint is identified and indicated by a red dot above the sequence. Genes are indicated by gray arrows placed according to transcriptional
orientation and the transposons related sequences are highlighted in red. Letters represent functional annotation of encoded proteins: A) c1d1 putative
nuclear regulator; B and C) homeodomain transcription factor bE1 and bW1, respectively; D) nat1 putative N-terminal acetyltransferase; E, F, M, N, P, Q and
R) Uncharacterized protein; G, J, M and S) Related to transposase; H) sla—cytoskeleton assembly control protein; I) RPN5-26S proteasome regulatory
protein; K) hhp1 casein kinase-1; L) related to reverse transcriptase; O) arp2/3—actin related protein 2/3 complex; T) lba1 left border a locus; U) and V)
pheromone genemfa1.2 andmfa1.3, respectively; W) pra1 pheromone receptor gene; X) Rba2—right border a locus; Y) pan1—pantoate-beta-alanine
ligase.

doi:10.1371/journal.pone.0129318.g004
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were detected representing all 20 amino acids, and two tRNAs for each Ser and Met; the rns

and rnl genes were also present and finally two potential copies of the rnpB gene were noted.

However one copy is interrupted by tRNA(V) and may represent an eroded copy of the gene

or a misannotation based on the presence of analogous RNA folds that resemble components

of the rnpB encoded RNA molecule. Among the various genes 24 group I introns were noted,

of these 23 encoded putative ORFs. The cox1 gene was the most intron rich gene with 11 inser-

tions. Nineteen LAGLIDADG type endonuclease ORFs were noted and among these ORFs

four showed evidence of degeneration, i.e. the fragmentation due the presence of premature

stop codons. Four intron ORFs belong to the GIY-YIG family of homing endonucleases and

two appear to have eroded, as above due to the accumulation of mutations and the presence of

premature stop codons. A few eroded freestanding GIY-YIG ORFs were noted in the intergenic

regions but these were quite fragmented and thus not annotated. The atp9, cox1, nad1, nad5,

and nad6 genes were all followed by duplicated versions that lacked the N-terminal compo-

nents. Differences between the complete version of the gene and the partial duplicated version

fragments of GIY-YIG type ORFs could be detected by programs such as ORFfinder or by

BLASTx.

Comparative proteome

A total of 6,475 groups of homologs were described among the four smut species analysed (S.

scitamineum, S. reilianum, U. maydis, U. hordei), each one containing at least two proteins

(Table A and Figure A in S6 File). The largest intersection was the one comprising the four spe-

cies, with 5,507 orthologous groups (85.05%), among them, 5,347 containing exactly one

ortholog from each proteome. S. scitamineum proteome contains few groups harboring para-

logs, thus, most of their genes are single copy (94.3%) (Table 1). The largest paralog family has

61 members related to ATP-dependent DNA helicase (RecQ), some of which identified in

close vicinity of telomeres as mentioned previously.

The OrthoMCL analysis resulted in a few unique orthologous clusters for each species that

are represented by potentially duplicated genes (Table B in S6 File) and in a higher number of

singletons (genes not assigned to any OrthoMCL cluster), which represent single copy genes

unique to each species (Table 1). Most of the S. scitamineum unique genes (23 clusters includ-

ing 89 proteins and 349 singletons) are related to transposable elements and uncharacterized

proteins, but RNAseq reads suggest that some of these genes are active at the transcriptional

level (Table C in S1 File). Among genes with predicted functions, there are for example, puta-

tive effectors related to the Mig1 gene family (g3918_chr10_Ss and g3919_chr10_Ss) and a

group of six paralogs related to sterol delta 5,6-desaturase (g2628_chr06_Ss, g3812_chr10_Ss,

g4371_chr12_Ss, g6420_chr22_Ss, g6606_chr24_Ss and g6623_chr24_Ss) (Table B in S6 File).

Table 1. Comparative analysis of orthology among four smut fungi obtained by OrthoMCL.

Genome characteristics S. scitamineum S. reilianum U. maydis U. hordei

Protein-coding genes 6,677 6,675 6,784 7,111

Co-orthologs groups 6,061 6,271 6,135 5,971

Genes into the groups 6,328 6,443 6,378 6,649

In-paralogs genes 267 172 243 678

Singletons 349 232 406 462

Single-copy genes 6,298 (94.3%) 6,365 (95.4%) 6,372 (93.9%) 6,257 (88%)

doi:10.1371/journal.pone.0129318.t001
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Secretome

The S. scitamineum genome encodes 527 predicted proteins showing a positive match to signal

peptides, of these 342 have no transmembrane domains and 305 are also not anchored by GPI.

These proteins were selected to compose the secretome of S. scitamineum. We used the HMMs

from dbCAN to identify 54 CAZymes in the secretome, including eight containing carbohy-

drate binding modules (CBM), 11 carbohydrate esterases (CE), 30 glycoside hydrolases (GH),

one glycosyl transferase (GT), one polysaccharide lyase (PL) and six with auxiliary activities

(AA) (Table F in S1 File). Nearly 30% of secretome (93 proteins) have at least one GO term as-

signed according to Blast2GO results (Figure A in S7 File).

The secretome of S. scitamineum is composed of 148 (48.5%) predicted proteins of unchar-

acterized function. Moreover, 38 of these proteins are considered unique to S. scitamineum by

OrthoMCL analysis (Table B in S6 File), wherein 29 proteins are singletons and nine proteins

belong to three orthologous clusters.

We analyzed genes of the secretome expressed at 5 DAI and have constructed a heatmap

showing the modulation of these genes under the three tested conditions (Fig 5). According to

the functional annotation results, they encode hydrolases, peptidases, oxidases and reductases

as well as several genes of unknown functions. The modulation of gene expression is particular

to each time point during the interaction with sugarcane and to in vitro growth.

Transcriptome Analysis

The data revealed that 56.6%, 41.3% and 54.7% of RNAseq trimmed reads mapped in pairs to

S. scitamineum CDSs in vitro, 5 DAI and 200 DAI, respectively (Table A in S8 File). The num-

ber of CDSs detected in each experiment was 6,213 (93%) in vitro, 437 (6.5%) at 5 DAI and

6,183 (92.6%) at 200 DAI. The RNAseq data were analyzed based on a combination of expres-

sion change threshold of Log2FoldChange (treatment/control)� 2 or� -2 among treatments,

and relied on FDR as defined by CLC software. In addition, considering the relatively low num-

ber of fungal reads recovered from the assay in planta at 5 DAI, we have analyzed the most ex-

pressed genes in a given treatment considering the number of mapping reads per CDS

normalized by scaling and CDS length. In this case, only genes mapped by at least one pair of

reads in all three replicates were taken into account. We called these genes preferentially ex-

pressed (Table B in S8 File). The mapping levels of reads to genes preferentially expressed were

between 6 and 10 times higher than the average number of reads mapped per CDS.

The number of preferentially expressed genes encoding secreted proteins is higher in planta

(16) than in vitro (3). Among them, only two genes were in common to the two time points an-

alyzed in planta (5 DAI and 200 DAI): the endoglucanase (g3790_chr09_Ss) and an uncharac-

terized secreted protein (g3890_chr10_Ss). Most of the genes considered preferentially

expressed in vitro encode proteins related to energetic metabolism and growth, including an al-

ternative oxidase (g2905_chr06_Ss), which is the most expressed, ATP-ADP carrier protein,

elongation factor 1-alfa, polyubiquitin and several ribosomal proteins.

The results of the differentially expressed genes, obtained comparing each treatment in

planta to the in vitro control, resulted in 125 genes detected at 5 DAI, of these 119 are up-regu-

lated and six down-regulated in planta (Table C in S8 File). At 200 DAI 907 genes were de-

tected as differentially expressed, of these 641 are up-regulated and 266 down-regulated

(Table D in S8 File). GO terms assigned to down-regulated genes at 5 DAI are enriched in

members of the mRNA binding functional group, and processes related to carbohydrate me-

tabolism, oxidation-reduction and cellular respiration (Table E in S8 File). Up-regulated genes

at 5 DAI are enriched in functions related to transporter activity and molecular/signal trans-

duction (Table C in S8 File). At 200 DAI, the most enriched GO terms among down-regulated
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Fig 5. Genes encoding secreted proteins and their expression level under all three conditions: in
vitro, 5 DAI, 200 DAI as calculated by CLCGenomicsWorkbench. Heatmaps were obtained using the
function heatmap.2 of the package gplots in R language

doi:10.1371/journal.pone.0129318.g005
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genes are oxidoreductase activity and mitochondrion cellular component. Up-regulated genes

at 200 DAI are enriched with terms of hydrolase activity acting on glycosyl bonds and carbohy-

drate metabolic process (Table D in S8 File).

Among differentially expressed genes up-regulated in planta (5 and/or 200 DAI) 78 encode

secreted proteins, some of them are related to host attack, nutrient acquisition and chitin modi-

fication. Table 2 summarizes the most relevant proteins detected as differentially expressed.

Searching for fungal genes expressed only in planta we found one gene specific to the inter-

action at 5 DAI (g4078_chr10_Ss), which encodes an uncharacterized protein, not secreted

and with no conserved domains detected. Expressed only at 200 DAI are 131 genes: six of them

(g5153_chr15_Ss, g5152_chr15_Ss, g5155_chr15_Ss, g3771_chr09_Ss, g4550_chr12_Ss,

g3890_chr10_Ss) are also expressed at 5 DAI (Table F in S8 File), 108 encode proteins of un-

known function, and 38 encode proteins of the secretome. The GO terms enrichment analysis

revealed that extracellular region is the prevalent term. This set of 132 fungal genes is probably

related to fungus/host interaction and may contain effectors associated with this singular inter-

action. Yet, the presence of one gene expressed particularly at 200 DAI encoding a secreted cys-

teine-protease inhibitor (g2337_chr05_Ss) may be related to the fungal defense against plant

proteases. Eight of these genes have homologues in the PHI-base (Table G in S1 File), strength-

ening its involvement in S. scitamineum pathogenicity. For instance, mutations in U. maydis

orthologs of genes g5161_chr15_Ss (PHI:932), g2659_chr06_Ss (PHI:910) and

g3271_chr08_Ss (PHI:23) led to reduced virulence, and in the ortholog of g672_chr01_Ss

(PHI:907) led to pathogenicity loss of the maize pathogen [7, 50].

The genome context of the genes expressed particularly in planta revealed the presence of

ten islands in chromosomes 2, 6, 10, 11, 12, 14, 15 and 16 (Fig 6). Most of the genes are of

uncharacterized function and encode secreted proteins ranging in size from 114 to 1257 amino

acids. Mig1 related genes are in the chromosome 10 island and genes of the protein family Eff1

effectors are in an island of chromosome 11. Orthologous for 27 (22.9%) of these genes were

not found in the genome of S. reilianum, the closest species, as well as in U. maydis and U. hor-

dei, according to OrthoMCL analysis.

Discussion

The genome of S. scitamineum

The present study describes the successful use of deep coverage sequencing data combining

long and short read strategies to achieve the complete sequence from telomere to telomere of

each chromosome of the sugarcane smut pathogen S. scitamineum. Comparisons of the three

available genomes of S. scitamineum, the SSC39 and BSES strains determined in this work and

the published sequence of the strain 2014001 [9] showed few polymorphisms. However, we un-

covered new information by revealing repetitive elements, subtelomeric regions and the mito-

chondrial DNA sequence. We also analyzed the chromosomal arrangement in comparison

with the genome of the closest related species S. reilianum. Although, genomes of smut fungi

are poor in repetitive elements compared to other fungi, the sequences associated with breaks

in synteny between the two genomes revealed the presence of eroded transposable elements.

We did not find complete copies of these elements. The genome of S. scitamineum is highly

compact but similar to the genome sizes of other smut fungi [51] as well as to the gene predic-

tions described for U. maydis, S. reilianum and U. hordei genomes that shows respective 6,675,

6,902 and 7,111 genes. Both the S. reilianum and U. maydis genomes were described as harbor-

ing 1% of transposable elements and S scitamineum harbors 1.24% in contrast to U. hordei that

contains 3% of such elements [8].
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Table 2. List of selected differentially expressed genes up-regulated in planta. For complete list view Tables C and D in S8 File.

Genes encoding secreted proteins

Gene ID Gene product Time point

Host attack g74_chr01_Ss Related to pepsin (Aspartate protease) 200 DAI

g189_chr01_Ss Related to Lipase 200 DAI

g252_chr01_Ss Glucan 1,3-beta-glucosidase 200 DAI

g468_chr01_Ss Probable beta-glucosidase 200 DAI

g1208_chr02_Ss Laccase-2 200 DAI/5 DAI

g1656_chr03_Ss Alpha-L-arabinofuranosidase 200 DAI

g1624_chr03_Ss Guanyl-specific ribonuclease 200 DAI

g2264_chr04_Ss Alpha-L-arabinofuranosidase 200 DAI

g2858_chr06_Ss Probable lysozyme 200 DAI

g3042_chr07_Ss Related to subtilisin-like serine protease 200 DAI

g3262_chr08_Ss Related to aminopeptidase 200 DAI

g3529_chr08_Ss Related to Pectin lyase 200 DAI

g3568_chr09_Ss Related to secreted aspartic protease 200 DAI

g3696_chr09_Ss Endo-1,6-beta-D-glucanase 200 DAI

g3790_chr09_Ss Endoglucanase 200 DAI/5 DAI

g3919_chr10_Ss Related to Mig1 protein 200 DAI

g4618_chr13_Ss Lipase 200 DAI

g5316_chr16_Ss Probable beta-glucosidase 200 DAI

g4719_chr13_Ss Probable pectinesterase 200 DAI

g5941_chr19_Ss Endo-1,4-beta-xylanase 200 DAI

g6000_chr19_Ss Glucan 1,3-beta-glucosidase 200 DAI

Nutrient acquisition g4081_chr10_Ss Related to 3-phytase 200 DAI

g5690_chr17_Ss 6-hydroxy-D-nicotine oxidase 5 DAI

Chitin modification g1612_chr03_Ss Probable Chitin deacetylase 5 DAI

g1900_chr04_Ss Chitinase 200 DAI

g6059_chr20_Ss Related to Chitin-binding protein 200 DAI

Detoxification g6307_chr21_Ss Chorismate mutase 200 DAI

Genes encoding not secreted proteins

siderophore transporters g3806_chr09_Ss Siderophore iron transporter 200 DAI

ammonium and nitrate transporters g4863_chr14_Ss Nitrate transporter 200 DAI

g1183_chr02_Ss High affinity ammonium transporter 5 DAI

g6016_chr19_Ss Glutathione transporter 200 DAI

g5527_chr17_Ss Ammonium transporter 5 DAI

amino acids and vitamins transport g5482_chr16_Ss Dityrosine transporter 200 DAI

g2895_chr06_Ss Probable metal-nicotianamine transporter 5 DAI

g5681_chr17_Ss Riboflavin transporter 200 DAI

sugar transporters g4185_chr11_Ss Hexose transporter 200 DAI/5 DAI

g1478_chr03_Ss Sugar transporter 200 DAI/5 DAI

g1034_chr02_Ss High-affinity glucose transporter 200 DAI

g4185_chr11_Ss Hexose transporter 200 DAI/5 DAI

g1478_chr03_Ss Sugar transporter 200 DAI/5 DAI

g6532_chr22_Ss UDP-galactose transporter 200 DAI

Invertase g1777_chr03_Ss Invertase 200 DAI

Detoxification g4103_chr11_Ss Salicylate hydroxylase 200 DAI

g4198_chr11_Ss Pisatin demethylase 200 DAI

Toxin biosynthesis g3941_chr10_Ss Versicolorin B synthase 200 DAI

Signal transduction g2874_chr06_Ss Hybrid signal transduction histidine kinase 5 DAI

g1321_chr03_Ss Serine/threonine-protein kinase 5 DAI

g2134_chr04_Ss Serine/threonine-protein kinase 5 DAI

g2002_chr04_Ss Probable serine/threonine-protein kinase 200 DAI

g3652_chr09_Ss Transcription initiation factor IIA large subunit 5 DAI

g1400_chr03_Ss Transcriptional activator of proteases 200 DAI

g3766_chr09_Ss Transcription factor RFX4 200 DAI

g722_chr02_Ss Serine/threonine-protein kinase 200 DAI

g1809_chr03_Ss Transcriptional regulatory protein 200 DAI

doi:10.1371/journal.pone.0129318.t002
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Fig 6. Chromosome segments representing the organization of genes in islands (color coded arrows and note colors beneath the bars).
Expression at 200 DAI (heatmap red scale) and in vitro(heat map blue scale) are compared using the normalized number of mapped Illumina paired end
reads, represented by the scales under each chromosome island. Gene names are presented at the borders of each segment of the chromosome, numbers
represent the coordinates of these islands in kbp and red dots represent singlets as defined by OrthoMCL

doi:10.1371/journal.pone.0129318.g006
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We defined the location and number of rDNA repeat copies and surprisingly, based on hy-

bridizations, there is a significant variation in chromosome length containing the rDNA cluster

between the two mating types of the same genetic background. It has been reported that the

copy number of the rDNA genes can vary spontaneously before meiosis [52]. The significance

of this difference remains to be studied in S. scitamineum.

Besides the hallmark of telomeric encoded helicases, the subtelomeric sequences harbor

genes potentially associated with host adaptation and pathogenicity, a common characteristic

among fungi [53, 54]. Although this has not been shown for smut, some of the genes identified

were related to sexual cycle, differentiation, sporulation, and to toxin detoxification and resis-

tance. Subtelomeric regions are prone to contain polymorphic regions within genomes of dif-

ferent strains since telomere and subtelomere repeated sequences might favor rearrangements

[55, 56]. Investigation of these regions among isolates may offer a better understanding of ge-

netic diversity within fungal populations. Genes encoding proteins of unknown function ar-

ranged in clusters were also found within the edges of subtelomeric regions. Some of these

regions are indeed associated with host/parasite interactions with sugarcane, since transcrip-

tomic data showed the expression of these genes only in planta.

mtDNA

The S. scitamineummtDNA was determined to be comprised of 88,018 bp. The largest mito-

chondrial genome currently reported is from Rhizoctonia solani with 235,849 bp

(NC_021436), which is in contrast to the relatively small mtDNA in the fission yeast Schizosac-

charomyces pombe, with 19,431 bp (NC_001326). Among the Ustilagionomycotina reported

mtDNAs sizes range from 29,999 bp (Jaminaea angkoriensis; KC628747.1) to 90,496 bp (Spor-

osorium reilanum; FQ311469.1). Very few mitochondrial genomes are available for members

of the Ustiloginales (U. maydis, DQ157700.1;Melanopsichium pennsylvanicum, HG529787;

and S. reilianum) and sizes range from 5,814 bp to 90,496 bp. Despite the size variation, the

gene content among these genomes are very similar and size variability is mostly due to spacers

and the presence or absence of introns and intron encoded ORFs [57–59].

The S. scitamineummtDNA contains the 14 core protein coding genes found in all Basidio-

mycota mitochondrial genomes, encoding hydrophobic subunits of the electron transport

chain, components of the ATPase synthase and the 40S ribosomal protein S3 [57]. RNA coding

genes included the two ribosomal RNAs (rnl and rns), 22 tRNAs and the rnpB gene, which en-

codes the RNA component of the RNase P ribonucleoprotein involved in tRNA biogenesis.

Only group I introns were noted and these were located within the following genes: rnl,

nad5, cob, nad1, atp9 and the intron-rich cox1 gene encompassing 11 ORF encoding introns.

The 11 hypothetical genes (orphans that lack any counterparts in the NCBI database) identified

by MFannot do not contain any introns. Mobile introns are characterized by their ability to

“home” into cognate alleles that lack introns, therefore these elements tend to insert into con-

served sequences which allows for more frequent lateral movement during crosses or during

transient hyphal fusion among different species permiting cytoplasmic transfer [60]. The mo-

bility is facilitated by the intron encoded proteins which are named homing endonucleases

(HE) and in fungal mitochondrial genomes they can be assigned into two classes: LAGLI-

DADG and GIY YIG type HEases.

As stated earlier, several examples (atp9, cox1, nad1,nad5 and nad6) were noted in which C-

terminus of a gene is duplicated and located downstream of the full length version. These types

of duplications were observed for some genes in the mtDNA of Rhizoctonia solani[57]. It

might be significant that we have noted that GIY-YIG type ORFs are located between the full

length version of the gene and the partial duplicated version. These arrangements could be the
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result of a GIY-YIG HEG invading the 3’ terminus of a gene thereby displacing the C-terminus

coding part of the resident gene. But as it has been seen previously, when freestanding homing

endonuclease genes (HEGs) invade genes they can also mobilize a segment that essentially

compensates/duplicates the displaced segment [60–62]. As HEGs appear to be neutral elements

and thus are not subject to selection, they quickly accumulate mutations [63] and thus only a

few detectable fragments can now be recorded. In general based on these partial gene duplica-

tions associated with GIY-YIG types ORFs and other eroded GIY-YIG ORFs noted in the inter-

genic spacers it appears HEase activity contributes towards mtDNA size and organization.

Mating-type analysis

Mating genes are crucial factors for disease establishment since a successful mating reaction is

needed to form the infective dikaryotic hyphae. Both processes, mating and pathogenicity, are

regulated by two loci: a and b[64]. The a locus comprises genes encoding a pheromone-receptor

system necessary for cell-cell recognition and hyphal fusion, whereas the b locus comprises two

genes encoding subunits of a heterodimeric homeodomain transcription factor regulating the

maintenance of the dikaryon. Although considered to be phylogenetically close based on ITS

and LSU rDNA analysis [65, 66], the two genera of smut fungi (Ustilago/Sporisorium) show

high rates of amino acid substitution per site of the mating-type proteins. The trans-specific

polymorphisms in pheromone and receptor genes are supposedly preserved since the last com-

mon ancestor of the basidiomycetes and ascomycetes and their reciprocal specificity likely

have co-evolved [67]. Although the pheromone and receptor proteins differs among Ustilagi-

naceae species and seems to be optimized for intraspecific compatibility, interspecific sex up to

the stage of plasmogamy can be still observed in vitro, which could have an evolutionary im-

pact on speciation by hybridization events [67].

The genomic context of mating-type genes has been published for several smut fungi [9, 64,

67, 68]. The organization of the b locus genes is conserved among species in opposition to what

has been observed for the a locus, even considering compatible mating-types with the same ge-

netic background. S. scitamineum and S. reilianum differ from U. maydis and U. hordei by the

presence of a second pheromone gene (mfa) in that locus. However, this extra copy (mfa 1.3) in

S. scitamineum lacks the characteristic sequence acting as a signal for post-translational pro-

cessing. The event involves the isoprenylation and carboxymethylation in the cysteine residue

to form a secretable lipopeptide pheromone [69]. In U. maydis, a remnant of a pheromone

gene is described for the a2 allele that cannot produce a functional product [67, 70]. Although

mfa1.3 gene of S. scitamineum has full coverage of RNAseq reads, additional experiments are

required to determine how many different mating-type alleles are in the fungal population and

whether both pheromones are functional.

In S. reilianum and U. maydis, the mating-type loci are not linked and segregates indepen-

dently (tetrapolar system) [68]; in U. hordei and S. scitamineum the a and b loci are linked and

segregate as one locus (bipolar system) [9, 71]. Here we present the first completely sequenced

intergenic region between the two mating loci among the smut genotypes and the occurrence

of transposable elements at this region. In U. hordei, that also has a bipolar mating system, the

scaffold that holds the mating-type loci has large stretches of long terminal repeats (LTRs) and

transposable elements (TEs) dispersed within an intervening region of about 500 kbp [71].

This region may have been responsible for the evolutionary process that resulted in the fusion

of these mating-type loci and the divergence in these chromosomal segments that have led to a

suppression of recombination between the alleles [64]. Transcriptome analysis of S. scitami-

neum during in vitro growth and development in planta showed that mating-type genes are ex-

pressed in both conditions. The two mating-types were grown individually in order to obtain
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the RNAseq data in vitro, which suggests that contact is either not needed to favor gene expres-

sion of mating-type genes, or that a very short period of interaction is enough to induce gene

expression, since cells were mixed immediately prior centrifugation and RNA extraction. The

expression of mating-type genes at the a and b loci are induced by pheromone in U. maydis,

that leads to amplification of the pheromone signal during the mating and to increased expres-

sion of b genes prior to fusion [72]. A single HMG box transcription factor, PrfI (pheromone

response factor I), plays an important role in mediating this interaction between the a and b

pathways. Prf1 protein binds specifically to pheromone response elements (PREs), which occur

in clusters in the promoter regions in the vicinity of all genes in both loci[72]. Although in dif-

ferent numbers and orientations, PREs have been found close to the mating-type genes in S.

scitamineum and other fungi studied, exceptingMalassezia species to which so far no sexual

cycle has been observed [73]. The pfr1 gene is also expressed in all RNAseq experiments ana-

lyzed of S. scitamineum, suggesting that the same kind of regulation of a and b loci occurs in

this species.

Plant host-pathogen interaction transcriptome analysis

The combination of genome sequencing and transcriptome profiling is a proven approach to

bring insights into pathogen mechanisms to invade host tissues, strategies of acquiring nutri-

ents, avoid plant defense and to provoke disease symptoms. All these events are accomplished

by a series of signals inducing a transcriptional reprogramming of fungal metabolism resulting

in survival and dissemination within the host.

Our comparative transcriptome profiling showed that approximately 13.5% of S. scitami-

neum genes were either detected as differentially expressed in planta at 5 or 200 DAI. These

genes are related to several metabolic processes important to fungal survival and protection in

host tissues. One of these processes involves the chitin modification, mechanism that prevents

the generation of elicitor active chitin oligomers which reveals the presence of the pathogen in

the plant, triggering defense responses. The deacetylation of surface-exposed chitin into chito-

san acts as a molecular disguise strategy [74–76]. Deacetylase is one of the most up-regulated

gene at 5 DAI, indicating that S. scitamineum uses this strategy to dodge the plant defense in

the early phases of fungal establishment. Que and collegues (2014) [77] determined the in-

crease of chitinase gene expression in sugarcane transcriptome profiling of a resistance variety

compared to susceptible plants.

The ability to pass through the plant cell wall by secreting a complex of extracellular cell

wall degrading enzymes is evident in S. scitamineum. These enzymes are well known in fila-

mentous plant pathogens and are necessary for entry into plant tissues [76, 78–81]. However,

the amount of these enzymes may vary according to the fungal lifestyle. Biotrophic fungi can

have fewer enzymes than hemibiotrophic and necrotrophic fungi [82]. In our study, the num-

ber of CAZymes (279) detected in the S. scitamineum genome is similar to other biotrophic

fungus [83]. We found a small set of 54 cell wall degrading enzymes, some of which have been

identified as up-regulated genes in planta at 5 and 200 DAI, such as those involved in cellulose,

pectin and hemicellulose degradation.

Surpassing the cell barrier, pathogens have to breakdown proteins, sugars, lipids and nucleic

acids [84]. Nineteen enzymes associated with digestion of proteins were detected among the se-

creted proteins. The transcriptome revealed that genes related to proteases were also up-regu-

lated in planta. The fungal proteases may inhibit the activity of plant pathogenesis-related

protein [85–87]. Another defense strategy potentially used by the fungus is the secretion of a

cysteine-protease inhibitor to minimize the plant response, since the plant proteolytic machin-

ery plays important roles in defense against pathogens [88].
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Enzymes that target lipids, including lipases, triacyglycerol lipase and phospholipase were

also found to have genes up-regulated at both time points analyzed. Lipases and phospholi-

pases have been proposed to be essential not only for human pathogen virulence [89], but also

for pathogens interacting with plants [90]. Eleven putative lipases were found in U.maydis po-

tentially related to pathogenicity [91]. Lipase activities were associated with the fungal filamen-

tous growth in vitro in the presence of lipids and also responsive to the known mating

signaling pathways of the corn pathogen [91].

S. scitamineum seems to use another pathogen protective strategy to survive within sugar-

cane by the ability to detoxify the environment. Plants secrete various antimicrobial com-

pounds into the apoplast to restrict pathogen growth. Examples are steroidal glycoalkaloids,

such as saponin, and plant derived reactive oxygen species (ROS), which accumulate upon

MAMP (microbe-associated molecular patterns) perception [92]. One of these detoxifying en-

zymes possibly used by S. scitamineum is related to pisatin demethylase, which was found up-

regulated at 200 DAI. The pea pathogen Fusarium oxysporum f. sp. pisi is able to detoxify the

phytoalexin pisatin, a substrate-inducible cytochrome P450, produced as a plant defense re-

sponse [93]. Other genes related to cytochrome P450 and benzoate 4-monooxygenase are up-

regulated at 200 DAI, which may indicate the need of detoxification in planta. These enzymes

produce phenolic derivatives that are channeled to the b-ketoadipate pathway for aromatic

compound degradation [94, 95]. Superoxide dismutase and catalases are also highly relevant to

pathogenic fungal protection in planta[96, 97]. It has been reported that sugarcane resistant va-

rieties produce an oxidative burst response upon smut infection [98]. These enzymes are in-

volved in oxidative stress response against host superoxide radical (O2
-) and hydrogen

peroxide (H2O2), respectively. Their importance in the initial penetration is well documented

[9, 99], but expression in the final stages (200 DAI) of smut sugarcane colonization in sugar-

cane may provide an additional protection against oxidative stress.

Of the differentially expressed genes at 5 DAI, nine have homologues in the PHI-base. Note-

worthy are three up-regulated genes that code for sugar/glucose transporter and maltose per-

mease, which in U. maydismutants shows reduced virulence [100]. Among the differentially

expressed genes at 200 DAI, 33 have homologues in the PHI-base. These genes are related to

sugar, nicotinic acid, peptide transporters and the secreted proteins beta-glucosidase, lipase

and aspartic protease. The sugar transporter coded by g1034_chr02_Ss is an ortholog of the U.

maydis plasma membrane-localized sucrose transporter (Srt1), which is sucrose specific, and

allows the direct utilization of sucrose without the production of extracellular monosaccharides

known to elicit plant immune responses [100]. The presence of invertase is also indicative that

sucrose breakdown is relevant for sporulation and whip development, leading support to the

decrease of sucrose content in later stages of disease development [6]. The biotrophic interac-

tion of S. scitamineum and sugarcane leads to increased invertase gene expression also by the

plant, which is potentially to limit the sugar access to the pathogen, however the fungus present

various sugar transporters that can increase the range of sugars and ways of intake this carbon

source [101]. These mechanisms are probably among the ones that make this pathosystem very

particular. Among other sugar transporter-encoding genes we found three quinate permease

genes (g72_chr01_Ss; g1719_chr03_Ss and g2935_chr06_Ss) that were differentially expressed

at 200 DAI. Quinate can serve as source of carbon toM. oryzae in early stages of rice infection

[102].M oryzaemodulates expression of common genes related to the conversion between qui-

nate and shikimate pathways by increasing quinate availability and decreasing products of the

shikimate pathway, such as defensive phenylpropanoids. It is known that early sugarcane infec-

tion with S. scitamineum triggers expression of phenylpropanoid as a means of protection

against fungal infection [77, 103]. In sugarcane it remains to be established whether quinate is

available in the later stages of interaction, although these quinate assimilation genes up-
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regulated could be related to shunt of plant phenylpropanoid metabolism during smut whip

emergence.

Laccase genes were also found to be differentially expressed in the fungus upon infection in

sugarcane, revealing the potential of S. scitamineum for breaking down lignified tissues. Lac-

case is a polyphenol oxidase that catalyzes the reduction of O2 to H2O using a range of phenolic

compounds as hydrogen donors, including lignin [104], that is the second most abundant con-

stituent of the vascular plants cell wall, acting in cellulose protection towards hydrolytic micro-

bial attack [105]. Sugarcane is known to respond to the presence of smut by modulating the

expression of genes related to lignin pathways [98, 106, 107].

Our detailed annotation of the S. scitamineum genome revealed the presence of three genes

encoding laccases. One of them, part of the described secretome, is encoded by the gene

g1208_chr02_Ss, which is up-regulated in both 5 and 200 DAI, with values of Log2FoldChange

of 6.56 and 7.59, respectively. Secreted laccases are related to lignin breakdown [108] and has

great potential to be studied in numerous biotechnological applications, including those related

to second generation of biofuels [97, 109, 110]. However, laccases can also be involved in vari-

ous fungal physiological processes, for instance, the development of fruiting bodies [111] and

spore pigmentation [112]. The transcriptome analysis results showed another laccase up-regu-

lated at 200 DAI, which is not secreted (g4962_chr14_Ss, Log2FoldChange = 5.49). In this case

this gene is possibly involved with pigment biosynthesis, since this stage of fungal development

is characterized by intensive teliospore differentiation. Polyketide synthases encoding genes re-

lated to secondary metabolite production such as those involved in pigment biosynthesis were

also found up-regulated at 200 DAI.

During the co-evolution of fungal plant pathogens and their hosts there has been a seesaw-

ing interplay between pathogen virulence and host resistance. Thus, to facilitate infection,

plant pathogens secrete numerous effector proteins into the plant apoplast or cytosol [113]. Be-

sides the strategies used to defend itself from plant immune system, S. scitamineum seems to

have an arsenal of effectors that can potentially manipulate host metabolism [9, 114, 115]. S.

scitamineum SSC39B secretome includes 70 proteins candidates for effectors, 51 annotated as

either hypothetical or conserved hypothetical proteins. A similar number of candidates (43)

was reported to occur in the 2014001 S. scitamineum strain [9]. Additionally, the authors used

RT-qPCR analysis to reveal that 47% of these candidate genes were expressed in S. scitamineum

in the early stages of the infection [9].

The transcriptomic data provided us with indications of S. scitamineum effectors that are

transcriptionally active. Among them are the known effectors chorismate mutase, and salicy-

late hydroxylase [116], both involved in attenuating plant salicylic acid level reported in U.

maydis[117], and Pep1 of U. maydis[118], an apoplastic inhibitor of host peroxidases [9, 119,

120]. As probable novel effectors used by S. scitamineum during sugarcane interaction we can

highlight three genes (g2_chr01_Ss, g3890_chr10, and g1513_chr03_Ss) among the preferen-

tially expressed in plant at 5 DAI, which encode to small secreted proteins of 236, 135 and 215

amino acids respectively. These genes have no identifiable conserved domains or any particular

sequence feature. At 200 DAI the uncharacterized secreted proteins encoded by the highly ex-

pressed genes g3870_chr10_Ss, g488_chr01_Ss and g5684_chr17_Ss, are rich in glycine resi-

dues. InM. oryzae, members of the pwl gene family codify to small glycine-rich secreted

proteins acting as Avrs conferring host specificity [121, 122].

A potential pathogenicity factor of the S. scitamineum is the most highly expressed genes of

the secretome at 5 DAI (g3970_chr10_Ss). The encoded protein sequence presents several re-

peated motifs, such as “PQPQDGQ” residues represented seven times close to the N-terminal

region and “PYGDKPNGDAENSDS” repeated eight times towards the C-terminal region. Its

homologous in U. maydis, um03274, is expressed only in plant and not in axenic cultures [123]
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and in S. scitamineum the expression of this gene is low during in vitro growth. Sequences rich

in proline and glutamine residues were found in the human fungal pathogen Candida albicans,

where the 10-amino-acid long N-terminal repeat in the Hwp1p adhesin allows covalent cross-

linking to host cells [124, 125]. All these genes of undetermined functions from S. scitamineum

secretome, which are among the most expressed in plant, are good targets for experimental

analyses to elucidate potential involvement in fungal growth and disease development.

In order to provide deeper analysis of S. scitamineum transcriptional profiles, we searched

for the distribution of genes specifically expressed in planta, which allowed for the identifica-

tion of 10 putative pathogenicity islands, a characteristic widespread in fungal pathogen ge-

nomes, which can harbor probable effectors. In the U. maydis, for instance were found 12

islands of genes encoding small secreted proteins with unknown function; most of them are

co-regulated and induced in infected tissues, and deletion of individual islands can alter the

pathogen virulence, leading in some cases to a complete lack of symptoms [7]. The evidence

that some of them are only present in the S. scitamineum genome suggests its involvement in

the sugarcane specificity, which is an important trait underlying the interaction of smuts with

their hosts, but still poorly understood at the molecular level. Despite being phylogenetically

close, the smut fungi infect different members of the Poaceae, and vary in their mode of plant

colonization and symptom development. Searching for species-specific genes is a promising

strategy to identify genes involved in host-specific adaptations [51, 126]. An important feature

found in four of the predicted islands (chromosomes 2, 6, 10 and 11) is the presence of repeti-

tive elements, that have been viewed as drivers of genome evolution by promoting genome re-

arrangements and possible gene regulation [127], and this can be related to the smut fungus

adaptability towards sugarcane colonization.

Conclusions

The de novo complete genome assembly allowed us the determination of subtelomeric regions,

mating-type loci, repetitive elements and the sequence and annotation of mtDNA of S. scitami-

neum. The mtDNA with 88 kb in length is within the size range expected for members of the

Ustiloginales and the genome is rich in potential mobile introns with some evidence that dupli-

cations may have been generated by the activity of intron encoded homing endonucleases.

Comparisons to other smut genome sequences revealed that chromosomal reorganizations re-

lated to the mating loci and details of the sequences linking both locimay be used in further

evolutionary studies. The combination of transcriptomic data obtained in different phases of

the fungal life cycle disclosed modulation of gene expression revealing that S. scitamineum uses

common strategies to survive within sugarcane but also uncovered novelties that are associated

to the specific interaction with sugarcane. The onset of infection is similar to those of other

smut interactions. For instance, orthologues of U. maydis known virulence factors were found

to be expressed in S. scitamineum during infection phase by means of attenuation of the salicy-

late mediated defense response. New candidate effectors have been identified and are organized

in 10 genomic islands which are expressed only in planta, some of which S. scitamineum specif-

ic. Plant cell wall degrading enzymes, proteases and lipases are up-regulated potentially associ-

ated to the entry of the pathogen. Fungal defense responses were also a common strategy

regarding the interaction with sugarcane. The fungus accumulates a series of transcripts encod-

ing proteins to survive ROS and other toxins potentially produced by the plant. To avoid recog-

nition by the host plant S. scitamineum probably uses chitin modifications. During the

development of the whip and sporogenesis the presence of transcripts related to detoxification

of plant metabolites as well as ROS are evident. The fungus metabolism shifts to the accumula-

tion of sugar transporters and invertase transcripts, to use sucrose directly and/or sucrose
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monomers derivatives. Increased laccase activities both extracellular and non-secreted were de-

tected. Laccases are regarded as potentially involved in lignin degradation and to pigment bio-

synthesis. This study suggests a new promising research aiming at the biotechnological use of

S.scitamineum as well as provides valuable targets for experimental studies to confirm patho-

gen genes involved parasite/host interaction, with perspectives for applications in disease man-

agement and sugarcane breeding.
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Supporting Information

S1 File. General analysis of S. scitamineum genome (Excel file format). Chromosomes size,

coordinates of telomeric regions and pattern found by Tandem Repeat Database (Table A).

Circos of the alignment between the tree small contigs and the other chromosomes (a) and be-

tween other strains of S. scitamineum (Figure A). Pulse Field Gel Hibridizations (Figure B).

Predicted tRNAs obtained by using tRNAscan-SE (Table B). Genes coordinates, best hit of

each S. scitamineum protein against Uniref50, presence of signal peptide, transmembrane do-

main, GPI anchor site and RNAseq length coverage and BLASTp against proteins of S. reilia-

num Table C). Gene length distribution in S. scitamineum genome (Figure C). Annotation of

subtelomeric genes (Table D). Repetitive elements detected using RECON for de novo identifi-

cation, REPBASE and RepeatMasker (Table E). dbCAN domains on CAZymes (Table F).

Alignments against the reference proteins from PHI-base (Table G).

(XLS)

S2 File. Blast2GO analysis (Excel file format). Protein annotation of S. scitamineum genome

using Blast2GO (Table A). Distribution of GO terms of predicted S. scitamineum proteins

(Table B). List of best hit species of predicted protein sequences of S. scitamineum as defined

by Blast2GO analysis (Table C).

(XLS)

S3 File. Chromosomes comparison of S. scitamineum SSC39 and S. reilianum (Zip with fig-

ures). Figures produced using Circos software to illustrate chromosomes alignments between

these two close related species.

(ZIP)

S4 File. Mating-type analysis (PDF file format). Percentage of identity of mating-type pro-

teins and the average of predicted proteins from whole genome between S. scitamineum and

others smut fungi (Table A). Unrooted consensus phylogenetic tree for the mating-type pro-

teins from smut related species (Figure A). Genomic context of mating-type genes from smut

related species (Figure B).

(PDF)

S5 File. Mitochondrial genome analysis (Excel file format). Table with mitochondrial gene

annotations and manual curation (Table A). Feature table of the mitochondria (Table B).

(XLS)

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 23 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s005


S6 File. OrthoMCL analysis (Excel file format). Co-orthologs groups with their respective

members (Table A). Four-way-Venn-diagram showing the distribution of orthologous protein

clusters among smuts species (Figure A). Unique orthologs groups and theirs predicted func-

tions (Table B). Singletons identifiers (proteins not assigned to any OrthoMCL cluster)

(Table C). Single-copy genes in each group of orthologs (Table D). Putative effectors unique of

S. scitamineum (differentially or exclusively) expressedin planta (Table E).

(XLS)

S7 File. Gene Ontology analysis of S. scitamineum secretome (PDF file format). Graphs

with GO terms enriched in the S. scitamineum secretome (Figure A).

(PDF)

S8 File. Transcriptome data analysis (Excel file format). Number of reads mapped in tran-

scriptome analysis obtained with CLC Genomics Workbench analysis (100% identity, 98%

coverage) (Table A). Genes preferentially expressed in vitro, 5 DAI and 200 DAI. Expression

values were defined by normalization using scaling approach and CDS size (Table B). Genes

differentially expressed at 5 DAI in comparison with transcriptional profiles obtained in YM

culture medium fungal axenic growth. Were considered differentially expressed genes those

with FDR� 0.01 in Baggerley’s test and Log2(Fold Change)� -2 or� 2 (Table C). Genes dif-

ferentially expressed at 200 DAI as assumed in 5 DAI analysis (Table D). GO terms enrich-

ment of differentially expressed genes using p-value� 0.05 performed in Blast2GO software

(Table E). Genes expressed exclusively in plant in comparison with genes expressed during

axenic growth in YMmedium (Table F).

(XLS)

Acknowledgments

The authors thank the sequencing facility Center of Functional Genomics and Center of Re-

search Support in Electron Microscopy Applied to Agriculture (NAP/MEPA), University of

São Paulo, Campus “Luiz de Queiroz”.

Author Contributions

Conceived and designed the experiments: CBMV JPK. Performed the experiments: ACP

MCPK FRSNMCQ. Analyzed the data: LMT PDCS JB LPP GC KSA PJB JAF PMMGH AW

JPK CBMV. Contributed reagents/materials/analysis tools: LLC SC. Wrote the paper: LMT

PDCS JB LPP GC KSA GH JPK CBMV. Provided expertise and editing: JPK MLCVMCQ.

References
1. VerheyeW. Growth and production of sugarcane. In: H VW, B BM, editors. Soils, plant growth and

crop production. vol. 2. Encyclopedia of Life Support Systems; 2010.

2. Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM. Sugarcane for bioenergy production:
an assessment of yield and regulation of sucrose content. Plant Biotechnology Journal. 2010; 8
(3):263–276. Available from: http://dx.doi.org/10.1111/j.1467-7652.2009.00491.x. doi: 10.1111/j.
1467-7652.2009.00491.x PMID: 20388126

3. Santos ASS. Doenças causadas por fungos e bactérias em cana-de-açúcar. IX Reunião itinerante de
fitossanidade do instituto biológico. 2003;p. 11–17. http://www.biologico.sp.gov.br/rifib/IX_RIFIB/.

4. Comstock JC, Lentini RS. Sugarcane Smut Disease. In: Rice RW, editor. Florida Sugarcane Hand-
book. InTech; 2005. p. 107–128.

5. Alexander K, Ramakrishnan K. Infection of the bud, establishment in the host and production of whips
in sugarcane smut (Ustilago scitaminea syd) of sugarcane. Proceedings. Congress of the Internation-
al Society of Sugar Cane Technologists. 1980;.

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 24 / 31

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0129318.s008
http://dx.doi.org/10.1111/j.1467-7652.2009.00491.x
http://dx.doi.org/10.1111/j.1467-7652.2009.00491.x
http://dx.doi.org/10.1111/j.1467-7652.2009.00491.x
http://www.ncbi.nlm.nih.gov/pubmed/20388126
http://www.biologico.sp.gov.br/rifib/IX_RIFIB/


6. Sundar AR, Barnabas EL, Malathi P, Viswanathan R. A Mini-Review on Smut Disease of Sugarcane
Caused by Sporisorium scitamineum. In: Mworia JK, editor. Botany. InTech; 2012. p. 107–128.

7. Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ, et al. Insights from the genome of the
biotrophic fungal plant pathogenUstilago maydis. Nature. 2006; 444:97–101. doi: 10.1038/
nature05248 PMID: 17080091

8. Sharma R, Mishra B, Runge F, Thines M. Gene loss rather than gene gain is associated with a host
jump frommonocots to dicots in the Smut FungusMelanopsichium pennsylvanicum. Genome Biology
and Evolution. 2014; 6(8):2034–2049. doi: 10.1093/gbe/evu148 PMID: 25062916

9. Que Y, Xu L, Wu Q, Liu Y, Ling H, Liu Y, et al. Genome sequencing of Sporisorium scitamineum pro-
vides insights into the pathogenic mechanisms of sugarcane smut. BMCGenomics. 2014; 15(1):996.
Available from: http://www.biomedcentral.com/1471-2164/15/996. doi: 10.1186/1471-2164-15-996
PMID: 25406499

10. Schirawski J, Mannhaupt G, Münch K, Brefort T, Schipper K, Doehlemann G, et al. Pathogenicity De-
terminants in Smut Fungi Revealed by Genome Comparison. Science. 2010; 330(6010):1546–1548.
Available from: http://www.sciencemag.org/content/330/6010/1546. doi: 10.1126/science.1195330
PMID: 21148393

11. Bölker M, Urban M, Kahmann R. The a mating type locus of U. maydis specifies cell signaling compo-
nents. Cell. 1992; 68(3):441–450. Available from: http://www.sciencedirect.com/science/article/pii/
009286749290182C. doi: 10.1016/0092-8674(92)90182-C PMID: 1310895

12. Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymer-
ase molecules. Science. 2009 Jan; 323(5910):133–138. Available from: http://dx.doi.org/10.1126/
science.1162986. doi: 10.1126/science.1162986 PMID: 19023044

13. Peterson DG, Tomkins JP, Frisch DA, Wing RA, Paterson AH. Construction of plant bacterial artificial
chromosome (BAC) libraries: an illustrated guide. University of Georgia, Room 162: Journal of agricul-
tural Genomics; 2000.

14. Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, Heiner C, et al. Nonhybrid, finished microbial
genome assemblies from long-read SMRT sequencing data. Nature Methods. 2013; 10:563–569. doi:
10.1038/nmeth.2474 PMID: 23644548

15. Greenfield P, Duesing K, Papanicolaou A, Bauer DC. Blue: correcting sequencing errors using con-
sensus and context. Bioinformatics. 2014; 30(19):2723–2732. Available from: http://bioinformatics.
oxfordjournals.org/content/30/19/2723.abstract. doi: 10.1093/bioinformatics/btu368 PMID: 24919879

16. Zerbino DR, Birney E. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Ge-
nome Research. 2008; 18(5):821–829. Available from: http://genome.cshlp.org/content/18/5/821.
abstract. doi: 10.1101/gr.074492.107 PMID: 18349386

17. McCluskey K. Identification and Characterization of Chromosome Length Polymorphisms Among
Strains Representing Fourteen Races ofUstilago hordei. Molecular Plant-Microbe Interaction. 1990;
3(6):366–37. doi: 10.1094/MPMI-3-366

18. Levis C, Giraud T, Dutertre M, Fortini D, Brygoo Y. Telomeric DNA of Botrytis cinerea: a useful tool for
strain identification. FEMSMicrobiology Letters. 1997; 157:267–272. doi: 10.1111/j.1574-6968.1997.
tb12783.x PMID: 9435107

19. Bueno CRNC. Infecção por Sporisorium scitamineum em cana-de-açúcar: influência de variáveis
ambientais e desenvolvimento de método para diagnose precoce. University of São Paulo; 2010.
Available: http://www.teses.usp.br/teses/disponiveis/11/11135/tde-17092010-164620/en.php.

20. Stanke M, Morgenstern B. AUGUSTUS: a web server for gene prediction in eukaryotes that allows
user-defined constraints. Nucleic Acids Research. 2005; 33(suppl 2):W465–W467. Available from:
http://nar.oxfordjournals.org/content/33/suppl_2/W465.abstract. doi: 10.1093/nar/gki458 PMID:
15980513

21. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the de-
tection of tRNAs and snoRNAs. Nucleic Acids Research. 2005; 33(suppl 2):W686–W689. Available
from: http://nar.oxfordjournals.org/content/33/suppl_2/W686.abstract. doi: 10.1093/nar/gki366 PMID:
15980563

22. Bao Z, Eddy SR. Automated de novo Identification of Repeat Sequence Families in Sequenced Ge-
nomes. Genome Research. 2002; 12:1269–1276. doi: 10.1101/gr.88502 PMID: 12176934

23. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families
database. Nucleic Acids Research. 2014; 42(D1):D222–D230. Available from: http://nar.
oxfordjournals.org/content/42/D1/D222.abstract. doi: 10.1093/nar/gkt1223 PMID: 24288371

24. Smit AFA, Hubley R, Green P. RepeatMasker Open-3.0; 1996–2010. Available from: http://www.
repeatmasker.org.

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 25 / 31

http://dx.doi.org/10.1038/nature05248
http://dx.doi.org/10.1038/nature05248
http://www.ncbi.nlm.nih.gov/pubmed/17080091
http://dx.doi.org/10.1093/gbe/evu148
http://www.ncbi.nlm.nih.gov/pubmed/25062916
http://www.biomedcentral.com/1471-2164/15/996
http://dx.doi.org/10.1186/1471-2164-15-996
http://www.ncbi.nlm.nih.gov/pubmed/25406499
http://www.sciencemag.org/content/330/6010/1546
http://dx.doi.org/10.1126/science.1195330
http://www.ncbi.nlm.nih.gov/pubmed/21148393
http://www.sciencedirect.com/science/article/pii/009286749290182C
http://www.sciencedirect.com/science/article/pii/009286749290182C
http://dx.doi.org/10.1016/0092-8674(92)90182-C
http://www.ncbi.nlm.nih.gov/pubmed/1310895
http://dx.doi.org/10.1126/science.1162986
http://dx.doi.org/10.1126/science.1162986
http://dx.doi.org/10.1126/science.1162986
http://www.ncbi.nlm.nih.gov/pubmed/19023044
http://dx.doi.org/10.1038/nmeth.2474
http://www.ncbi.nlm.nih.gov/pubmed/23644548
http://bioinformatics.oxfordjournals.org/content/30/19/2723.abstract
http://bioinformatics.oxfordjournals.org/content/30/19/2723.abstract
http://dx.doi.org/10.1093/bioinformatics/btu368
http://www.ncbi.nlm.nih.gov/pubmed/24919879
http://genome.cshlp.org/content/18/5/821.abstract
http://genome.cshlp.org/content/18/5/821.abstract
http://dx.doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pubmed/18349386
http://dx.doi.org/10.1094/MPMI-3-366
http://dx.doi.org/10.1111/j.1574-6968.1997.tb12783.x
http://dx.doi.org/10.1111/j.1574-6968.1997.tb12783.x
http://www.ncbi.nlm.nih.gov/pubmed/9435107
http://www.teses.usp.br/teses/disponiveis/11/11135/tde-17092010-164620/en.php
http://nar.oxfordjournals.org/content/33/suppl_2/W465.abstract
http://dx.doi.org/10.1093/nar/gki458
http://www.ncbi.nlm.nih.gov/pubmed/15980513
http://nar.oxfordjournals.org/content/33/suppl_2/W686.abstract
http://dx.doi.org/10.1093/nar/gki366
http://www.ncbi.nlm.nih.gov/pubmed/15980563
http://dx.doi.org/10.1101/gr.88502
http://www.ncbi.nlm.nih.gov/pubmed/12176934
http://nar.oxfordjournals.org/content/42/D1/D222.abstract
http://nar.oxfordjournals.org/content/42/D1/D222.abstract
http://dx.doi.org/10.1093/nar/gkt1223
http://www.ncbi.nlm.nih.gov/pubmed/24288371
http://www.repeatmasker.org
http://www.repeatmasker.org


25. Gelfand Y, Rodriguez A, Benson G. TRDB—The Tandem Repeats Database. Nucleic Acids Re-
search. 2007; 35(suppl 1):D80–D87. Available from: http://nar.oxfordjournals.org/content/35/suppl_1/
D80.abstract. doi: 10.1093/nar/gkl1013 PMID: 17175540

26. Conesa A, Gotz S. Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. In-
ternational Journal of Plant Genomics. 2008;2008.

27. Petersen TNN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from
transmembrane regions. Nature Methods. 2011 Oct; 8(10):785–786. Available from: http://dx.doi.org/
10.1038/nmeth.1701. doi: 10.1038/nmeth.1701 PMID: 21959131

28. Krogh A, Larsson B, von Heijne G, Sonnhammer ELL. Predicting Transmembrane Protein Topology
with a Hidden Markov Model: Application to Complete Genomes. Jornal of Molecular Biology. 2001;
305:567–580. doi: 10.1006/jmbi.2000.4315

29. Pierleoni A, Luigi Martelli P, Casadio R. PredGPI: a GPI-anchor predictor. BMC Bioinformatics. 2008;
9(1). Available from: http://dx.doi.org/10.1186/1471-2105-9-392. doi: 10.1186/1471-2105-9-392
PMID: 18811934

30. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated carbohydrate-ac-
tive enzyme annotation. Nucleic Acids Research. 2012; 40(W1):W445–W451. Available from: http://
nar.oxfordjournals.org/content/40/W1/W445.abstract. doi: 10.1093/nar/gks479 PMID: 22645317

31. Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, et al. PHI-base update:
additions to the pathogen–host interaction database. Nucleic Acids Research. 2008; 36(suppl 1):
D572–D576. Available from: http://nar.oxfordjournals.org/content/36/suppl_1/D572.abstract. doi: 10.
1093/nar/gkm858 PMID: 17942425

32. Lang BF, Laforest MJ, Burger G. Mitochondrial introns: a critical view. Trends in Genetics. 2007; 23
(3):119–125. Available from: http://www.sciencedirect.com/science/article/pii/S0168952507000248.
doi: 10.1016/j.tig.2007.01.006 PMID: 17280737

33. Katoh K, Standley DM. MAFFTMultiple Sequence Alignment Software Version 7: Improvements in
Performance and Usability. Molecular Biology and Evolution. 2013; 30(4):772–780. Available from:
http://mbe.oxfordjournals.org/content/30/4/772.abstract. doi: 10.1093/molbev/mst010 PMID:
23329690

34. Nicholas KB, Nicholas HB, Deerfield DW. GeneDoc: analysis and visualization of genetic variation.
EMBNEWNEWS. 1997; 4:14.

35. Krzywinski MI, Schein JE, Birol I, Connors J, Gascoyne R, Horsman D, et al. Circos: An information
aesthetic for comparative genomics. Genome Research. 2009 Jun; 19(9):1639–1645. Available from:
http://dx.doi.org/10.1101/gr.092759.109. doi: 10.1101/gr.092759.109 PMID: 19541911

36. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinfor-
matics. 2010; 26(6):841–842. Available from: http://bioinformatics.oxfordjournals.org/content/26/6/
841.abstract. doi: 10.1093/bioinformatics/btq033 PMID: 20110278

37. Mewes HW, Ruepp A, Theis F, Rattei T, Walter M, Frishman D, et al. MIPS: curated databases and
comprehensive secondary data resources in 2010. Nucleic Acids Research. 2011; 39(suppl 1):D220–
D224. Available from: http://nar.oxfordjournals.org/content/39/suppl_1/D220.abstract. doi: 10.1093/
nar/gkq1157 PMID: 21109531

38. Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes.
Genome Research. 2003 Sep; 13(9):2178–2189. Available from: http://dx.doi.org/10.1101/gr.
1224503. doi: 10.1101/gr.1224503 PMID: 12952885

39. Chen H, Boutros P. VennDiagram: a package for the generation of highly-customizable Venn and
Euler diagrams in R. BMC Bioinformatics. 2011; 12(1):35. Available from: http://www.biomedcentral.
com/1471-2105/12/35. doi: 10.1186/1471-2105-12-35 PMID: 21269502

40. Notredame C, Higgins DG, Heringa J. T-Coffee: A novel method for fast and accurate multiple se-
quence alignment. Journal of Molecular Biology. 2000; 302(1):205–17. doi: 10.1006/jmbi.2000.4042
PMID: 10964570

41. Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein
evolution. Bioinformatics. 2011 Apr; 27(8):1164–1165. doi: 10.1093/bioinformatics/btr088 PMID:
21335321

42. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods
to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Systematic
Biology. 2010; 59(3):307–321. Available from: http://sysbio.oxfordjournals.org/content/59/3/307.
abstract. doi: 10.1093/sysbio/syq010 PMID: 20525638

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 26 / 31

http://nar.oxfordjournals.org/content/35/suppl_1/D80.abstract
http://nar.oxfordjournals.org/content/35/suppl_1/D80.abstract
http://dx.doi.org/10.1093/nar/gkl1013
http://www.ncbi.nlm.nih.gov/pubmed/17175540
http://dx.doi.org/10.1038/nmeth.1701
http://dx.doi.org/10.1038/nmeth.1701
http://dx.doi.org/10.1038/nmeth.1701
http://www.ncbi.nlm.nih.gov/pubmed/21959131
http://dx.doi.org/10.1006/jmbi.2000.4315
http://dx.doi.org/10.1186/1471-2105-9-392
http://dx.doi.org/10.1186/1471-2105-9-392
http://www.ncbi.nlm.nih.gov/pubmed/18811934
http://nar.oxfordjournals.org/content/40/W1/W445.abstract
http://nar.oxfordjournals.org/content/40/W1/W445.abstract
http://dx.doi.org/10.1093/nar/gks479
http://www.ncbi.nlm.nih.gov/pubmed/22645317
http://nar.oxfordjournals.org/content/36/suppl_1/D572.abstract
http://dx.doi.org/10.1093/nar/gkm858
http://dx.doi.org/10.1093/nar/gkm858
http://www.ncbi.nlm.nih.gov/pubmed/17942425
http://www.sciencedirect.com/science/article/pii/S0168952507000248
http://dx.doi.org/10.1016/j.tig.2007.01.006
http://www.ncbi.nlm.nih.gov/pubmed/17280737
http://mbe.oxfordjournals.org/content/30/4/772.abstract
http://dx.doi.org/10.1093/molbev/mst010
http://www.ncbi.nlm.nih.gov/pubmed/23329690
http://dx.doi.org/10.1101/gr.092759.109
http://dx.doi.org/10.1101/gr.092759.109
http://www.ncbi.nlm.nih.gov/pubmed/19541911
http://bioinformatics.oxfordjournals.org/content/26/6/841.abstract
http://bioinformatics.oxfordjournals.org/content/26/6/841.abstract
http://dx.doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
http://nar.oxfordjournals.org/content/39/suppl_1/D220.abstract
http://dx.doi.org/10.1093/nar/gkq1157
http://dx.doi.org/10.1093/nar/gkq1157
http://www.ncbi.nlm.nih.gov/pubmed/21109531
http://dx.doi.org/10.1101/gr.1224503
http://dx.doi.org/10.1101/gr.1224503
http://dx.doi.org/10.1101/gr.1224503
http://www.ncbi.nlm.nih.gov/pubmed/12952885
http://www.biomedcentral.com/1471-2105/12/35
http://www.biomedcentral.com/1471-2105/12/35
http://dx.doi.org/10.1186/1471-2105-12-35
http://www.ncbi.nlm.nih.gov/pubmed/21269502
http://dx.doi.org/10.1006/jmbi.2000.4042
http://www.ncbi.nlm.nih.gov/pubmed/10964570
http://dx.doi.org/10.1093/bioinformatics/btr088
http://www.ncbi.nlm.nih.gov/pubmed/21335321
http://sysbio.oxfordjournals.org/content/59/3/307.abstract
http://sysbio.oxfordjournals.org/content/59/3/307.abstract
http://dx.doi.org/10.1093/sysbio/syq010
http://www.ncbi.nlm.nih.gov/pubmed/20525638


43. Co O, Ngugi K, Nzioki H, Githiri SM. Evaluation of smut inoculation techniques in sugarcane seed-
lings. Sugar Tech. 2008; 10(4):341–345. Available from: http://dx.doi.org/10.1007/s12355-008-0060-
7. doi: 10.1007/s12355-008-0060-7

44. Singh N, Somai BM, Pillay D. In vitro screening of sugarcane to evaluate smut susceptibility. Plant
Cell, Tissue and Organ Culture. 2005; 80(3):259–266. Available from: http://dx.doi.org/10.1007/
s11240-004-1017-5. doi: 10.1007/s11240-004-1017-5

45. Gasic K, Hernandez A, Korban S. RNA extraction from different apple tissues rich in polyphenols and
polysaccharides for cDNA library construction. Plant Molecular Biology Reporter. 2004; 22(4):437–
438. Available from: http://dx.doi.org/10.1007/BF02772687. doi: 10.1007/BF02772687

46. de Oliveira JFNC. Caracterização fisiológica e perfil de expressão gênica de cultivares de cana-de-
açúcar (Saccharum spp) contrastantes para o deficit hídrico. University of São Paulo; 2013. Avail-
able: http://www.teses.usp.br/teses/disponiveis/11/11137/tde-02042013-112102/en.php.

47. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nature Methods. 2012 Mar; 9
(4):357–359. Available from: http://dx.doi.org/10.1038/nmeth.1923. doi: 10.1038/nmeth.1923 PMID:
22388286

48. Bakkeren G, Kronstad JW. Linkage of mating-type loci distinguishes bipolar from tetrapolar mating in
basidiomycetous smut fungi. Proceedings of the National Academy of Sciences. 1994; 91(15):7085–
7089. doi: 10.1073/pnas.91.15.7085

49. Schirawski J, Mannhaupt G, Munch K, Brefort T, Schipper K, Doehlemann G, et al. Pathogenicity De-
terminants in Smut Fungi Revealed by Genome Comparison. Science. 2010 12; 330:1546–1548. doi:
10.1126/science.1195330 PMID: 21148393

50. Gold S, Duncan G, Barrett K, Kronstad J. cAMP regulates morphogenesis in the fungal pathogen
Ustilago maydis. Genes and Development. 1994; 8(23):2805–2816. Available from: http://genesdev.
cshlp.org/content/8/23/2805.abstract. doi: 10.1101/gad.8.23.2805 PMID: 7995519

51. Wollenberg T, Schirawski J. Comparative Genomics of Plant Fungal Pathogens: TheUstilago-Spori-

sorium Paradigm. PLoS Pathogen. 2014 07; 10(7):e1004218. Available from: http://dx.doi.org/10.
1371%2Fjournal.ppat.1004218. doi: 10.1371/journal.ppat.1004218

52. Barry JD. The relative significance of mechanisms of antigenic variation in African trypanosomes. Par-
asitology Today. 1997; 13(6):212–218. Available from: http://www.sciencedirect.com/science/article/
pii/S0169475897010399. doi: 10.1016/S0169-4758(97)01039-9 PMID: 15275073

53. Verstrepen KJ, Reynolds TB, Fink GR. Origins of variation in the fungal cell surface. Nature Reviews
Microbiology. 2004; 2:533–540. doi: 10.1038/nrmicro927 PMID: 15197389

54. Farman M. Telomeres in the rice blast fungusMagnaporthe oryzae: the world of the end as we know
it. FEMSMicrobiology Letters. 2007; 273(2):125–32. doi: 10.1111/j.1574-6968.2007.00812.x PMID:
17610516

55. Rehmeyer C, Li W, Kusaba M, Kim YS, Brown D, Staben C, et al. Organization of chromosome ends
in the rice blast fungus, Magnaporthe oryzae. Nucleic Acids Research. 2006; 34(17):4685–4701.
Available from: http://nar.oxfordjournals.org/content/34/17/4685.abstract. doi: 10.1093/nar/gkl588
PMID: 16963777

56. WuC, Kim YS, Smith KM, Li W, Hood HM, Staben C, et al. Characterization of Chromosome Ends in
the Filamentous Fungus Neurospora crassa. Genetics. 2009; 181(3):1129–1145. Available from:
http://www.genetics.org/content/181/3/1129.abstract. doi: 10.1534/genetics.107.084392 PMID:
19104079

57. Losada L, Pakala SB, Fedorova ND, Joardar V, Shabalina SA, Hostetler J, et al. Mobile elements and
mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3.
FEMSMicrobiology Letters. 2014; 352(2):165–173. doi: 10.1111/1574-6968.12387 PMID: 24461055

58. Hegedusova E, Brejova B, Tomaska L, Sipiczki M, Nosek J. Mitochondrial genome of the basidiomy-
cetous yeast Jaminaea angkorensis. Current Genetics. 2014; 60(1):49–59. Available from: http://dx.
doi.org/10.1007/s00294-013-0410-1. doi: 10.1007/s00294-013-0410-1 PMID: 24071901

59. Salavirta H, Oksanen I, Kuuskeri J, Mäkelä M, Laine P, Paulin L, et al. Mitochondrial Genome of Phle-
bia radiata Is the Second Largest (156 kbp) among Fungi and Features Signs of Genome Flexibility
and Recent Recombination Events. PLoS ONE. 2014 05; 9(5):e97141. Available from: http://dx.doi.
org/10.1371%2Fjournal.pone.0097141. doi: 10.1371/journal.pone.0097141 PMID: 24824642

60. Hausner G. Introns, Mobile Elements, and Plasmids. In: Bullerwell CE, editor. Organelle Genetics.
Springer Berlin Heidelberg; 2012. p. 329–357. Available from: http://dx.doi.org/10.1007/978-3-642-
22380-8_13.

61. Paquin B, Laforest MJ, Lang BF. Interspecific transfer of mitochondrial genes in fungi and creation of
a homologous hybrid gene. Proceedings of the National Academy of Sciences. 1994; 91(25):11807–
11810. Available from: http://www.pnas.org/content/91/25/11807.abstract. doi: 10.1073/pnas.91.25.
11807

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 27 / 31

http://dx.doi.org/10.1007/s12355-008-0060-7
http://dx.doi.org/10.1007/s12355-008-0060-7
http://dx.doi.org/10.1007/s12355-008-0060-7
http://dx.doi.org/10.1007/s11240-004-1017-5
http://dx.doi.org/10.1007/s11240-004-1017-5
http://dx.doi.org/10.1007/s11240-004-1017-5
http://dx.doi.org/10.1007/BF02772687
http://dx.doi.org/10.1007/BF02772687
http://www.teses.usp.br/teses/disponiveis/11/11137/tde-02042013-112102/en.php
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1038/nmeth.1923
http://www.ncbi.nlm.nih.gov/pubmed/22388286
http://dx.doi.org/10.1073/pnas.91.15.7085
http://dx.doi.org/10.1126/science.1195330
http://www.ncbi.nlm.nih.gov/pubmed/21148393
http://genesdev.cshlp.org/content/8/23/2805.abstract
http://genesdev.cshlp.org/content/8/23/2805.abstract
http://dx.doi.org/10.1101/gad.8.23.2805
http://www.ncbi.nlm.nih.gov/pubmed/7995519
http://dx.doi.org/10.1371%2Fjournal.ppat.1004218
http://dx.doi.org/10.1371%2Fjournal.ppat.1004218
http://dx.doi.org/10.1371/journal.ppat.1004218
http://www.sciencedirect.com/science/article/pii/S0169475897010399
http://www.sciencedirect.com/science/article/pii/S0169475897010399
http://dx.doi.org/10.1016/S0169-4758(97)01039-9
http://www.ncbi.nlm.nih.gov/pubmed/15275073
http://dx.doi.org/10.1038/nrmicro927
http://www.ncbi.nlm.nih.gov/pubmed/15197389
http://dx.doi.org/10.1111/j.1574-6968.2007.00812.x
http://www.ncbi.nlm.nih.gov/pubmed/17610516
http://nar.oxfordjournals.org/content/34/17/4685.abstract
http://dx.doi.org/10.1093/nar/gkl588
http://www.ncbi.nlm.nih.gov/pubmed/16963777
http://www.genetics.org/content/181/3/1129.abstract
http://dx.doi.org/10.1534/genetics.107.084392
http://www.ncbi.nlm.nih.gov/pubmed/19104079
http://dx.doi.org/10.1111/1574-6968.12387
http://www.ncbi.nlm.nih.gov/pubmed/24461055
http://dx.doi.org/10.1007/s00294-013-0410-1
http://dx.doi.org/10.1007/s00294-013-0410-1
http://dx.doi.org/10.1007/s00294-013-0410-1
http://www.ncbi.nlm.nih.gov/pubmed/24071901
http://dx.doi.org/10.1371%2Fjournal.pone.0097141
http://dx.doi.org/10.1371%2Fjournal.pone.0097141
http://dx.doi.org/10.1371/journal.pone.0097141
http://www.ncbi.nlm.nih.gov/pubmed/24824642
http://dx.doi.org/10.1007/978-3-642-22380-8_13
http://dx.doi.org/10.1007/978-3-642-22380-8_13
http://www.pnas.org/content/91/25/11807.abstract
http://dx.doi.org/10.1073/pnas.91.25.11807
http://dx.doi.org/10.1073/pnas.91.25.11807


62. Sethuraman J, Majer A, Iranpour M, Hausner G. Molecular Evolution of the mtDNA Encoded rps3

Gene Among Filamentous Ascomycetes Fungi with an Emphasis on the Ophiostomatoid Fungi. Jour-
nal of Molecular Evolution. 2009; 69(4):372–385. Available from: http://dx.doi.org/10.1007/s00239-
009-9291-9. doi: 10.1007/s00239-009-9291-9 PMID: 19826748

63. Goddard MR, Burt A. Recurrent invasion and extinction of a selfish gene. Proceedings of the National
Academy of Sciences. 1999; 96(24):13880–13885. Available from: http://www.pnas.org/content/96/
24/13880.abstract. doi: 10.1073/pnas.96.24.13880

64. Bakkeren G, Kämper J, Schirawski J. Sex in smut fungi: Structure, function and evolution of mating-
type complexes. Fungal Genetics and Biology. 2008; 45(0):S15–S21. Available from: http://www.
sciencedirect.com/science/article/pii/S1087184508000650. doi: 10.1016/j.fgb.2008.04.005 PMID:
18501648

65. Stoll M, Piepenbring M, Begerow D, Oberwinkler F. Molecular phylogeny of Ustilago and Sporisorium

species (Basidiomycota, Ustilaginales) based on internal transcribed spacer (ITS) sequences. Cana-
dian Journal of Botany. 2003; 81(9):976–984. Available from: http://dx.doi.org/10.1139/b03-094). doi:
10.1139/b03-094

66. Stoll M, Begerow D, Oberwinkler F. Molecular phylogeny of Ustilago, Sporisorium, and related taxa
based on combined analyses of rDNA sequences. Mycological Research. 2005; 109(3):342–56. doi:
10.1017/S0953756204002229 PMID: 15912952

67. Kellner R, Vollmeister E, Feldbrügge M, Begerow D. Interspecific Sex in Grass Smuts and the Genetic
Diversity of Their Pheromone-Receptor System. PLoS Genetics. 2011 12; 7(12):e1002436. Available
from: http://dx.doi.org/10.1371%2Fjournal.pgen.1002436. doi: 10.1371/journal.pgen.1002436 PMID:
22242007

68. Schirawski J, Heinze B, Wagenknecht M, Kahmann R. Mating Type Loci of Sporisorium reilianum:
Novel Pattern with Three a and Multiple b Specificities. Eukaryotic Cell. 2005; 4(8):1317–1327. Avail-
able from: http://ec.asm.org/content/4/8/1317.abstract. doi: 10.1128/EC.4.8.1317-1327.2005 PMID:
16087737

69. Caldwell GA, Naider F, Becker JM. Fungal lipopeptide mating pheromones: a model system for the
study of protein prenylation. Microbiological Reviews. 1995; 59(3):406–22. Available from: http://
mmbr.asm.org/content/59/3/406.abstract. PMID: 7565412

70. Urban M, Kahmann R, Bölker M. The biallelica mating type locus of Ustilago maydis: remnants of an
additional pheromone gene indicate evolution from a multiallelic ancestor. Molecular and General Ge-
netics MGG. 1996; 250(4):414–420. Available from: http://dx.doi.org/10.1007/BF02174029. doi: 10.
1007/BF02174029 PMID: 8602158

71. Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Guldener U, et al. Genome Comparison of Barley
and Maize Smut Fungi Reveals Targeted Loss of RNA Silencing Components and Species-Specific
Presence of Transposable Elements. The Plant Cell. 2012 05; 24:1733–1745. doi: 10.1105/tpc.112.
097261 PMID: 22623492

72. Hartmann HA, Kahmann R, Bölker M. The pheromone response factor coordinates filamentous
growth and pathogenicity in Ustilago maydis. EMBO Journal. 1996; 15(7):1632–1641. PMID:
8612587

73. Saunders CW, Scheynius A, Heitman J.Malassezia Fungi Are Specialized to Live on Skin and Associ-
ated with Dandruff, Eczema, and Other Skin Diseases. PLoS Pathogens. 2012 06; 8(6):e1002701.
Available from: http://dx.doi.org/10.1371%2Fjournal.ppat.1002701. doi: 10.1371/journal.ppat.
1002701 PMID: 22737067

74. Nampally M, Moerschbacher BM, Kolkenbrock S. Fusion of a Novel Genetically Engineered Chitosan
Affinity Protein and Green Fluorescent Protein for Specific Detection of Chitosan In Vitro and In Situ.
Applied and Environmental Microbiology. 2012; 78(9):3114–3119. Available from: http://aem.asm.
org/content/78/9/3114.abstract. doi: 10.1128/AEM.07506-11 PMID: 22367086

75. Leroch M, Kleber A, Silva E, Coenen T, Koppenhöfer D, Shmaryahu A, et al. Transcriptome Profiling
of Botrytis cinereaConidial Germination Reveals Upregulation of Infection-Related Genes during the
Prepenetration Stage. Eukaryotic Cell. 2013; 12(4):614–626. Available from: http://ec.asm.org/
content/12/4/614.abstract. doi: 10.1128/EC.00295-12 PMID: 23417562

76. Meinhardt L, Costa GG, Thomazella D, Teixeira PJ, Carazzolle M, Schuster S, et al. Genome and
secretome analysis of the hemibiotrophic fungal pathogen,Moniliophthora roreri, which causes frosty
pod rot disease of cacao: mechanisms of the biotrophic and necrotrophic phases. BMCGenomics.
2014; 15(1):164. Available from: http://www.biomedcentral.com/1471-2164/15/164. doi: 10.1186/
1471-2164-15-164 PMID: 24571091

77. Que Y, Su Y, Guo J, Wu Q, Xu L. A Global View of Transcriptome Dynamics during Sporisorium scita-

mineum Challenge in Sugarcane by RNA-seq. PLoS ONE. 2014 08; 9(8):e106476. Available from:
http://dx.doi.org/10.1371%2Fjournal.pone.0106476. doi: 10.1371/journal.pone.0106476 PMID:
25171065

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 28 / 31

http://dx.doi.org/10.1007/s00239-009-9291-9
http://dx.doi.org/10.1007/s00239-009-9291-9
http://dx.doi.org/10.1007/s00239-009-9291-9
http://www.ncbi.nlm.nih.gov/pubmed/19826748
http://www.pnas.org/content/96/24/13880.abstract
http://www.pnas.org/content/96/24/13880.abstract
http://dx.doi.org/10.1073/pnas.96.24.13880
http://www.sciencedirect.com/science/article/pii/S1087184508000650
http://www.sciencedirect.com/science/article/pii/S1087184508000650
http://dx.doi.org/10.1016/j.fgb.2008.04.005
http://www.ncbi.nlm.nih.gov/pubmed/18501648
http://dx.doi.org/10.1139/b03-094
http://dx.doi.org/10.1139/b03-094
http://dx.doi.org/10.1017/S0953756204002229
http://www.ncbi.nlm.nih.gov/pubmed/15912952
http://dx.doi.org/10.1371%2Fjournal.pgen.1002436
http://dx.doi.org/10.1371/journal.pgen.1002436
http://www.ncbi.nlm.nih.gov/pubmed/22242007
http://ec.asm.org/content/4/8/1317.abstract
http://dx.doi.org/10.1128/EC.4.8.1317-1327.2005
http://www.ncbi.nlm.nih.gov/pubmed/16087737
http://mmbr.asm.org/content/59/3/406.abstract
http://mmbr.asm.org/content/59/3/406.abstract
http://www.ncbi.nlm.nih.gov/pubmed/7565412
http://dx.doi.org/10.1007/BF02174029
http://dx.doi.org/10.1007/BF02174029
http://dx.doi.org/10.1007/BF02174029
http://www.ncbi.nlm.nih.gov/pubmed/8602158
http://dx.doi.org/10.1105/tpc.112.097261
http://dx.doi.org/10.1105/tpc.112.097261
http://www.ncbi.nlm.nih.gov/pubmed/22623492
http://www.ncbi.nlm.nih.gov/pubmed/8612587
http://dx.doi.org/10.1371%2Fjournal.ppat.1002701
http://dx.doi.org/10.1371/journal.ppat.1002701
http://dx.doi.org/10.1371/journal.ppat.1002701
http://www.ncbi.nlm.nih.gov/pubmed/22737067
http://aem.asm.org/content/78/9/3114.abstract
http://aem.asm.org/content/78/9/3114.abstract
http://dx.doi.org/10.1128/AEM.07506-11
http://www.ncbi.nlm.nih.gov/pubmed/22367086
http://ec.asm.org/content/12/4/614.abstract
http://ec.asm.org/content/12/4/614.abstract
http://dx.doi.org/10.1128/EC.00295-12
http://www.ncbi.nlm.nih.gov/pubmed/23417562
http://www.biomedcentral.com/1471-2164/15/164
http://dx.doi.org/10.1186/1471-2164-15-164
http://dx.doi.org/10.1186/1471-2164-15-164
http://www.ncbi.nlm.nih.gov/pubmed/24571091
http://dx.doi.org/10.1371%2Fjournal.pone.0106476
http://dx.doi.org/10.1371/journal.pone.0106476
http://www.ncbi.nlm.nih.gov/pubmed/25171065


78. Raffaele S, Win J, Cano L, Kamoun S. Analyses of genome architecture and gene expression reveal
novel candidate virulence factors in the secretome of Phytophthora infestans. BMCGenomics. 2010;
11(1):637. Available from: http://www.biomedcentral.com/1471-2164/11/637. doi: 10.1186/1471-
2164-11-637 PMID: 21080964

79. Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP. The secretome of the maize
pathogenUstilago maydis. Fungal Genetics and Biology. 2008; 45, Supplement 1(0):S63–S70. The-
matic Issue: Ustilago maydis. Available from: http://www.sciencedirect.com/science/article/pii/
S1087184508000480. doi: 10.1016/j.fgb.2008.03.012 PMID: 18456523

80. Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E. Simultaneous RNA-Seq Analysis
of a Mixed Transcriptome of Rice and Blast Fungus Interaction. PLoS ONE. 2012 11; 7(11):e49423.
Available from: http://dx.doi.org/10.1371%2Fjournal.pone.0049423. doi: 10.1371/journal.pone.
0049423 PMID: 23139845

81. jGarnica DP, Upadhyaya NM, Dodds PN, Rathjen JP. Strategies for Wheat Stripe Rust Pathogenicity
Identified by Transcriptome Sequencing. PLoS ONE. 2013 06; 8(6):e67150. Available from: http://dx.
doi.org/10.1371%2Fjournal.pone.0067150 doi: 10.1371/journal.pone.0067150

82. O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, et al. Lifestyle transitions
in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature
Genetics. 2012; 44(1):1060–1065. doi: 10.1038/ng.2372 PMID: 22885923

83. Zhao Z, Liu H, Wang C, Xu JR. Comparative analysis of fungal genomes reveals different plant cell
wall degrading capacity in fungi. BMCGenomics. 2013; 14(1):274. Available from: http://www.
biomedcentral.com/1471-2164/14/274. doi: 10.1186/1471-2164-14-274 PMID: 23617724

84. Brown NA, Antoniw J, Hammond-Kosack KE. The Predicted Secretome of the Plant Pathogenic Fun-
gus Fusarium graminearum: A Refined Comparative Analysis. PLoS ONE. 2012 04; 7(4):e33731.
Available from: http://dx.doi.org/10.1371%2Fjournal.pone.0033731. doi: 10.1371/journal.pone.
0033731 PMID: 22493673

85. Tian M, Huitema E, da Cunha L, Torto-Alalibo T, Kamoun S. A Kazal-like Extracellular Serine Prote-
ase Inhibitor from Phytophthora infestans Targets the Tomato Pathogenesis-related Protease P69B.
Journal of Biological Chemistry. 2004; 279(25):26370–26377. Available from: http://www.jbc.org/
content/279/25/26370.abstract. doi: 10.1074/jbc.M400941200 PMID: 15096512

86. Fernandes I, Alves A, Correia A, Devreese B, Esteves AC. Secretome analysis identifies potential vir-
ulence factors of Diplodia corticola, a fungal pathogen involved in cork oak (Quercus suber) decline.
Fungal Biology. 2014; 118(5–6):516–523. Available from: http://www.sciencedirect.com/science/
article/pii/S1878614614000634. doi: 10.1016/j.funbio.2014.04.006 PMID: 24863480

87. Espino JJ, Gutiérrez-Sánchez G, Brito N, Shah P, Orlando R, González C. The Botrytis cinerea early
secretome. Proteomics. 2010; 10(16):3020–3034. Available from: http://dx.doi.org/10.1002/pmic.
201000037. doi: 10.1002/pmic.201000037 PMID: 20564262

88. Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. A Phytophthora infestans

Cystatin-Like Protein Targets a Novel Tomato Papain-Like Apoplastic Protease. Plant Physiology.
2007; 143(1):364–377. doi: 10.1104/pp.106.090050 PMID: 17085509

89. Cafarchia C, Otranto D. Association between Phospholipase Production byMalassezia pachyderma-

tis and Skin Lesions. Journal of Clinical Microbiology. 2004; 42(10):4868–4869. doi: 10.1128/JCM.42.
10.4868-4869.2004 PMID: 15472366

90. Voigt CA, Schäfer W, Salomon S. A secreted lipase of Fusarium graminearum is a virulence factor re-
quired for infection of cereals. The Plant Journal. 2005; 42(3):364–375. Available from: http://dx.doi.
org/10.1111/j.1365-313X.2005.02377.x. doi: 10.1111/j.1365-313X.2005.02377.x PMID: 15842622

91. Klose J, De Sá MM, Kronstad JW. Lipid-induced filamentous growth inUstilago maydis. Molecular Mi-
crobiology. 2004; 52(3):823–835. Available from: http://dx.doi.org/10.1111/j.1365-2958.2004.04019.
x. doi: 10.1111/j.1365-2958.2004.04019.x PMID: 15101987

92. Ökmen B, Doehlemann G. Inside plant: biotrophic strategies to modulate host immunity and metabo-
lism. Current Opinion in Plant Biology. 2014; 20(0):19–25. SI: Biotic interactions. Available from:
http://www.sciencedirect.com/science/article/pii/S1369526614000466. PMID: 24780462

93. Coleman JJ, Wasmann CC, Usami T, White GJ, Temporini ED, McCluskey K, et al. Characterization
of the Gene Encoding Pisatin Demethylase (FoPDA1) in Fusarium oxysporum. APS Journals. 2011;
24(12):1482–1491.

94. Harwood CS, Parales RE. The ß-ketoadipate pathway and the biology of self-identity. Annual Review
of Microbiology. 1996; 50(1):553–590. Available from: http://dx.doi.org/10.1146/annurev.micro.50.1.
553. doi: 10.1146/annurev.micro.50.1.553 PMID: 8905091

95. Podobnik B, Stojan J, Lah L, Krasevec N, Seliskar M, Rizner TL, et al. CYP53A15 of Cochliobolus
lunatus, a Target for Natural Antifungal Compounds. Journal of Medicinal Chemistry. 2008; 51

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 29 / 31

http://www.biomedcentral.com/1471-2164/11/637
http://dx.doi.org/10.1186/1471-2164-11-637
http://dx.doi.org/10.1186/1471-2164-11-637
http://www.ncbi.nlm.nih.gov/pubmed/21080964
http://www.sciencedirect.com/science/article/pii/S1087184508000480
http://www.sciencedirect.com/science/article/pii/S1087184508000480
http://dx.doi.org/10.1016/j.fgb.2008.03.012
http://www.ncbi.nlm.nih.gov/pubmed/18456523
http://dx.doi.org/10.1371%2Fjournal.pone.0049423
http://dx.doi.org/10.1371/journal.pone.0049423
http://dx.doi.org/10.1371/journal.pone.0049423
http://www.ncbi.nlm.nih.gov/pubmed/23139845
http://dx.doi.org/10.1371%2Fjournal.pone.0067150
http://dx.doi.org/10.1371%2Fjournal.pone.0067150
http://dx.doi.org/10.1371/journal.pone.0067150
http://dx.doi.org/10.1038/ng.2372
http://www.ncbi.nlm.nih.gov/pubmed/22885923
http://www.biomedcentral.com/1471-2164/14/274
http://www.biomedcentral.com/1471-2164/14/274
http://dx.doi.org/10.1186/1471-2164-14-274
http://www.ncbi.nlm.nih.gov/pubmed/23617724
http://dx.doi.org/10.1371%2Fjournal.pone.0033731
http://dx.doi.org/10.1371/journal.pone.0033731
http://dx.doi.org/10.1371/journal.pone.0033731
http://www.ncbi.nlm.nih.gov/pubmed/22493673
http://www.jbc.org/content/279/25/26370.abstract
http://www.jbc.org/content/279/25/26370.abstract
http://dx.doi.org/10.1074/jbc.M400941200
http://www.ncbi.nlm.nih.gov/pubmed/15096512
http://www.sciencedirect.com/science/article/pii/S1878614614000634
http://www.sciencedirect.com/science/article/pii/S1878614614000634
http://dx.doi.org/10.1016/j.funbio.2014.04.006
http://www.ncbi.nlm.nih.gov/pubmed/24863480
http://dx.doi.org/10.1002/pmic.201000037
http://dx.doi.org/10.1002/pmic.201000037
http://dx.doi.org/10.1002/pmic.201000037
http://www.ncbi.nlm.nih.gov/pubmed/20564262
http://dx.doi.org/10.1104/pp.106.090050
http://www.ncbi.nlm.nih.gov/pubmed/17085509
http://dx.doi.org/10.1128/JCM.42.10.4868-4869.2004
http://dx.doi.org/10.1128/JCM.42.10.4868-4869.2004
http://www.ncbi.nlm.nih.gov/pubmed/15472366
http://dx.doi.org/10.1111/j.1365-313X.2005.02377.x
http://dx.doi.org/10.1111/j.1365-313X.2005.02377.x
http://dx.doi.org/10.1111/j.1365-313X.2005.02377.x
http://www.ncbi.nlm.nih.gov/pubmed/15842622
http://dx.doi.org/10.1111/j.1365-2958.2004.04019.x
http://dx.doi.org/10.1111/j.1365-2958.2004.04019.x
http://dx.doi.org/10.1111/j.1365-2958.2004.04019.x
http://www.ncbi.nlm.nih.gov/pubmed/15101987
http://www.sciencedirect.com/science/article/pii/S1369526614000466
http://www.ncbi.nlm.nih.gov/pubmed/24780462
http://dx.doi.org/10.1146/annurev.micro.50.1.553
http://dx.doi.org/10.1146/annurev.micro.50.1.553
http://dx.doi.org/10.1146/annurev.micro.50.1.553
http://www.ncbi.nlm.nih.gov/pubmed/8905091


(12):3480–3486. Available from: http://dx.doi.org/10.1021/jm800030e. doi: 10.1021/jm800030e
PMID: 18505250

96. Roetzer A, Gabaldón T, Schüller C. From Saccharomyces cerevisiae to Candida glabrata in a few
easy steps: important adaptations for an opportunistic pathogen. FEMSMicrobiology Letters. 2011;
314(1):1–9. doi: 10.1111/j.1574-6968.2010.02102.x PMID: 20846362

97. Mayer AM, Staples RC. Laccase: new functions for an old enzyme. Phytochemistry. 2002; 60(6):551–
565. Available from: http://www.sciencedirect.com/science/article/pii/S0031942202001711. doi: 10.
1016/S0031-9422(02)00171-1 PMID: 12126701

98. LaOM, Arencibia A, Carmona E, Acevedo R, Rodríguez E, León O, et al. Differential expression anal-
ysis by cDNA-AFLP of Saccharum spp. after inoculation with the host pathogen Sporisorium scitami-

neum. Plant Cell Reports. 2008; 27(6):1103–1111. Available from: http://dx.doi.org/10.1007/s00299-
008-0524-y. doi: 10.1007/s00299-008-0524-y PMID: 18379790

99. Weßling R, Schmidt SM, Micali CO, Knaust F, Reinhardt R, Neumann U, et al. Transcriptome analysis
of enrichedGolovinomyces orontii haustoria by deep 454 pyrosequencing. Fungal Genetics and Biol-
ogy. 2012; 49(6):470–482. Available from: http://www.sciencedirect.com/science/article/pii/
S1087184512000655. doi: 10.1016/j.fgb.2012.04.001 PMID: 22521876

100. Wahl R, Wippel K, Goos S, Kämper J, Sauer N. A Novel High-Affinity Sucrose Transporter Is Required
for Virulence of the Plant PathogenUstilago maydis. PLoS Biology. 2010 02; 8(2):e1000303. Avail-
able from: http://dx.doi.org/10.1371%2Fjournal.pbio.1000303. doi: 10.1371/journal.pbio.1000303
PMID: 20161717

101. Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D. Sugar transporters in plants and in their in-
teractions with fungi. Trends in Plant Science. 2012; 17(7):413–422. doi: 10.1016/j.tplants.2012.03.
009 PMID: 22513109

102. Soanes DM, Chakrabarti A, Paszkiewicz KH, Dawe AL, Talbot NJ. Genome-wide Transcriptional Pro-
filing of Appressorium Development by the Rice Blast FungusMagnaporthe oryzae. PLoS Pathogens.
2012 02; 8(2):e1002514. Available from: http://dx.doi.org/10.1371%2Fjournal.ppat.1002514. doi: 10.
1371/journal.ppat.1002514 PMID: 22346750

103. Thokoane L, Rutherford R. cDNA-AFLP differential display of sugarcane (Saccharum spp., hybrids)
genes induced by challenge with the fungal pathogenUstilago scitaminea (sugarcane smut). In: Pro-
ceedings of the South African Sugar Technologists’ Association. vol. 75; 2001. p. 104–107.

104. Thurston CF. The structure and function of fungal laccases. Microbiology. 1994; 140(1):19–26. Avail-
able from: http://mic.sgmjournals.org/content/140/1/19.short. doi: 10.1099/13500872-140-1-19

105. Ruiz-Dueñas FJ, Martínez AT. Microbial degradation of lignin: how a bulky recalcitrant polymer is effi-
ciently recycled in nature and how we can take advantage of this. Microbial Biotechnology. 2009; 2
(2):164–177. Available from: http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x. doi: 10.1111/j.
1751-7915.2008.00078.x PMID: 21261911

106. You-Xiong Q, Jian-Wei L, Xian-Xian S, Li-Ping X, Ru-Kai C. Differential Gene Expression in Sugar-
cane in Response to Challenge by Fungal PathogenUstilago scitamineaRevealed by cDNA-AFLP.
Journal of Biomedicine and Biotechnology. 2011; 2011:10. doi: 10.1155/2011/160934

107. Santiago R, Quintana J, Rodríguez S, Díaz EM, Legaz ME, Vicente C. An elicitor isolated from smut
teliospores Sporisorium scitamineum enhances lignin deposition on the cell wall of both sclerenchy-
ma and xylem in sugarcane leaves. Pakistan Journal of Botany. 2010; 42(4):2867–2881.

108. Baldrian P. Fungal laccases—occurrence and properties. FEMSMicrobiology Reviews. 2006; 30
(2):215–242. Available from: http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x. doi: 10.1111/j.
1574-4976.2005.00010.x PMID: 16472305

109. Singh Arora D, Kumar Sharma R. Ligninolytic Fungal Laccases and Their Biotechnological Applica-
tions. Applied Biochemistry and Biotechnology. 2010; 160(6):1760–1788. Available from: http://dx.
doi.org/10.1007/s12010-009-8676-y. doi: 10.1007/s12010-009-8676-y PMID: 19513857

110. Madhavi V, Lele SS. Laccase: properties and applications. BioResources. 2009; 4(4):1694–1717.
Available from: http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_4_ 1694_Madhavi_
Lele_Laccase_Props_Applications_Rev.

111. LeathamGF, Stahmann MA. Studies on the Laccase of Lentinus edodes: Specificity, Localization
and Association with the Development of Fruiting Bodies. Journal of General Microbiology. 1981; 125
(1):147–157. Available from: http://mic.sgmjournals.org/content/125/1/147.abstract.

112. Clutterbuck AJ. Absence of Laccase from Yellow-spored Mutants of Aspergillus nidulans. Journal of
General Microbiology. 1972; 70(3):423–435. Available from: http://mic.sgmjournals.org/content/70/3/
423.abstract. doi: 10.1099/00221287-70-3-423 PMID: 4624671

113. Koeck M, Hardham AR, Dodds PN. The role of effectors of biotrophic and hemibiotrophic fungi in in-
fection. Cellular Microbiology. 2011; 13(12):1849–1857. Available from: http://dx.doi.org/10.1111/j.
1462-5822.2011.01665.x. doi: 10.1111/j.1462-5822.2011.01665.x PMID: 21848815

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 30 / 31

http://dx.doi.org/10.1021/jm800030e
http://dx.doi.org/10.1021/jm800030e
http://www.ncbi.nlm.nih.gov/pubmed/18505250
http://dx.doi.org/10.1111/j.1574-6968.2010.02102.x
http://www.ncbi.nlm.nih.gov/pubmed/20846362
http://www.sciencedirect.com/science/article/pii/S0031942202001711
http://dx.doi.org/10.1016/S0031-9422(02)00171-1
http://dx.doi.org/10.1016/S0031-9422(02)00171-1
http://www.ncbi.nlm.nih.gov/pubmed/12126701
http://dx.doi.org/10.1007/s00299-008-0524-y
http://dx.doi.org/10.1007/s00299-008-0524-y
http://dx.doi.org/10.1007/s00299-008-0524-y
http://www.ncbi.nlm.nih.gov/pubmed/18379790
http://www.sciencedirect.com/science/article/pii/S1087184512000655
http://www.sciencedirect.com/science/article/pii/S1087184512000655
http://dx.doi.org/10.1016/j.fgb.2012.04.001
http://www.ncbi.nlm.nih.gov/pubmed/22521876
http://dx.doi.org/10.1371%2Fjournal.pbio.1000303
http://dx.doi.org/10.1371/journal.pbio.1000303
http://www.ncbi.nlm.nih.gov/pubmed/20161717
http://dx.doi.org/10.1016/j.tplants.2012.03.009
http://dx.doi.org/10.1016/j.tplants.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22513109
http://dx.doi.org/10.1371%2Fjournal.ppat.1002514
http://dx.doi.org/10.1371/journal.ppat.1002514
http://dx.doi.org/10.1371/journal.ppat.1002514
http://www.ncbi.nlm.nih.gov/pubmed/22346750
http://mic.sgmjournals.org/content/140/1/19.short
http://dx.doi.org/10.1099/13500872-140-1-19
http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x
http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x
http://dx.doi.org/10.1111/j.1751-7915.2008.00078.x
http://www.ncbi.nlm.nih.gov/pubmed/21261911
http://dx.doi.org/10.1155/2011/160934
http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x
http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x
http://dx.doi.org/10.1111/j.1574-4976.2005.00010.x
http://www.ncbi.nlm.nih.gov/pubmed/16472305
http://dx.doi.org/10.1007/s12010-009-8676-y
http://dx.doi.org/10.1007/s12010-009-8676-y
http://dx.doi.org/10.1007/s12010-009-8676-y
http://www.ncbi.nlm.nih.gov/pubmed/19513857
http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_4_ 1694_Madhavi_Lele_Laccase_Props_Applications_Rev
http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_04_4_ 1694_Madhavi_Lele_Laccase_Props_Applications_Rev
http://mic.sgmjournals.org/content/125/1/147.abstract
http://mic.sgmjournals.org/content/70/3/423.abstract
http://mic.sgmjournals.org/content/70/3/423.abstract
http://dx.doi.org/10.1099/00221287-70-3-423
http://www.ncbi.nlm.nih.gov/pubmed/4624671
http://dx.doi.org/10.1111/j.1462-5822.2011.01665.x
http://dx.doi.org/10.1111/j.1462-5822.2011.01665.x
http://dx.doi.org/10.1111/j.1462-5822.2011.01665.x
http://www.ncbi.nlm.nih.gov/pubmed/21848815


114. Stergiopoulos I, de Wit PJGM. Fungal Effector Proteins. Annual Review of Phytopathology. 2009; 47
(1):233–263. doi: 10.1146/annurev.phyto.112408.132637 PMID: 19400631

115. Soyer JL, El Ghalid M, Glaser N, Ollivier B, Linglin J, Grandaubert J, et al. Epigenetic Control of Effec-
tor Gene Expression in the Plant Pathogenic Fungus Leptosphaeria maculans. PLoS Genetics. 2014
03; 10(3):e1004227. Available from: http://dx.doi.org/10.1371%2Fjournal.pgen.1004227. doi: 10.
1371/journal.pgen.1004227 PMID: 24603691

116. Rabe F, Ajami-Rashidi Z, Doehlemann G, Kahmann R, Djamei A. Degradation of the plant defence
hormone salicylic acid by the biotrophic fungusUstilago maydis. Molecular Microbiology. 2013; 89
(1):179–188. Available from: http://dx.doi.org/10.1111/mmi.12269. doi: 10.1111/mmi.12269 PMID:
23692401

117. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V, Kahnt J, et al. Metabolic priming by a secreted fun-
gal effector. Nature. 2011; 478(7369):395–398. doi: 10.1038/nature10454 PMID: 21976020

118. Doehlemann G, van der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, et al. Pep1, a Se-
creted Effector Protein ofUstilago maydis, Is Required for Successful Invasion of Plant Cells. PLoS
Pathogens. 2009 02; 5(2):e1000290. Available from: http://dx.doi.org/10.1371%2Fjournal.ppat.
1000290. doi: 10.1371/journal.ppat.1000290 PMID: 19197359

119. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. TheUstilago maydis Effec-
tor Pep1 Suppresses Plant Immunity by Inhibition of Host Peroxidase Activity. PLoS Pathogens. 2012
05; 8(5):e1002684. Available from: http://dx.doi.org/10.1371%2Fjournal.ppat.1002684. doi: 10.1371/
journal.ppat.1002684 PMID: 22589719

120. Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G, Kumlehn J, et al. The fungal core ef-
fector Pep1 is conserved across smuts of dicots and monocots. The New Phytologist. 2015; 206
(3):1116–1126. doi: 10.1111/nph.13304 PMID: 25628012

121. Kang S, Sweigard J, Valent B. The PWL host specificity gene family in the blast fungusMagnaporthe

grisea. Molecular Plant-Microbe Interaction. 1995; 8(6):939–48. doi: 10.1094/MPMI-8-0939

122. Sweigard JA, Carroll AM, Kang S, Farrall L, Chumley FG, Valent B. Identification, cloning, and charac-
terization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell. 1995; 7
(8):1221–1233. doi: 10.1105/tpc.7.8.1221 PMID: 7549480

123. Donaldson ME, Meng S, Gagarinova A, Babu M, Lambie SC, Swiadek AA, et al. Investigating the
Ustilago maydis/Zea mays pathosystem: Transcriptional responses and novel functional aspects of a
fungal calcineurin regulatory B subunit. Fungal Genetics and Biology. 2013; 58–59(0):91–04. Avail-
able from: http://www.sciencedirect.com/science/article/pii/S1087184513001461. doi: 10.1016/j.fgb.
2013.08.006 PMID: 23973481

124. Levdansky E, Sharon H, Osherov N. Coding fungal tandem repeats as generators of fungal diversity.
Fungal Biology Reviews. 2008; 22(3–4):85–96. Available from: http://www.sciencedirect.com/
science/article/pii/S1749461308000328. doi: 10.1016/j.fbr.2008.08.001

125. Padovan ACB, Chaves GM, Colombo AL, Briones MRS. A novel allele of HWP1, isolated from a clini-
cal strain of Candida albicanswith defective hyphal growth and biofilm formation, has deletions of Gln/
Pro and Ser/Thr repeats involved in cellular adhesion. Medical Mycology. 2009; 47(8):824–835. Avail-
able from: http://informahealthcare.com/doi/abs/10.3109/13693780802669574. doi: 10.3109/
13693780802669574 PMID: 19184714

126. Feldbrügge M, Kellner R, Schipper K. The biotechnological use and potential of plant pathogenic
smut fungi. Applied Microbiology and Biotechnology. 2013; 97(8):3253–3265. Available from: http://
dx.doi.org/10.1007/s00253-013-4777-1. doi: 10.1007/s00253-013-4777-1 PMID: 23455565

127. Schmidt SM, Panstruga R. Pathogenomics of fungal plant parasites: what have we learnt about patho-
genesis? Current Opinion in Plant Biology. 2011; 14(4):392–399. Biotic interactions. Available from:
http://www.sciencedirect.com/science/article/pii/S1369526611000185. doi: 10.1016/j.pbi.2011.03.
006 PMID: 21458359

Functional Genomics of S. scitamineum, the Sugarcane Smut Pathogen

PLOS ONE | DOI:10.1371/journal.pone.0129318 June 12, 2015 31 / 31

http://dx.doi.org/10.1146/annurev.phyto.112408.132637
http://www.ncbi.nlm.nih.gov/pubmed/19400631
http://dx.doi.org/10.1371%2Fjournal.pgen.1004227
http://dx.doi.org/10.1371/journal.pgen.1004227
http://dx.doi.org/10.1371/journal.pgen.1004227
http://www.ncbi.nlm.nih.gov/pubmed/24603691
http://dx.doi.org/10.1111/mmi.12269
http://dx.doi.org/10.1111/mmi.12269
http://www.ncbi.nlm.nih.gov/pubmed/23692401
http://dx.doi.org/10.1038/nature10454
http://www.ncbi.nlm.nih.gov/pubmed/21976020
http://dx.doi.org/10.1371%2Fjournal.ppat.1000290
http://dx.doi.org/10.1371%2Fjournal.ppat.1000290
http://dx.doi.org/10.1371/journal.ppat.1000290
http://www.ncbi.nlm.nih.gov/pubmed/19197359
http://dx.doi.org/10.1371%2Fjournal.ppat.1002684
http://dx.doi.org/10.1371/journal.ppat.1002684
http://dx.doi.org/10.1371/journal.ppat.1002684
http://www.ncbi.nlm.nih.gov/pubmed/22589719
http://dx.doi.org/10.1111/nph.13304
http://www.ncbi.nlm.nih.gov/pubmed/25628012
http://dx.doi.org/10.1094/MPMI-8-0939
http://dx.doi.org/10.1105/tpc.7.8.1221
http://www.ncbi.nlm.nih.gov/pubmed/7549480
http://www.sciencedirect.com/science/article/pii/S1087184513001461
http://dx.doi.org/10.1016/j.fgb.2013.08.006
http://dx.doi.org/10.1016/j.fgb.2013.08.006
http://www.ncbi.nlm.nih.gov/pubmed/23973481
http://www.sciencedirect.com/science/article/pii/S1749461308000328
http://www.sciencedirect.com/science/article/pii/S1749461308000328
http://dx.doi.org/10.1016/j.fbr.2008.08.001
http://informahealthcare.com/doi/abs/10.3109/13693780802669574
http://dx.doi.org/10.3109/13693780802669574
http://dx.doi.org/10.3109/13693780802669574
http://www.ncbi.nlm.nih.gov/pubmed/19184714
http://dx.doi.org/10.1007/s00253-013-4777-1
http://dx.doi.org/10.1007/s00253-013-4777-1
http://dx.doi.org/10.1007/s00253-013-4777-1
http://www.ncbi.nlm.nih.gov/pubmed/23455565
http://www.sciencedirect.com/science/article/pii/S1369526611000185
http://dx.doi.org/10.1016/j.pbi.2011.03.006
http://dx.doi.org/10.1016/j.pbi.2011.03.006
http://www.ncbi.nlm.nih.gov/pubmed/21458359

