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Desulfotomaculum ruminis Campbell and Postgate 1965 is a member of the large genus 
Desulfotomaculum which contains 30 species and is contained in the family 
Peptococcaceae. This species is of interest because it represents one of the few sulfate-
reducing bacteria that have been isolated from the rumen. Here we describe the features of 
D. ruminis together with the complete genome sequence and annotation. The 3,969,014 bp 
long chromosome with a total of 3,901 protein-coding and 85 RNA genes is the second 
completed genome sequence of a type strain of the genus Desulfotomaculum to be pub-
lished, and was sequenced as part of the DOE Joint Genome Institute Community Sequencing 
Program 2009. 

Introduction 
Strain DLT (= DSM 2154 = ATCC 23193 = NCIMB 

8452) is the type strain of the species 

Desulfotomaculum ruminis [1], one out of current-

ly 30 species with validly published names in the 

paraphyletic genus Desulfotomaculum [2,3]. Strain 

DLT was initially isolated by G. S. Coleman in the 

1950s from the rumen of hay-fed sheep [4]. 

Dissimilatory reduction of sulfate to sulfide in the 

rumen was first demonstrated by Lewis [5], who 

dosed fistulated sheep with sulfate and deter-

mined the amount of sulfide produced. As high 

amounts of sulfide may be toxic to animals, bacte-

rial sulfate-reduction in ruminants was a concern 

due to the presence of sulfate in grass and hay. D. 

ruminis represented the first pure culture of a sul-

fate-reducing bacterium isolated from the rumen. 

The genus name was derived from the Latin 

words 'de', from, ‘sulfur’, sulfur, and 'tomaculum', 
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a kind of sausage, meaning 'a sausage-shaped sul-

fate reducer' [2,6]. The species epithet is derived 

from the Latin word 'rumen', throat, first stomach 

(rumen) of a ruminant, meaning of a rumen [1,2]. 

Here, we present a summary classification and a 

set of features for D. ruminis strain DLT, together 

with the description of the complete genomic se-

quencing and annotation. The complete genome 

sequence of strain DLT will provide valuable in-

formation for defining a more adequate descrip-

tion of the currently paraphyletic genus 

Desulfotomaculum. 

Classification and features 
A representative genomic 16S rRNA sequence of 

D. ruminis DSM 2154T was compared using NCBI 

BLAST [7,8] under default settings (e.g., consider-

ing only the high-scoring segment pairs (HSPs) 

from the best 250 hits) with the most recent re-

lease of the Greengenes database [9] and the rela-

tive frequencies of taxa and keywords (reduced to 

their stem [10]) were determined, weighted by 

BLAST scores. The most frequently occurring gen-

era were Desulfotomaculum (88.3%), 

Pelotomaculum (7.9%), Cryptanaerobacter (2.8%) 

and 'Catabacter' (1.0%) (60 hits in total). Regard-

ing the four hits to sequences from members of 

the species, the average identity within HSPs was 

99.1%, whereas the average coverage by HSPs 

was 86.1%. Regarding the 41 hits to sequences 

from other members of the genus, the average 

identity within HSPs was 93.2%, whereas the av-

erage coverage by HSPs was 90.7%. Among all 

other species, the one yielding the highest score 

was Desulfotomaculum putei (HM228397), which 

corresponded to an identity of 94.1% and an HSP 

coverage of 98.5%. (Note that the Greengenes da-

tabase uses the INSDC (= EMBL/NCBI/DDBJ) an-

notation, which is not an authoritative source for 

nomenclature or classification.) The highest-

scoring environmental sequence was EU307084 

('Changes microbial metabolic and along 

hydrogeochemically variable profile unsaturated 

horizon soil aggregate clone A Ac-2 12'), which 

showed an identity of 97.5% and an HSP coverage 

of 98.4. D. ruminis has not only been found in the 

rumen of animals, but also in other environments 

[11,12]. Therefore, the distribution of D. ruminis is 

not restricted to the rumen of animals. Hence, it is 

likely that this species enters the digestive tract of 

ruminants via food contaminated by spores. 

Figure 1 shows the phylogenetic neighborhood of 

D. ruminis in a 16S rRNA based tree of type 

strains. The sequences of the five 16S rRNA gene 

copies in the genome differ from each other by up 

to two nucleotides, and differ by up to three nu-

cleotides from the previously published 16S rRNA 

sequence (Y11572), which contains three ambig-

uous base calls. 

Cells of D. ruminis DLT are slightly curved rods 

with rounded ends 2-6 µm in length and 0.5-0.7 

µm in width (Table 1 and Figure 2) [1,4]. Cells 

stain Gram-negative and form oval subterminal 

spores that slightly swell the cells. A slight tum-

bling motility is due to peritrichous flagellation 

[1]. Strain DLT grows optimally at 37°C, but not 

above 48°C [1]. The pH range for growth is 6.0-8.5 

with an optimum between pH 6.0 and 7.0 [4]. D. 

ruminis strains are obligately anaerobic and can 

grow chemoheterotrophically with lactate, py-

ruvate, ethanol or alanine as well as 

mixotrophically with hydrogen or formate as elec-

tron donor and acetate as carbon source. In con-

trast to the distantly related D. acetoxidans, strains 

of D. ruminis oxidize substrates incompletely to 

acetate and cannot grow autotrophically [4]. Suit-

able electron acceptors are sulfate, thiosulfate and 

sulfite, but not elemental sulfur or nitrate [1,26]. 

Fermentative growth with pyruvate as sole sub-

strate is also possible [26]. 

Chemotaxonomy 
In cells of D. ruminis cytochromes of the b-type 

dominate [1], which is a typical trait of sulfate-

reducing bacteria belonging to the genus 

Desulfotomaculum. Respiratory lipoquinones are 

also present and are comprised mainly of the 

menaquinone MK-7 and some small amounts of 

MK-6 [27]. The whole-cell fatty acid pattern of the 

type strain of D. ruminis was determined by 

Hagenauer et al. [26], who found a dominance of 

branched-chain iso- and anteiso-fatty acids in ad-

dition to unsaturated fatty acids, whereas saturat-

ed unbranched fatty acids were of less im-

portance. The predominant fatty acids were: iso-

C17:1 c7, iso-C15:0, iso-C17:0, C17:0 cyc and C16:0. Although, 

in the study of Hagenauer et al. [26] a large 

amount of the extracted cellular fatty acids 

(37.3%) remained unidentified, the fatty acid pat-

tern of D. ruminis can be clearly distinguished 

from other distantly related Desulfotomaculum 

species like  D. acetoxidans, which has a pattern 

dominated by straight-chain saturated fatty acids, 

thus further illustrating the paraphyletic origin of 

this genus.  
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Figure 1. Neighbor-joining tree based on 16S rRNA sequences showing the phylogenetic affiliation 
of Desulfotomaculum and related species. D. ruminis is printed in bold type. The sequences of dif-
ferent Thermotogales were used as outgroup, but were pruned from the tree. Closed circles repre-
sent bootstrap values between 75 and 100%. The scale bar represents 2% sequences difference. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 

basis of the DOE Joint Genome Institute Communi-

ty Sequencing Program 2009 proposal 

300132_795700 'Exploring the genetic and physi-

ological diversity of Desulfotomaculum species'. 

The genome project is deposited in the Genomes 

OnLine Database (Gc01775) [28] and the com-

plete genome sequence is deposited in GenBank 

(CP002780). Sequencing, finishing and annotation 

were performed by the DOE Joint Genome Insti-

tute (JGI). A summary of the project information is 

shown in Table 2. 

Growth conditions and DNA isolation 
D. ruminis strain DLT, DSM 2154, was grown an-

aerobically in DSMZ medium 63 (Desulfovibrio 

medium) [29] at 37°C. DNA was isolated from 0.5-

1.0 g of cell paste using Jetflex Genomic DNA Puri-

fication Kit (GENOMED 600100) following the 

manufacturer’s instructions, with a modified pro-

tocol for cell lysis (modification st/LALMP) as de-

scribed in Wu et al. 2009 [30]. DNA is available 

through the DNA Bank Network [31]. 
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Table 1. Classification and general features of D. ruminis DLT according to the MIGS recommendations 
[13] and the NamesforLife database [3]. 

MIGS ID Property Term Evidence code 

 

Current classification 

Domain Bacteria TAS [14] 

Phylum Firmicutes TAS [15-17] 

Class Clostridia TAS [18,19] 

Order Clostridiales TAS [20,21] 

Family Peptococcaceae TAS [20,22] 

Genus Desulfotomaculum TAS [1,6,20] 

Species Desulfotomaculum ruminis TAS [1,20] 

Type strain DL TAS [1] 

 Gram stain negative TAS [1] 

 Cell shape rod-shaped TAS [1] 

 Motility motile TAS [1] 

 Sporulation sporulating TAS [1] 

 Temperature range 48°C is the upper limit TAS [1] 

 Optimum temperature 37°C TAS [1] 

 Salinity not reported  

MIGS-22 Oxygen requirement obligate anaerobe TAS [1] 

 

Carbon source 
acetate in combination with CO2 and a 
variety of other organic compounds 

TAS [23] 

 Energy metabolism mixotrophic, heterotrophic TAS [1,23] 

MIGS-6 Habitat 
rumen contents of sheep, fresh water, 
mud, sea water, soil 

TAS [1] 

MIGS-15 Biotic relationship free-living TAS [1] 

MIGS-14 Pathogenicity none TAS [1] 

 Biosafety level 1 TAS [24] 

 Isolation rumen of hay-fed sheep TAS [1] 

MIGS-4 Geographic location Babraham, Cambridgeshire, UK TAS [4] 

MIGS-5 Sample collection time 1955 or before TAS [4] 

MIGS-4.1 Latitude 52.134 TAS [4] 

MIGS-4.2 Longitude 0.206 TAS [4] 

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude not reported  

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: 
Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on 
a generally accepted property for the species, or anecdotal evidence). Evidence codes are from the 
Gene Ontology project [25]. 
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Figure 2. Scanning electron micrograph of D. ruminis DLT. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Three genomic libraries: two 454 pyrosequence standard library, one 
454 PE library (9 kb insert size), one Illumina library 

MIGS-29 Sequencing platforms Illumina GAii, 454 GS FLX Titanium 

MIGS-31.2 Sequencing coverage 193.0 × Illumina; 28.0 × pyrosequence 

MIGS-30 Assemblers Newbler version 2.3, Velvet 0.7.63, phrap version SPS - 4.24 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID CP002780 

 Genbank Date of Release October 12, 2011 

 GOLD ID Gc01775 

 NCBI project ID 47605 

 Database: IMG 650716033 

MIGS-13 Source material identifier DSM 2154 

 Project relevance Biotechnology, carbon cycle; sulfur cycle, metal precipitation 

Genome sequencing and assembly 
The genome was sequenced using a combination 

of Illumina and 454 sequencing platforms. All 

general aspects of library construction and se-

quencing can be found at the JGI website [32]. 

Pyrosequencing reads were assembled using the 

Newbler assembler (Roche). The initial Newbler 

assembly consisting of 74 contigs in one scaffold 

was converted into a phrap [33] assembly by mak-

ing fake reads from the consensus, to collect the 

read pairs in the 454 paired end library. Illumina 

GAii sequencing data (1,651.9 Mb) was assembled 

with Velvet [34] and the consensus sequences 

were shredded into 1.5 kb overlapped fake reads 

and assembled together with the 454 data. The 

454 draft assembly was based on 117.7 Mb 454 

draft data and all of the 454 paired end data. 

Newbler parameters are -consed -a 50 -l 350 -g -m 

-ml 20. The Phred/Phrap/Consed software pack-

age [33] was used for sequence assembly and 

quality assessment in the subsequent finishing 

process. After the shotgun stage, reads were as-

sembled with parallel Phrap (High Performance 

Software, LLC). Possible mis-assemblies were cor-

rected with gapResolution [32], Dupfinisher [35], 
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or sequencing cloned bridging PCR fragments with 

subcloning. Gaps between contigs were closed by 

editing in Consed, by PCR and by Bubble PCR pri-

mer walks (J.-F. Chang, unpublished). A total of 

255 additional reactions were necessary to close 

gaps and to raise the quality of the finished se-

quence. Illumina reads were also used to correct 

potential base errors and increase consensus 

quality using a software Polisher developed at JGI 

[36]. The error rate of the completed genome se-

quence is less than 1 in 100,000. Together, the 

combination of the Illumina and 454 sequencing 

platforms provided 221-fold coverage of the ge-

nome. The final assembly contained 229,368 

pyrosequence and 20,934,522 Illumina reads. 

Genome annotation 
Genes were identified using Prodigal [37] as part 

of the Oak Ridge National Laboratory genome an-

notation pipeline, followed by a round of manual 

curation using the JGI GenePRIMP pipeline [38]. 

The predicted CDSs were translated and used to 

search the National Center for Biotechnology In-

formation (NCBI) nonredundant database, 

UniProt, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and 

InterPro databases. Additional gene prediction 

analysis and functional annotation was performed 

within the Integrated Microbial Genomes - Expert 

Review (IMG-ER) platform [39]. 

Genome properties 
The genome consists of one circular chromosome 

of 3,969,014 bp with a G+C content of 47.2% (Ta-

ble 3 and Figure 3). Of the 3,986 genes predicted, 

3,901 are protein-coding genes, and 85 are RNAs; 

105 pseudogenes were also identified. The majori-

ty of the protein-coding genes (67.3%) were as-

signed with a putative function while the remain-

ing ones were annotated as hypothetical proteins. 

The distribution of genes into COGs functional cat-

egories is presented in Table 4. 

 

Table 3. Genome Statistics 
Attribute Value % of Totala 
Genome size (bp) 3,969,014 100.00% 

DNA coding region (bp) 3,356,856 84.58% 

DNA G+C content (bp) 1,875,083 47.24% 

Number of replicons 1  

Extrachromosomal elements 0  

Total genes 3,986 100.00% 

RNA genes 85 2.13% 

rRNA operons 5  

Protein-coding genes 3,901 97.87% 

Pseudo genes 105 2.63% 

Genes with function prediction 2,682 67.29% 

Genes in paralog clusters 2,015 50.55% 

Genes assigned to COGs 2,897 72.68% 

Genes assigned Pfam domains 3,047 76.44% 

Genes with signal peptides 1,077 27.02% 

Genes with transmembrane helices 1,016 25.49% 

CRISPR repeats 11  
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Figure 3. Graphical map of the chromosome. From outside to the center: Genes on forward strand (col-
ored by COG categories), Genes on reverse strand (colored by COG categories), RNA genes (tRNAs green, 
rRNAs red, other RNAs black), GC content (black), GC skew (purple/olive). 

Insights into the genome sequence 
Electron donor utilization 
Chemoheterotrophic growth 
D. ruminis is an incomplete sulfate reducer and can 

metabolize various substrates as carbon and energy 

sources, including organic acids, alcohols and amino 

acids, to acetate [1,6,40]. In the D. ruminis genome, 

numerous genes are present that encode ami-

notransferases belonging to class I and II 

(Desru_0552, Desru_1291, Desru_1826, Desru_1950, 

Desru_2322, Desru_2323, Desru_3729), class III 

(Desru_0350, Desru_0589, Desru_3742), class IV 

(Desru_1652), and class V (Desru_0021), which indi-

cates that besides alanine, other amino acids might 

be substrates for this species. The oxidative deami-

nation step of the amino acid degradation is proba-

bly catalyzed by an alanine dehydrogenase, which 

exists in two copies (Desru_0588 and Desru_2884) 

or a glutamate dehydrogenase (Desru_0556), con-

firming previous physiological studies [40]. 
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Table 4. Number of genes associated with the general COG functional categories 
Code Value %age Description 

J 160 5.0 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 293 9.1 Transcription 

L 177 5.5 Replication, recombination and repair 

B 1 0.0 Chromatin structure and dynamics 

D 49 1.5 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 59 1.8 Defense mechanisms 

T 246 7.7 Signal transduction mechanisms 

M 161 5.0 Cell wall/membrane/envelope biogenesis 

N 88 2.7 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 81 2.5 Intracellular trafficking, secretion, and vesicular transport 

O 107 3.3 Posttranslational modification, protein turnover, chaperones 

C 252 7.9 Energy production and conversion 

G 155 4.8 Carbohydrate transport and metabolism 

E 279 8.7 Amino acid transport and metabolism 

F 65 2.0 Nucleotide transport and metabolism 

H 147 4.6 Coenzyme transport and metabolism 

I 54 1.7 Lipid transport and metabolism 

P 154 4.8 Inorganic ion transport and metabolism 

Q 36 1.1 Secondary metabolites biosynthesis, transport and catabolism 

R 351 10.9 General function prediction only 

S 297 9.3 Function unknown 

- 1,089 27.3 Not in COGs 

 

Interestingly, a taurine degradation pathway was 

also detected in the annotated genome. In habitats 

that are depleted of sulfate, like rumen or freshwa-

ter sediments, the amino sulfonic acid taurine could 

represent a key substrate for D. ruminis. Taurine is 

widely distributed in animal tissue, especially the 

large intestine, and can be converted by a taurine-

pyruvate aminotransferase (Desru_0589) to 

sulfoacetaldehyde, which in turn is cleaved by the 

enzyme sulfoacetaldehyde acetyltransferase 

(Desru_0590) into sulfite and acetyl-phosphate. 

Sulfite can then be used as electron acceptor and 

reduced to sulfide. 

Several genes encoding dehydrogenases were de-

tected that catalyze the oxidation of organic acids 

(e.g., lactate), or alcohols (e.g., ethanol). The main 

metabolic intermediate resulting from the oxida-

tion of organic carbon compounds in incomplete 

oxidizing sulfate-reducing bacteria is pyruvate, 

which in D. ruminis can be degraded by the action 

of several enzymes: pyruvate dehydrogenase 

(Desru_0066 - 0067), pyruvate-ferredoxin 

oxidoreductase (Desru_0099 - 0102) and pyruvate-
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formate lyase (Desru_2143 and Desru_2090). The 

former two enzymes are decarboxylating and yield 

acetyl-CoA, CO2 and reducing equivalents, and the 

pyruvate-formate lyase produces acetyl-CoA and 

formate. The latter enzyme is preferentially used 

during fermentative metabolism, when pyruvate is 

the main carbon and energy source. 

Acetyl-CoA is either used for biosynthetic reactions 

or can be transferred into acetyl-phosphate by a 

phosphate acetyltransferase. However, in the anno-

tated genome of D. ruminis only a phosphate 

butyryltransferase (Desru_2256) was found. It 

could be that such enzymes are not specific for 

butanoyl-CoA and also use acetyl-CoA. An alterna-

tive pathway for the recycling of CoA could be cata-

lyzed by the acetyl-coenzyme A synthetase 

(Desru_0761). This enzyme may use AMP and py-

rophosphate that are formed in the ATP-sulfurylase 

and APS reductase reaction, respectively, for the 

production of acetate, CoA and ATP, though it is not 

clear if this acetyl-CoA synthetase is reversible. It 

may also be involved in the activation of acetate 

during mixotrophic growth. Acetyl-phosphate, 

which is also produced in the degradation of 

taurine, is converted to ATP and acetate by the en-

zyme acetate kinase (Desru_1705). 

Three genes involved in the acetyl-CoA pathway 

were not detected. These are the acetyl-CoA syn-

thase gene (acsB), and the genes for the large and 

small subunit of the corrinoid iron sulfur protein. 

Due to the absence of these genes, D. ruminis is un-

able to perform complete oxidation of organic 

compounds via the acetyl-CoA pathway, which is 

consistent with the published species description 

[41]. 

Mixotrophic growth 
Based on genes identified within the genome se-

quence, data hydrogen, formate and carbon monox-

ide could be potential substrates for mixotrophic 

growth in D. ruminis. As observed for other 

clostridial sulfate reducers [11] the genome of D. 

ruminis encodes several copies of [FeFe] 

hydrogenases, including three copies of a trimeric 

NAD(P)-dependent hydrogenase (Desru_2398 - 

2396, Desru_2393 - 2391, Desru_0516 - 0514), and 

two copies of a membrane-associated hydro-

genase (Desru_3431-3433 and Desru_0447 - 0445) 

that includes a TAT signal peptide that is not pre-

dicted to be cleaved off using SignalP [42], but to 

form a transmembrane helix that anchors the pro-

tein to the extracytoplasmic side of the membrane. 

A monomeric [FeFe] hydrogenase (Desru_2180) 

and a hydrogenase encoding a PAS-sensing domain 

(Desru_2509), similar to HsfB [43] are also present. 

In addition, the utilization of hydrogen may also be 

catalyzed by a Ni,Fe hydrogenase encoded by the 

genes Desru_2370 - 2372. This enzyme is bound to 

the membrane by a cytochrome b, but seems to be 

cytoplasmic as no signal peptides are predicted. 

Two gene loci encoding formate dehydrogenases 

are located adjacently in the genome. Genes 

Desru_3012 - 3008 code for a membrane-

associated enzyme in which the catalytic subunit is 

coded by three genes (Desru_3012 - 3010), as ob-

served in other organisms. The first gene 

(Desru_3012) includes a TAT signal peptide, so the 

localization of the enzyme relative to the mem-

brane will depend on whether this peptide associ-

ates with the catalytic subunit (Desru_3010) or not. 

The gene Desru_3011 encodes for the FeS domain 

of the catalytic subunit. The second formate dehy-

drogenase (Desru_3002-3005) is a tetrameric 

NAD(P)-dependent enzyme. Potential genes encod-

ing the catalytic subunit of anaerobic-type carbon 

monoxide dehydrogenases (cooS) were identified 

at Desru_0859 and Desru_3320. However, no other 

CODH complex genes were found near either of the 

two cooS genes, except for cooC at Desru_0860. 

While growth with hydrogen and formate with ace-

tate as carbon source was confirmed in laboratory 

experiments, no growth was obtained with 5% 

(v/v) of carbon monoxide in the headspace gas at-

mosphere [23]. This is in contrast with the cooS 

present in the genome and brings into question the 

function of this gene in D. ruminis. In a study about 

the fermentation burst in Desulfovibrio vulgaris 

Hildenborough it was found that CO is produced at 

low levels during growth on pyruvate or lactate 

[41]. It was hypothesized that the catalytic subunit 

of carbon monoxide dehydrogenase could be in-

volved in an internal metabolism or cycling of car-

bon monoxide. In D. vulgaris, the cooS gene 

(YP_011311.1) is downstream of a transcriptional 

regulator (YP_011310.1) and upstream of the cooC 

gene (YP_011312.1). This localization is similar to 

what we find in D. ruminis, Desru_0859, 

Desru_0858 and Desru_0860, respectively. Thus, 

carbon-monoxide dehydrogenases could play a role 

in the internal metabolism or cycling of carbon 

monoxide during growth of D. ruminis on organic 

acids. However, in contrast to D. vulgaris, no CO-

induced hydrogenase (coo) is present in D. ruminis. 
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Energy metabolism 
The genome of D. ruminis encodes the full set of 

genes necessary for dissimilatory sulfate reduc-

tion as well as several membrane complexes, 

which deliver electrons from membrane electron 

carriers like menaquinol to cytosolic sulfate-

reducing enzymes. The following genes encoding 

cytoplasmic enzymes for dissimilatory sulfate re-

duction were detected in the D. ruminis genome: 

Sulfate adenylyltransferase (ATP-sulfurylase, 

Desru_3378), adenosine-5'-phosphosulfate (APS) 

reductase (Desru_3376 - 3377) and dissimilatory 

sulfite reductase (Desru_0386 - 0387 and 

Desru_3723 - 3724). In D. ruminis, like in most sul-

fate reducers, ATP-sulfurylase and APS reductase 

are present as one copy. However, in contrast to 

most other sulfate reducers, D. ruminis contains 

two copies of the dsrABD genes. As observed in 

other Desulfotomaculum species, the alpha subunit 

of the APS reductase appears to be membrane-

anchored. 

The generation of a proton gradient across the 

cytoplasmic membrane is thought to be the main 

mechanism for generation of energy in sulfate-

reducing bacteria. The coupling of the reduction of 

sulfate to sulfide, which occurs exclusively in the 

cytoplasm with a membrane-bound electron 

transport chain, and a vectorial proton transport 

across the membrane is still far from being under-

stood. Electrons and protons required for the gen-

eration of a chemiosmotic gradient in Gram-

positive sulfate reducers could be generated by 

the oxidation of small intermediate metabolites, 

like hydrogen, CO- or formate at the cytoplasmic 

membrane. Several membrane-bound enzyme 

complexes were recently identified that could play 

a role in this process. 

A membrane-bound pyrophosphatase 

(Desru_3593) could use the energy generated 

from the cleavage of pyrophosphate, which is 

formed in the activation of sulfate by the ATP-

sulfurylase, for proton translocation. 

The QmoAB complex (Desru_3374 - 3375) is sug-

gested to play a role in donating electrons to the 

APS reductase [44], and the genes of both en-

zymes are located next to each other in the D. 

ruminis genome. The gene for the membrane sub-

unit QmoC is absent, as in other clostridial sulfate 

reducers. The QmoA subunit is predicted to con-

tain a signal peptide, but this likely forms a 

transmembrane helix, as it is still present in the 

mature protein [45], which indicates a localization 

at the inner surface of the cytoplasmic membrane. 

In Gram-negative sulfate-reducing bacteria, a 

transmembrane DsrMKJOP complex is conserved, 

which probably transfers electrons from the 

periplasmic space to the dissimilatory sulfite 

reductase. In Gram-positive sulfate reducers, only 

a truncated DsrMK complex seems to be present 

[46], which is encoded adjacent to a small soluble 

protein designated DsrC that is proposed to have a 

function in shuttling electrons from DsrK to the 

cytoplasmic DsrAB sulfite reductase [47]. In D. 

ruminis this enzyme system is encoded by the 

genes Desru_3734 - 3736, and a second copy of 

the dsrMK genes is present (Desru_2596 - 2597) 

The two c-type cytochromes present in “D. 

reducens” and annotated as a nitrite reductase are 

absent in D. ruminis, which is consistent with the 

other Desulfotomaculum species sequenced to 

date (except D. nigrificans) [46]. 

An energy-conserving NADH-quinone 

oxidoreductase (Complex I, Desru_1808 - 1818 

and Desru_0514 - 516) is present, which will cou-

ple NADH oxidation to proton translocation. Fur-

thermore, a multimeric membrane-bound com-

plex was identified at Desru_3260 - 3265, that be-

longs to the family of Ehr complexes (for energy-

conserving hydrogenase related complex) first 

identified in Geobacter spp., but present in many 

microorganisms [48,49]. The subunits of Ehr 

complexes are related to subunits of complex I 

and the Ech energy conserving hydrogenases, but 

in most cases the cysteines binding the NiFe clus-

ter are absent, so these complexes are not real 

hydrogenases. In D. ruminis EhrL (Desru_3264) 

the four Cys required to coordinate the catalytic 

center are present, so this complex may be a true 

energy-conserving hydrogenase. The proton gra-

dient resulting from the above-mentioned reac-

tions is used by a F0F1-type ATP synthase complex 

encoded by the genes Desru_3687 - 3694. 

There are number of heterodisulfide reductases in 

the genome: three loci were identified which con-

tained hdrA (Desru_0205, Desru_0212 and 

Desru_3375) and hdrB (Desru_3379 and 

Desru_2699) and hdrC-like (Desru_3380 and 

Desru_2700) heterodisulfide reductases. In addi-

tion, a fused hdrA with mvhD (methyl-viologen 

reducing hydrogenase delta subunit) was identi-

fied (Desru_3374). 
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Comparative genomics 
We analyzed the fraction of shared genes in three 

genomes of Desulfotomaculum species with validly 

published names. The genomes of D. acetoxidans 

[50] and D. ruminis [10] are complete, whereas the 

genome of the type species D. nigrificans is only 

available as a draft sequence. D. nigrificans has the 

smallest genome with 3,014 protein coding se-

quences. The resulting data are illustrated in the 

Venn diagram shown in [Figure 4]. The largest 

overlap is found between the strains D. nigrificans 

DSM 574T and D. ruminis DSM 2154T, which share 

2,359 homologous proteins corresponding to 

78.3% of the DSM 574T genes and 60.5% of the 

DSM 2154T genes. Thus, a closer relationship be-

tween D. ruminis DSM 2154T and D. nigrificans 

DSM 574T than between D. acetoxidans DSM 771T

and D. nigrificans DSM 574T, as suggested by the 

16S rRNA based phylogenetic tree, is confirmed by 

whole-genome data. 

Figures 5A and 5B show the organization of dsrAB 

(A), qmoBA, aprAB and hdrBC (B) and neighboring 

genes for D. ruminis, “D. reducens” and D. 

acetoxidans. In Figure 5 dsrD is upstream of dsrAB 

in all three strains. However, no other neighboring 

genes are similar to each other. In contrast, Figure 

5B shows remarkable homology in gene organiza-

tion for the aprAB gene neighborhood for D. 

ruminis and “D. reducens”. Gene sequence is also 

very similar for that region (53-94% identity for 

the genes displayed including hypothetical pro-

teins) which suggests horizontal gene transfer 

from a common ancestor. The dsrAB and aprBA 

proteins of D. ruminis are more closely related to 

“D. reducens” than to D. acetoxidans [Figure 6A and 

6B]. This is in accordance with the 16SrRNA based 

phylogenetic tree and the whole-genome data. 

 

Figure 4. Venn diagram showing a comparison of three different Desulfotomaculum genomes, D. ruminis DSM 
2154T, D. acetoxidans DSM 771T and D. nigrificans DSM 564T. The number of overlapping protein genes is given 
inside the areas of the circles and the total number of derived protein sequences used for each strain is shown in pa-
rentheses. The figure was created using the program Venn diagram plotter available from the Pacific Northwest Na-
tional Laboratory Software Distribution Center [51]. 
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Figure 5A. Organization of dsrAB and neighboring genes for three Desulfotomaculum 
species. Other genes are indicated by their locus tags. 

 

Figure 5B. Organization of qmoBA, aprAB and hdrBC and neighboring genes for three Desulfotomaculum spe-
cies. Other genes are indicated by their locus tags. 
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Figure 6A. Phylogenetic tree of the dsrAB protein sequences. The trees (6A and 6B) were in-
ferred from proteins sequences using RAxML (maximum-likelihood) in the software program 
ARB. The sequences of Archaeoglobus fulgidus, A. profundus, and A. veneficus were used 
as outgroup, but were pruned from the tree. The sequence of D. ruminis is written in bold. 
The black circles are bootstrap values between 100-75%, the white circles are values be-
tween 75-50%. The scale bar corresponds to 10% estimated sequence divergence. 

 

Figure 6B. Phylogenetic tree of the aprBA protein sequence.  
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