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Tolumonas auensis Fischer-Romero et al. 1996 is currently the only validly named species of 
the genus Tolumonas in the family Aeromonadaceae. The strain is of interest because of its 
ability to produce toluene from phenylalanine and other phenyl precursors, as well as phenol 
from tyrosine. This is of interest because toluene is normally considered to be a tracer of 
anthropogenic pollution in lakes, but T. auensis represents a biogenic source of toluene. Oth-
er than Aeromonas hydrophila subsp. hydrophila, T. auensis strain TA 4T is the only other 
member in the family Aeromonadaceae with a completely sequenced type-strain genome. 
The 3,471,292 bp chromosome with a total of 3,288 protein-coding and 116 RNA genes was 
sequenced as part of the DOE Joint Genome Institute Program JBEI 2008. 

Introduction 
Strain TA 4T (= DSM 9187) is the type strain of the 

species Tolumonas auensis [1], which is the type 

species of the monotypic genus Tolumonas [1,2]. 

‘Tolumonas osonensis’, isolated from anoxic fresh 

sediment, was recently proposed as the second 

species of the genus [3]. ‘T. osonensis’ does not pro-

duce toluene from phenylalanine or other aromatic 

substrates [3]. The genus name is derived from the 

Neo-Latin words toluolum, toluene, and monas, 

unit, meaning toluene-producing unit. The species 

epithet originated from the Latin auensis, of Lake 

Au. Strain TA 4T was originally isolated from anoxic 

sediments of Lake Au (a separate part of Lake Zu-

rich), Switzerland [1]. Four more strains (TA 1-3 

and TA5) were also isolated from this source, but 

these strains were not able to produce toluene [1]. 

Here we present a summary classification and a set 

of features for T. auensis TA 4T, together with the 

description of the complete genomic sequencing 

and annotation. 

Classification and features 
A representative genomic 16S rRNA sequence of T. 

auensis TA 4T was compared using NCBI BLAST [4] 

under default settings (e.g., considering only the 

high-scoring segment pairs (HSPs) from the best 

250 hits) with the most recent release of the Green-

genes database [5] and the relative frequencies of 

taxa and keywords (reduced to their stem [6]) were 

determined, weighted by BLAST scores. The most 

frequently occurring genera were Yersinia (72.3%), 
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Escherichia (8.0%), Tolumonas (7.2%), Cronobacter 

(6.3%) and Enterobacter (3.6%) (219 hits in total). 

Regarding the ten hits to sequences from members 

of the species, the average identity within HSPs was 

99.3%, whereas the average coverage by HSPs was 

98.5%. Among all other species, the one yielding the 

highest score was Cronobacter sakazakii 

(NC_009778), which corresponded to an identity of 

91.8% and an HSP coverage of 100.0%. (Note that 

the Greengenes database uses the INSDC (= 

EMBL/NCBI/DDBJ) annotation, which is not an au-

thoritative source for nomenclature or classifica-

tion.) The highest-scoring environmental sequence 

was GQ479961 ('changes during treated process 

sewage wastewater treatment plant clone BXHA2'), 

which showed an identity of 99.2% and an HSP cov-

erage of 97.9%. The most frequently occurring key-

words within the labels of environmental samples 

which yielded hits were 'reduc' (7.7%), 'sludg' 

(5.6%), 'activ' (4.8%), 'treatment, wastewat' (4.2%) 

and 'comamonadacea' (4.1%) (31 hits in total). The 

most frequently occurring keywords within the la-

bels of environmental samples which yielded hits of 

a higher score than the highest scoring species were 

'reduc' (7.9%), 'sludg' (5.3%), 'activ' (5.0%), 

'treatment, wastewat' (4.3%) and 'comamonadacea' 

(4.3%) (27 hits in total). These keywords fit reason-

ably well to the ecological properties reported for 

strain TA 4T in the original description [1]. 

Figure 1 shows the phylogenetic neighborhood of 

T. auensis in a 16S rRNA-based tree. The sequences 

of the eight 16S rRNA gene copies in the genome 

differ from each other by up to 29 nucleotides, and 

differ by up to 19 nucleotides from the previously 

published 16S rRNA sequence (X92889), which 

contains eight ambiguous base calls. 

Cells of T. auensis strain TA 4T are rod-shaped, 0.9–

1.2 × 2.5–3.2 µm (Figure 2, Table1) and occur sing-

ly and in pairs [1]. TA 4T cells stain Gram-negative, 

are non-motile, and grow equally well under oxic 

and anoxic conditions [1]. Strain TA 4T grows at a 

pH range from 6.0 to 7.5, and a temperature range 

of 12–25°C, with an optimum at 22°C [1]. Oxidase 

was not produced under any of the growth condi-

tions, whereas catalase was produced only under 

aerobic conditions [1]. Substrate spectrum and bio-

chemistry of the strain were reported in detail by 

Fischer-Romero et al. [1]. Toluene production was 

observed under oxic and anoxic conditions, but on-

ly in the presence of phenylalanine, phenyllactate, 

phenylpyruvate, or phenylacetate and one of the 

carbon sources specified in [1]. Phenol was pro-

duced from tyrosine [1]. 

Chemotaxonomy 
Data on the cell wall structure of strain TA 4T are 

not available. Ubiquinones and menaquinones 

were present under oxic and anoxic conditions, 

with Q-8 being the major ubiqinone and MK-8 be-

ing the major menaquinone [1]. Under aerobic 

conditions a second, as yet uncharacterized me-

naquinone was observed [1]. Phosphatidylglycerol 

and phosphatidyl-ethanolamine were the major 

phospholipids under both oxic and anoxic growth 

conditions [1]. The major cellular fatty acids were 

C12:0, C14:0, C16:0, C16:1 ω7cis, C18:0, C18:1 ω7cis, as well as 

C14:0 3-OH. One half of the latter fatty acid was 

amide-bound, the other half was ester-linked as 

were all the other fatty acids [1]. 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 

basis of the DOE Joint Genome Institute Program 

JBEI 2008. The genome project is deposited in the 

Genomes OnLine Database [12] and the complete 

genome sequence is deposited in GenBank. Sequenc-

ing, finishing, and annotation were performed by the 

DOE Joint Genome Institute (JGI). A summary of the 

project information is shown in Table 2. 

Strain history 
The history of strain TA 4T begins with C. Fischer 

who directly deposited the strain in the DSMZ 

open collection, where cultures of the strain have 

been maintained in lyophilized form frozen in liq-

uid nitrogen since 1994. 

Growth conditions and DNA isolation 
The culture of strain TA 4T, DSM 9187, used to 

prepare genomic DNA (gDNA) for sequencing was 

only three transfers removed from the original 

deposit. A lyophilized sample was cultivated un-

der anoxic conditions at 20°C using DSMZ medium 

500 (with 2 g/L glucose as the primary carbon 

source) [24]. Genomic DNA was isolated using the 

MasterPure Gram Positive DNA Purification Kit 

(EpiCentre MGP04100) according to the manufac-

turer’s instructions. The purity, quality, and size of 

the bulk gDNA were assessed according to DOE-

JGI guidelines. The gDNA ranged in size from 20–

125 kb, with most falling in the 75–100 kb range, 

as determined by pulsed-field gel electrophoresis.
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Figure 1. Phylogenetic tree highlighting the position of T. auensis relative to the type 
strains of the other species within the family Aeromonadaceae. The tree was inferred 
from 1,462 aligned characters [7,8] of the 16S rRNA gene sequence under the maxi-
mum likelihood (ML) criterion [9] and rooted with the neighboring family Succinivi-
brionaceae. The branches are scaled in terms of the expected number of substitutions 
per site. Numbers adjacent to the branches are support values from 1,000 ML bootstrap 
replicates [10] (left) and from 1,000 maximum parsimony bootstrap replicates [11] 
(right) if larger than 60%. Lineages with type strain genome sequencing projects regis-
tered in GOLD [12] are labeled with one asterisk, those also listed as 'Complete and 
Published' with two asterisks [13]. 
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Figure 2. Scanning Electron micrograph of T. auensis TA 4T 

Table 1. Classification and general features of T. auensis according to the MIGS recommendations [14] and the 
NamesforLife database [15]. 

MIGS ID Property Term Evidence code 

 
Current classification 
 

Domain Bacteria TAS [16] 

Phylum Proteobacteria TAS [17] 

Class Gammaproteobacteria TAS [18,19] 

Order Aeromonadales TAS [19,20] 

Family Aeromonadaceae TAS [21] 

Genus Tolumonas TAS [1] 

Species Tolumonas auensis TAS [1] 

Type strain TA 4 TAS [1] 

 Gram stain negative TAS [1] 

 Cell shape rod-shaped TAS [1] 

 Motility non-motile TAS [1] 

 Sporulation none TAS [1] 

 Temperature range mesophile, 12–25°C TAS [1] 

 Optimum temperature 22°C TAS [1] 

 Salinity not reported TAS [1] 

MIGS-22 Oxygen requirement facultative TAS [1] 

 Carbon source various organic acids, sugars and amino acids TAS [1] 

 Energy metabolism chemoorganotroph NAS 

MIGS-6 Habitat fresh water TAS [1] 

MIGS-15 Biotic relationship free living TAS [1] 

MIGS-14 Pathogenicity none NAS 

 Biosafety level 1 TAS [22] 

 Isolation sediment of a freshwater lake TAS [1] 

MIGS-4 Geographic location Lake Au, part of Lake Zürich, Switzerland TAS [1] 

MIGS-5 Sample collection time 1993 or before NAS 

MIGS-4.1 Latitude 47.23 NAS 

MIGS-4.2 Longitude 8.63  

MIGS-4.3 Depth not reported  

MIGS-4.4 Altitude about 406 m NAS 

Evidence codes - TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable 
Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted 
property for the species, or anecdotal evidence). These evidence codes are from of the Gene Ontology project 
[23]. 
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Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two genomic libraries: Sanger 8 kb pMCL200 and 
454 standard libraries 

MIGS-29 Sequencing platforms ABI 3730, 454 GS FLX 

MIGS-31.2 Sequencing coverage 5.2 × Sanger, 24.1 × pyrosequencing 

MIGS-30 Assemblers Newbler version 2.0.0-PreRelease-07/15/2008, phrap 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID CP001616 

 GenBank Date of Release May 19, 2009 

 GOLD ID Gc01004 

 NCBI project ID 33873 

 Database: IMG 643692052 

MIGS-13 Source material identifier DSM 9187 

 Project relevance Biotechnology, Biofuel production 

 
Genome sequencing and assembly 
The genome was sequenced using a combination 

of Sanger and 454 sequencing platforms. All gen-

eral aspects of library construction and sequenc-

ing can be found at the JGI website [25]. Pyrose-

quencing reads were assembled using the Newb-

ler assembler (Roche). Large Newbler contigs 

were broken into 3,816 overlapping fragments of 

1,000 bp and entered into assembly as pseudo-

reads. The sequences were assigned quality scores 

based on Newbler consensus q-scores with mod-

ifications to account for overlap redundancy and 

adjust inflated q-scores. A hybrid 454/Sanger as-

sembly was made using the phrap assembler [26]. 

Possible mis-assemblies were corrected with Dup-

finisher and gaps between contigs were closed by 

editing in Consed, by custom primer walks from 

sub-clones or PCR products [27]. A total of 764 

Sanger finishing reads and four shatter libraries 

were needed to close gaps, to resolve repetitive 

regions, and to raise the quality of the finished se-

quence. The error rate of the completed genome 

sequence is less than 1 in 100,000. Together, the 

combination of the Sanger and 454 sequencing 

platforms provided 29.3 × coverage of the ge-

nome. The final assembly contained 20,349 San-

ger reads and 409,035 pyrosequencing reads. 

Genome annotation 
Genes were identified using Prodigal [28] as part 

of the Oak Ridge National Laboratory genome an-

notation pipeline, followed by a round of manual 

curation using the JGI GenePRIMP pipeline [29]. 

The predicted CDSs were translated and used to 

search the National Center for Biotechnology In-

formation (NCBI) non-redundant database, Uni-

Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-

terPro databases. These data sources were com-

bined to assert a product description for each 

predicted protein. Non-coding genes and miscel-

laneous features were predicted using tRNAscan-

SE [30], RNAMMer [31], Rfam [32], TMHMM [33], 

and signalP [34]. 

Genome properties 
The genome consists of a 3,471,292-bp long 

chromosome with a 49.0% G+C content (Figure 3 

and Table 3). Of the 3,288 genes predicted, 3,172 

were protein-coding genes, and 116 RNAs; 42 

pseudogenes were also identified. The majority of 

the protein-coding genes (76.5%) were assigned a 

putative function while the remaining ones were 

annotated as hypothetical proteins. The distribu-

tion of genes into COGs functional categories is 

presented in Table 4. 
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Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward strand 
(color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, 
rRNAs red, other RNAs black), GC content, GC skew. 
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Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 3,471,292 100.00% 
DNA coding region (bp) 3,122,317 89.95% 
DNA G+C content (bp) 1,701,871 49.03% 

Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,288 100.00% 
RNA genes 116 3.53% 

rRNA operons 8  
Protein-coding genes 3,172 96.47% 
Pseudo genes 42 1.28% 
Genes with function prediction 2,516 76.52% 
Genes in paralog clusters 532 16.18% 
Genes assigned to COGs 2,625 79.36% 
Genes assigned Pfam domains 2,741 83.76% 
Genes with signal peptides 574 17.46% 
Genes with transmembrane helices 699 21.26% 

CRISPR repeats 1  

Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 

J 171 5.9 Translation, ribosomal structure and biogenesis 

A 1 0.0 RNA processing and modification 

K 236 8.1 Transcription 

L 150 5.2 Replication, recombination and repair 

B 0 0.0 Chromatin structure and dynamics 

D 36 1.3 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 48 1.7 Defense mechanisms 

T 124 4.3 Signal transduction mechanisms 

M 163 5.6 Cell wall/membrane biogenesis 

N 29 1.0 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 71 2.5 Intracellular trafficking and secretion, and vesicular transport 

O 114 3.9 Posttranslational modification, protein turnover, chaperones 

C 184 6.4 Energy production and conversion 

G 301 10.4 Carbohydrate transport and metabolism 

E 241 8.4 Amino acid transport and metabolism 

F 70 2.4 Nucleotide transport and metabolism 

H 162 5.6 Coenzyme transport and metabolism 

I 64 2.2 Lipid transport and metabolism 

P 141 4.9 Inorganic ion transport and metabolism 

Q 48 1.7 Secondary metabolites biosynthesis, transport and catabolism 

R 296 10.2 General function prediction only 

S 240 8.3 Function unknown 

- 663 20.2 Not in COGs 
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