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 Yersinia pestis, the causative agent of bubonic and pneumonic plague, has undergone 

detailed study at the molecular level. To further investigate the genomic diversity among this 

group and to help characterize lineages of the plague organism that have no sequenced members, 

we present here the genomes of two isolates of the “classical” Antiqua biovar, strains Antiqua 

and Nepal516. The genomes of Antiqua and Nepal516 are 4.7 Mb and 4.5 Mb and encode 4,138 

and 3,956 open reading frames respectively. Though both strains belong to one of the three 

classical biovars, they represent separate lineages defined by recent phylogenetic studies. We 

compare all five currently sequenced Y. pestis genomes and the corresponding features in Y. 

pseudotuberculosis. There are strain-specific rearrangements, insertions, deletions, single 

nucleotide polymorphisms and a unique distribution of insertion sequences. We found 453 single 

nucleotide polymorphisms in protein coding regions, which were used to assess evolutionary 

relationships of these Y. pestis strains. Gene reduction analysis revealed that the gene deletion 

processes are under selective pressure and many of the inactivations are probably related to the 

organism’s interaction with its host environment. The results presented here clearly demonstrate 

the differences between the two Antiqua lineages and support the notion that grouping Y. pestis 

strains based strictly on the classical definition of biovars (predicated upon two biochemical 

assays) does not accurately reflect the phylogenetic relationships within this species. Comparison 

of four virulent Y. pestis strains with the human-avirulent strain 91001 provides further insight 

into the genetic basis of virulence to humans. 
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 Plague is a zoonotic disease, endemic throughout the world and is highly infectious in 

humans. The causative agent, Yersinia pestis, primarily infects a wide range of rodents and is 

transmitted via flea vectors.  Throughout history, plague has ravaged human populations in three 

major pandemic waves: Justinian’s plague (541-767 AD), which started in Africa and spread to 

Mediterranean, the Black death of 1346 to early 19th century may have originated in central Asia 

and spread from the Caspian Sea to Europe, and modern plague (since 1894), which began in 

southwest China and spread globally via marine shipping routes from Hong Kong. Although 

human disease is rare, Y. pestis is dangerous, highly infectious and thus has been identified as 

having potential for use in bioterrorism or as a biological weapon. 

 It was shown that Y. pestis recently diverged from Y. pseudotuberculosis – an 

enteropathogen, and likely comprises a clonal lineage (1, 3, 37, 40).  Y. pestis strains have 

historically been classified according to their ability to utilize glycerol and reduce nitrate and 

have been grouped into three main subtypes, or biovars: Antiqua, Mediaevalis and Orientalis.  

Isolates from the Orientalis biovar have a worldwide distribution due to spread by steamship 

beginning 100 years ago. In contrast, isolates of Antiqua and Mediaevalis biovars are generally 

limited to localized regions containing long-term plague foci from enzootic rodent hosts in 

Africa and Central Asia. It has been argued that each of the biovars was associated with one of 

the plague pandemics (14, 20, 34) and recent studies have tried to provide direct evidence 

whether Y. pestis was associated with any of the historical pandemics (15, 44). DNA sequences 

from ancient human remains dispute this assertion that different biovars were responsible for 

each of the last three pandemics and suggest that instead, Orientalis-like Y. pestis may have been 

involved in all three (15). This suggestion remains highly controversial. 
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 Isolates from the biovar Antiqua have been thought to represent a more ancestral branch 

of the plague pathogen, primarily due to their association with long-established plague foci as 

well as sharing an additional set of genetic regions with Y. pseudotuberculosis and “non-

classical” (e.g. Microtus biovar) subspecies of Y. pestis. Our previous work using suppression 

subtractive hybridization demonstrated a pattern of difference fragments (DFR profiles), 

including a 15,603 bp segment of chromosomal DNA that was shared by Y. pseudotuberculosis 

and a portion of both the “non-classical” subspecies of Y. pestis and the “classical” biovar 

Antiqua (38). There are currently three completed genome sequences for Y. pestis, one each from 

the Orientalis, the Mediaevalis, and the “non-classical” Microtus biovars.  To get a better 

understanding of the detailed genetic changes in a pathogen that is adapting to an intracellular 

lifestyle, we have sequenced two isolates from the classical “Antiqua” biovar.  Strain Antiqua is 

fully virulent and possesses a DFR profile closest to Y. pseudotuberculosis. A pgm
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the virulent strain Nepal516 was found to have a different DFR profile and is believed to 

represent a different lineage of this biovar. Comparison with the genome sequence of the 

previously sequenced Y. pestis strains as well as Y. pseudotuberculosis gave further insight into 

the loci required for the adaptation to an intracellular pathogenic lifestyle. Additional insight into 

the acquisition of virulence to humans was obtained by the comparison to the human-avirulent 

isolate, 91001. 
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 Y. pestis Nepal516 was isolated from a human infection in Nepal (possibly from a 1967 

outbreak of pneumonic plague), while strain Antiqua was isolated from a human infection in 

Africa (1965, Republic of Congo). Both have been biochemically characterized to belong to the 

Antiqua biovar and carry the three previously described “virulence” plasmids found in most 

classical isolates of Y. pestis. Both strains have been used previously in a variety of studies (4, 

21, 27, 36, 37, 45). The wild type Antiqua strain and a pgm- version of the Nepal516 strain were 

available and used in this genome sequencing project. The Nepal516 strain lacks the ~100 kb 

pgm region, including the high pathogenicity island, the pesticin/yersiniabactin complex, and the 

haemin storage locus, that are normally located between two parallel IS100 insertion elements 

(5, 8, 18, 22, 29, 35, 42). 

Construction, sequencing, and assembly 

  Genomic DNA was isolated from Y. pestis strains Antiqua and Nepal516. 

The two genomes were sequenced using the whole-genome shotgun method as previously 

described (9). Briefly, 3kb- and 8kb-sized, randomly sheared DNA fragments were isolated and 

cloned into pUC18 and pMCL200 respectively, for amplification in Escherichia coli. A larger 

fosmid library was constructed containing approximately 40kb inserts of sheared genomic DNA 

cloned into the pCC1Fos cloning vector. Double-ended plasmid sequencing reactions were 

performed from all three libraries at the Department of Energy Joint Genome Institute using ABI 

3730xl DNA Analyzers and MegaBACE 4500 Genetic Analyzers as described on the JGI 

website http://www.jgi.doe.gov/.  22 
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 Approximately 110,556 and 113,541 of sequences were assembled for Antiqua and 

Nepal516, respectively, producing an average of 11 fold coverage across the genomes. 

Processing of sequence traces, base calling and assessment of data quality were performed with 

PHRED and PHRAP (P. Green, University of Washington, Seattle), respectively.  Assembled 

sequences were visualized with CONSED.  The initial assemblies consisted of 154 and 113 

contigs (≥ 20 reads per contig).  Gaps in the sequence were primarily closed by resolving the 

many repetitive regions found within the genome. The remaining gaps were closed by primer 

walking on gap-spanning library clones or PCR products from genomic DNA.  True physical 

gaps were closed by combinatorial (multiplex) PCR.  Sequence finishing and polishing added 

roughly 300 reads and assessment of final assembly quality was completed as described (9). 

For the genome of Nepal516, the ~70 kb pCD plasmid was underrepresented and was not 

completed as part of the sequencing project. Nepal516 is known to contain the pCD plasmid 

(Scott Bearden, personal communication). The existence of the pCD plasmid was verified by 

PCR in our laboratory (data not shown). We believe that the failure of obtaining sufficient 

quantity of pCD DNA for sequencing is due to particular laboratory conditions and has no 

biological implications on the sequences of the chromosome, pMT and pPCP plasmids.  

Sequence analysis and annotation 

 Automated gene modeling was completed by combining results from Critica, Generation, 

and Glimmer modeling packages, and comparing the translations to GenBank’s non-redundant 

(NR) database using basic local alignment search tool for proteins (BLASTP).  The protein set 

was also searched against KEGG Genes, InterPro, TIGRFams, PROSITE, and Clusters of 

Orthologous Groups of proteins (COGS) databases to further assess function.  Manual functional 

assignments were assessed on individual gene-by-gene basis as needed. Sequence alignment and 
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protein domain search tools (BLAST, CLUSTALW, Pfam, etc) were applied in various stages of 

comparison. CO92 gene nomenclature is used in this work when possible, other nomenclature is 

mentioned and used when no CO92 ortholog is available. 

Single nucleotide polymorphism (SNP) analysis 

 Yersinia genomes are known to harbor extensive rearrangements as well as a large 

number of insertion sequence elements (IS) and other duplicated regions (10, 13, 33, 41). These 

repeats and insertion elements were excluded from consideration in SNP analysis. Genome-wide 

SNP discovery was achieved by whole genome alignments using the software package 

Mummer3 (28) and by subsequent orthologous gene alignments. For coding regions, pair-wise 

reciprocal BLASTP analyses were performed with the five sets of Y. pestis proteins. An ortholog 

pair was defined as reciprocal best top hits using a cutoff of 95% sequence identity. If an 

ortholog was not found in any one of the five genomes, the proteins were removed from further 

analysis. The sequences of the orthologous genes were used to find SNPs using Mummer3. 

Whole genome comparisons were also done using Mummer3. SNPs were selected from regions 

not covered by the ortholog alignment method described above. Synonymous and non-

synonymous sites were calculated as follows: for every position in the genome, it was assessed 

whether it was located in an intergenic or a coding region; if it is in a coding region (excluding 

coding regions from insertion elements and other repetitive elements) and the nucleotides 

substitution results in no change in amino acid sequence, it was classified as a potential 

synonymous SNP site, otherwise it was regarded as a potential non-synonymous site.  

Comparative analysis of gene deletions in Y. pestis genomes 

 We analyzed the loss of function patterns in all Y. pestis genomes, focusing on the 

presence and absence of protein functions. Some deletions, such as tufB deletion in Nepal516 
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(described below), were not included because of gene duplication. Complete datasets of proteins 

for each Y. pestis genome were downloaded from published reports or from the final annotations 

of the newly sequenced genomes. Transposases and enzymes related to insertion elements were 

removed.  The final protein datasets for deletion analysis were 3723, 3909, 3896, 3769, 3777 and 

3867 proteins for strains CO92, KIM, Antiqua, Nepal516, 91001 and Y. pseudotuberculosis 

IP32953, respectively. Pairwise alignments of proteins of all five Y. pestis genomes were 

accomplished by BLASTP. A protein function was deemed absent if there was no top hit greater 

than 95% identity or at least 75% of the query sequence. This analysis focused on the presence or 

absence of protein and functional representation, therefore, if the protein has a closely related 

paralog or is duplicated in the genome, it was considered present. Due to the differences in 

annotation (particularly with smaller gene calls), we applied a cutoff criteria to remove all small 

proteins since these were more frequently found to be  differentially annotated across the Y. 

pestis genomes. With a size filter of 75 amino acids, we are certain to have missed a small 

number of real proteins smaller than 75 amino acids, such as the 61 amino acid carbon storage 

regulator crsA (YPO3304). The final set of proteins found to be absent in at least one genome 

was manually inspected with the aid of multiple sequence alignment tools CLUSTALW and 

nucleotide sequence alignment tool BLASTN. If the deletion was comprised solely of repetitive 

units, the protein was removed from this analysis, because the deletion mechanism may be 

different in those cases and may revert frequently. Additionally, these final sets of proteins were 

inspected in multiple genome alignments to distinguish annotation differences vs. true 

differences in the genomes. A similar set of criteria was employed to see if homologs of these 

proteins exist in the Y. pseudotuberculosis IP32953 genome.  

Nucleotide sequence accession number and locus tag prefixes 
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 The annotated sequences of the complete genomes of Y. pestis strains Antiqua and 

Nepal516 are available at GenBank/EMBL/DDBJ (accession numbers pending). The prefixes 

YPA and YPN are used for locus tags (gene identifier prefixes) in strains Antiqua and Nepal516, 

respectively. When referring to specific genes throughout the text, we use the CO92 gene 

numbers (prefixed with YPO) where possible, unless the gene does not exist in CO92 (or if it is 

clearer to use a different prefix), then the locus tags for a different genome are used and 

mentioned.
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Genome overviews 

 The genomes of Y. pestis strains Antiqua and Nepal516 each consist of a single circular 

chromosome and the three virulence plasmids, pMT, pCD and pPCP, which are associated with 

most classical Y. pestis strains. Here we report all replicons but the pCD plasmid of Nepal516 

(see Materials and Methods). The salient genomic features of each genome are detailed in Table 

1, while gross chromosomal comparisons with those of the CO92, KIM and 91001 strains are 

summarized in Figure 1. Although the global characteristics of the five genomes are quite 

similar, a number of strain-specific insertions, deletions, rearrangements, and single nucleotide 

polymorphisms (SNPs) were identified, along with a unique distribution of insertion sequence 

(IS) elements (see Tables 2, 3, 4 and Supplemental data).  

Strain-specific synonymous SNPs (sSNPs) and non- synonymous SNPs (nsSNPs) 

 The numbers of sSNPs and nsSNPs specific to one or to two genomes are shown in 

Figure 2. There are 57 sSNPs (135 nsSNPs) specific to strain 91001 compared with all other Y. 

pestis strains. While 27 of these sSNPs (49 nsSNPs) are shared with the ancestral Y. 

pseudotuberculosis IP32953, the remaining 30 sSNPs (and 86 nsSNPs) differ with respect to Y. 

pseudotuberculosis IP32953, indicating that they likely arose in 91001 since its lineage diverged 

from the remaining Y. pestis sequenced isolates. Likewise, the 27 sSNPs (and 49 nsSNPs) 

specific to 91001 (and identical to Y. pseudotuberculosis) are mutations predicted to have arisen 

in the other Y. pestis lineage which gave rise to the remaining sequenced strains (Figure 2).  No 

SNPs (sSNPs or nsSNPs) are found to be specific to strain pairs Antiqua and KIM, Antiqua and 

Nepal516, CO92 and KIM, or CO92 and Nepal516.  However, 4 sSNPs (and 6 nsSNPs) are 

found specifically in CO92 and Antiqua (i.e. CO92 and Antiqua share the same SNP state, while 
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all other Y. pestis strains have a different SNP state), and 6 sSNPs (and 11 nsSNPs) are specific 

to KIM and Nepal516. Taken together, these data suggest a separation of these four strains into 

two distinct branches: where Antiqua and CO92 belong to one branch and KIM and Nepal516 

occupy the other (Figure 2). These 2 sets of sSNP and nsSNP mutations have accumulated in the 

short period of time after the KIM/Nepal516 and CO92/Antiqua lineages diverged but before 

each lineage further split into two (Figure 2). Thus, this analysis strongly supports the notion that 

although strains Antiqua and Nepal516 are grouped into the same biovar (Antiqua), they 

represent distinct lineages.  
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 The genes harboring sSNPs (cumulatively for all the Y. pestis strains) can be distributed 

into functional gene categories (based on Clusters of Orthologous Groups) as shown in Figure 3. 

Non-synonymous SNPs are found distributed in 20 COG categories (Figure 3a), while 

synonymous SNPs were distributed in 19 COGs (Figure 3b). We investigated whether SNPs 

belonging to the various branches in Figure 2 are biased towards any functional categories, but 

no unique or biased distribution patterns were found. All strain-specific mutations share 

approximately 1/3 of the COG categories. Although some strain-specific SNPs are found in 

functional categories not represented in any other strain (sSNP: three categories are unique to 

91001 and one category is unique to Antiqua; nsSNP: two categories are unique to 91001) 

(Figure 3a, 3b), the number of SNPs are too small to determine whether these were random 

events. No sSNP vs nsSNP bias was readily apparent (the average nsSNP/sSNP ratio is 

approximately 2.9) except for the large proportion of nsSNPs vs sSNPs in the cell 

wall/membrane biogenesis COG of 91001, with a ratio of 9:2. 

 The gene sequences and gene organization in the plasmids are highly conserved. There is 

only one synonymous SNP in the plasminogen activator protease and 5 SNPs (including small 
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deletions) in non-coding regions of all pPCP plasmids. There are 8 and 17 SNPs in the predicted 

gene sets of all plasmids pCD and pMT, respectively. The majority of these SNPs are in 

hypothetical proteins and are distributed more or less randomly across strains.  

Insertion Sequence (IS) elements and genome rearrangements: 

 As determined by several groups already (10, 13, 33, 46), IS elements have expanded 

tremendously in Y. pestis since its divergence from Y. pseudotuberculosis, and have served as the 

delimiters for recombination events that have led to genomic deletions and genome 

rearrangements. Due to its presumed continued transposition activity in the wild, IS100 elements 

have been successfully used for typing and grouping strains (32). We thus performed a detailed 

analysis of the precise locations of IS100 and the other three major IS elements (IS1541, IS285, 

IS1661) as well as investigated their contribution to the observed rearrangements. 

 Each sequenced strain of Y. pestis has a unique set of IS elements (Table 2) and a core IS 

set that is shared among them. It was previously observed that Y. pestis shares a set of 12 IS 

elements with Y. pseudotuberculosis (3 of each major IS element) that appear to have been 

acquired by Y. pseudotuberculosis before the evolution of Y. pestis based on identical locations 

of insertion (10). In addition to this set of 12, the core set of IS elements shared among all five 

sequenced Y. pestis strains is 45 IS1541, 15 IS100, 11 IS285 and 6 IS1661, indicative of 

elements present in the last common ancestor of all these sequenced strains. Several more (2 

IS1541, 1 IS100, 2 IS285, 2 IS1661) are predicted to be shared among all 5 Y. pestis strains, but 

in at least one strain, these IS elements have been subsequently involved in a deletion event 

between two IS copies (leaving only one behind), or have been lost as part of a larger deletion. 

Similarly, the four classical Y. pestis strains (Antiqua, Nepal516, KIM and CO92) also share a 

subset of the remaining IS elements, distinct from non-classical strain 91001: 5 IS1541, 5 IS100, 

 11



3 IS285 with four additional IS100 elements that have likely been lost in a strain-specific manner 

via deletion as described above. In addition, there are 4 IS elements shared between CO92 and 

Antiqua, and 3 shared between KIM and Nepal516 (Table 2), supporting the SNP-based 

phylogeny in Figure 2 as well as that depicted by Achtman and colleagues (2). Interestingly, a 

small number of IS elements were shared by unexpected groups of strains that disagree with the 

proposed phylogeny: one IS100 shared between 91001, Antiqua and CO92, one IS100 shared 

between Antiqua and KIM; one IS100 in Antiqua, CO92 and KIM; one IS1541 in CO92 and in 

Y. pseudotuberculosis IP32053; one IS285 in CO92, KIM and Nepal but not Antiqua; and one 

IS1541 in Antiqua and in Y. pseudotuberculosis IP32053. 
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 While IS1541 was the most active IS element between the divergence of Y. 

pseudotuberculosis and the most recent common ancestor of the five Y. pestis strains, with 45 

common IS1541 insertions among all sequenced isolates, IS100 has been the most active in more 

recent times, though not equally among the strains (Table 2). This suggests that insertion 

sequence activity may be punctuated and does not occur at a constant rate across different 

strains. With the exception of Nepal516, the number of unique IS100 is significantly more than 

for any other IS element (Table 2), though the reason for this is unclear.  

 Despite their extensive sequence similarity, the Y. pestis genomes appear to be in a state 

of flux with respect to large genome rearrangements. Similar to previous observations, all breaks 

in colinearity between the Yersinia genomes occurs at IS elements or other repeated sequences. 

Differences in the GC skew patterns in Y. pestis genomes, including the many breaks observed in 

Antiqua (Figure 1) are also the result of rearrangements between IS elements as previously 

observed (10, 33, 46). Similarly, IS elements have played a large role in deletion events observed 

in the Y. pestis genomes. For example, strains KIM and CO92 have undergone overlapping 
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IS1541-mediated deletions of 32 kb (YP0966-YP0994, using 91001 nomenclature) and 21.5 kb 

(YP0966-YP0986, using 91001 nomenclature), respectively. This deletion accounted for the 

DFR patterns observed by suppression subtractive hybridization (37). A similar strain-specific, 

IS-mediated deletion of a phage region is described further below. Additionally, a IS1661-

mediated 13 kb deletion in both KIM and Nepal516 has removed a large cluster of flagellar 

genes (YPO0738- YPO0754) including the flagellar RNA polymerase sigma factor and 

chemotaxis membrane proteins.  
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Functional Reduction 

 It has been postulated that the genomes of Y. pestis have undergone functional reduction 

as it made a transition from an oral-fecal pathogen causing gastroenteritis, to a vector-borne 

pathogen causing a fatal, invasive, septicemic disease, where genes have been inactivated by 

various mechanisms, such as deletions/insertions, frameshifts, interruptions by insertion 

elements, and homologous or even non-homologous recombination. We determined all the genes 

and associated functions that have been lost since Y. pestis emerged from Y. pseudotuberculosis 

(by comparing Y. pestis strains and identifying functional losses) to better understand Y. pestis 

diversity and evolution. We have identified a large number of strain-specific gene 

inactivations/deletions as well as some that are specific to only two of the five genomes (Table 

3). Other than hypothetical proteins, there is one dominant category of proteins in these strain- or 

lineage-specific deletions: proteins contributing to the interaction of bacterium with its 

environment or host, including membrane proteins, membrane receptors, ABC transporters, 

flagellar proteins and chemotaxis proteins.  

The number of strain-specific lost functions was not equal among all strains. In part, this 

can be explained by several large deletions that effectively delete many genes (functions) in a 
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single event. While strain 91001 and Antiqua had the greatest number of strain-specific function 

losses with 69 and 41 respectively, it is interesting to note that CO92 was found to have the 

fewest compared to other strains. Though strains Antiqua and 91001 share several gene 

inactivations (8 proteins), these are the result of independent mutations (homoplasy), while those 

lost in CO92 and Antiqua (12 proteins), as well as those lost in KIM and Nepal516 (16 proteins) 

share lineage specific, inherited mutations (function losses) that support the phylogenetic tree.  

Of the 69 functional losses specific to 91001, 24 are hypothetical protein, seven are 

membrane proteins, seven are phage-related proteins, five are regulatory proteins and three are 

transporters. Some of these 91001-specific losses of function may be related to its human-

avirulent phenotype. Twenty-one of the 69 belong to a single IS285-mediated deletion event 

(YPO2108 – YPO2134). 

 Ten of the 41 Antiqua-specific lost functions were the results of two deletion events. 

Several inactivated or deleted genes were predicted to be directly or indirectly involved in 

interactions with environment. For example, a glutathione S transferase, YPO2367, is missing 

from the Antiqua genome. This family of enzymes routinely responds to oxidative stress or 

detoxification, which can be encountered during entry into phagocytic cells (12). Since bacteria 

usually have multiple glutathione S transferases (CO92 has at least 4 based on the annotation), 

losing one may not have a distinct phenotype. Interestingly, there were several cases where 

similar functional inactivations/deletions were observed in two strains that affect different genes 

that may have overlapping functions. For example, a potassium efflux pump (YPO3129) was 

inactivated in Antiqua and a Na+/H+ antiporter (YPO2142) inactivated in KIM. The role of the 

Na+/H+ antiporter is sodium extrusion (24) and both the Na+/H+ antiporter and the potassium 

efflux are involved in pH homeostasis. Since both Antiqua and KIM are geographically limited 
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to localized regions, one possible explanation for the differential inactivations is local adaptation 

to selectively maintain one of the two similar functions. An alternate possibility is that neither 

gene is required, that the differences observed in these sequenced strains were random events, 

and that both genes are not required and are on their way to being lost from the Y. pestis gene 

pool. Whether the similarity of the deletion profiles mentioned above reflects adaptations to their 

environmental niches or convergent evolution remains to be investigated.  

  Of the 20 KIM-specific inactivated genes, seven are concentrated in one deletion, and the 

inactivation via nonsense mutation of YPO3038 (NapA, a periplasmic nitrate reductase) is 

proposed to be one of the causes of the nitrate negative phenotype of the Medievalis biovar. 

Nepal516 has 13 specific lost functions, including two transporters (YPO2835 and YPO1350), 

the chromosomally-encoded type III secretion system protein YPO0266, and two classical 

virulence factors (YPO2291 – a putative virulence factor and YPO0599 – a hemolysin/adhesin 

mentioned further below). Some of the deletions in Nepal516 have been previously demonstrated 

experimentally by microarray hybridizations (21). There are only four lost functions 

(pseudogenes YPO1087 and YPO3679, along with y1377 and y2928 using KIM nomenclature) 

that are CO92-specific losses, yet all are putative proteins without clear functional predictions. 

 No genetic regions were identified in the genomes of Antiqua or Nepal516 that were not 

present in at least one of the previously sequenced Y. pestis or Y. pseudotuberculosis strains. 

Though there were a number of Antiqua and Nepal516 genes or domains of genes that were 

found to differ significantly from the other strains, many of these differences consist of varying 

numbers of degenerate tandem repeat elements within the coding sequences of surface proteins, 

such as in the invasin YPO3944 described further below, and were not interpreted as losses of 

function. Surprisingly, our analysis revealed only one example of a strain-specific unique genetic 
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region with no similar DNA sequence in any of the other four sequenced strains or in the Y. 

pseudotuberculosis genome. This is a ssDNA prophage found inserted in CO92 (YPO2271 – 

YPO2281). This region has been found by PCR in all tested biovar Orientalis strains as well as a 

few African strains of the biovar Antiqua (10, 19). 
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Differences in putative virulence factors  

Most characterized and putative classical virulence factors are identical throughout all 

five Y. pestis strains, including those found on the virulence plasmids, such as the pPCP-located 

plasminogen activator Pla required for successful subcutaneous infection (11), and the pMT-

encoded murine toxin (Ymt) (23) and F1 capsular protein (16) (important for Y. pestis life cycle 

and vector-mammal transmission). Similarly, loci on the chromosome are also nearly identical 

between strains, such as the RTX-like toxin gene YPO0947, the attachment invasion locus ail 

(YPO2905) and two ail-like genes (YPO1860, YPO2190) are virtually identical among Y. pestis 

strains and with Y. pseudotuberculosis as well. Interestingly, a fourth ail-like gene (YPO2506) 

has been deleted from the Antiqua genome. 

Other loci, known to differ between Y. pestis and Y. pseudotuberculosis, were also 

investigated. The Y. pestis invasin YPO1793 is interrupted by an IS1541 in all strains, while 

putative adhesin YPO1562 interrupted by an IS285 in all Y. pestis strains except for 91001, 

which harbors a nonsense mutation instead. Both are intact in Y. pseudotuberculosis. Similarly, 

RTX transporter YPO2250 and the TccC-family insecticidal toxin YPO2312 are frameshift 

pseudogenes in all Y. pestis strains but appear intact in Y. pseudotuberculosis. 

A second TccC insecticidal toxin homolog, YPO2380 has been deleted only in Y. pestis 

KIM. Two additional TccC toxins are found in tandem in all Y. pestis strains (YPO3674, 

YPO3673), while only a single copy is found in Y. pseudotuberculosis. In Y. pestis, a second 
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family of insecticidal toxins is found upstream of these two TccC homologs and consists of a 

complex of three genes (YPO3681, YPO3679, YPO3678). While these are present and highly 

similar in amino acid sequence in Y. pseudotuberculosis, YPO3681 is inactivated by a frameshift 

only in Antiqua, and YPO3679 harbors a frameshift in CO92 only. 

One Y. pestis hemolysin/adhesin, YPO0599, located within a possible pathogenicity 

island (YPO0641a-YPO0590) is different from that of Y. pseudotuberculosis at the C-terminus. 

Several additional CDSs can be seen downstream in Y. pseudotuberculosis that appear to be 

“modules”, or adhesin fragments that share high similarity to portions of the C-terminus of this 

CDS. Different “modules” are found downstream of the Y. pestis gene. Interestingly Nepal516 is 

missing a large section of the C-terminal portion of this protein, likely due to a recombination 

between one of these modules and the corresponding section in the Nepal516 gene. The 

remainder of this pathogenicity island is highly similar between Y. pestis strains and Y. 

pseudotuberculosis. A similar module-recombination scenario is envisioned to have resulted in a 

modified C-terminus of hemolysin/adhesin YPO2490 in 91001 compared to the other Y. pestis 

strains and Y. pseudotuberculosis. A different mechanism, the expansion or contraction of 

degenerate repeat units within the putative invasin YPO3944, has resulted in different sized 

invasins in Y. pseudotuberculosis (5623 aa - amino acids), and the various Y. pestis strains 

(91001, 3108 aa; Nepal516, 4270 aa; KIM, CO92 and Antiqua, 3013 aa). Further study is 

required to understand any phenotypic effect these two classes of differences may have. 

Loss of functional TufB in Nepal 

 The genomes of Y. pestis and of several other organisms have two copies of the 

elongation factor Tu (EF-Tu). Due to its highly conserved function and ubiquitous distribution, 

elongation factors are considered a valuable phylogenetic marker and have been used in 
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evolution studies of Enterococci (26), Lactobacillus (43) and other eubacteria (39). Interestingly, 

in Y. pestis, the two copies of this gene are not as conserved as the two genes of Escherichia coli, 

yet the conservation within each copy (among Y. pestis strains) is maintained. In E. coli, tufA and 

tufB gene products only differ by a single amino acid (7) and exhibit identical physical, chemical 

and catalytic properties (17). We found that all five Y. pestis genomes and Y. pseudotuberculosis 

have two copies of tuf genes (tufA, tufB) and the general operon structure is similar to that of E. 

coli, however, the sequence identity between the Y. pestis tufA and tufB is considerably lower. 

There are 17 amino acid differences (4%) and a total of 138 nucleotide changes (11.7%) in 

addition to a large C-terminal deletion in tufB of Nepal516. This result is unexpected, since 

previous studies show that duplicate tuf gene within a genome differ on average by 0.7% in 

nucleotide sequence (30). Whether the two copies of the tuf genes in Y. pestis have different 

origins requires further investigation. All six Yersinia TufA proteins are 100% identical and all 

Y. pestis tufA genes have identical nucleotide sequences while Y. pseudotuberculosis has a single 

synonymous SNP (G to A). Although the tufB gene products differ from tufA, a similar 

conservation is evident. We have found however that the TufB of Nepal516 harbors a large C-

terminal deletion which affects 57 aa (or 67%) of the GTP-EFTu-D3 domain, involved in 

binding charged tRNAs and EF-Ts(6). This deletion is likely to cause loss of functionality and 

thus we believe TufB is not functional in Nepal. It is not known whether the two copies are 

expressed under different conditions or have slightly different functions or kinetic properties, 

however, this deletion leads us infer that Y. pestis requires only one functional copy for its life 

cycle.  
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 A previous comparison between strain 91001 and human virulent strains CO92 and KIM 

revealed a number of differences, including a 33-kb prophage-like sequence (YPO2096 – 

YPO2135) that was absent in 91001 but intact in both CO92 and KIM, and suggested that this 

difference may have contributed to this strain’s lack of virulence in human (41). This entire 

region was also absent in Y. pseudotuberculosis (10) consistent with this claim. Our analysis 

shows that this phage-like region is intact in Nepal516, but is partially deleted in Antiqua (Table 

4). While the deletion in 91001 can be attributed to recombination between two parallel IS100 

elements, the smaller deletion in Antiqua (from YPO2087 – YPO2106) is likely due to excision 

between two IS285 sequences (Supplemental data). Since Antiqua is a fully virulent strain, the 

region deleted in Antiqua would not seem to contribute to human pathogenicity, however the 

remaining portion of the prophage region deleted from 91001 may indeed contain genes that are 

important for human virulence. 

 Previous comparisons with CO92 and KIM also revealed a list of 91001-specific 

pseudogenes that may be related to Y. pestis pathogenicity and host range (41). Our gene 

reduction analysis included two additional virulent strains and confirmed the presence or absence 

of orthologs in Y. pseudotuberculosis based on our cutoffs (refer to Materials and Methods). 

While all of these 91001-specific pseudogenes were also intact in Antiqua (Supplemental data), 

only one (YPO2258) was also found to be inactivated in Nepal, suggesting this gene has no 

impact on the avirulent property of 91001 in humans. Among the 91001-specific pseudogenes, 

there are only four that are also absent in Y. pseudotuberculosis, YPO0733 (flagellar hook-

associated protein), YPO0737 (flagellin), YPO0962 (hypothetical protein) and YPO3110 

(putative O-unit flippase). In addition, the nsSNP mutations that contribute to changes in single 

amino acids in many proteins may affect 91001 or other Y. pestis strain virulence in subtle ways. 
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For example, nsSNPs were found in some genes with a possible role in virulence (e.g. the 

Antiqua ail gene YPO2905 carries a nsSNP, as does the 91001 RTX toxin gene YPO0947), but 

the significance of these substitutions is not known. 

DISCUSSION 

 This work presents the complete genome sequences for the two previously unsequenced 

Y. pestis major lineages (both designated Antiqua using classical nomenclature). Phylogenetic 

relationships were elucidated clearly with the distribution of synonymous SNPs (Figure 2). Since 

synonymous mutations do not affect protein functions (unlike nsSNPs or some IS elements), 

their accumulation is not under selective pressure, making this the least biased method for 

inferring evolutionary relationships. The distribution of sSNPs convincingly demonstrates that a 

single biovar Antiqua is an inaccurate phylogenetic representation supporting previous claims 

that categorize Antiqua strains into two groups (2, 10). Using terminology proposed previously 

(2), lineage 1.ANT (African strain Antiqua) is closely related to Orientalis strain CO92 while 

2.ANT (Asian strain Nepal516) is more closely related to Medievalis strain KIM. These four 

“classical” isolates fall on a branch separate from the non-classical, human-avirulent Chinese 

strain 91001. This analysis also revealed a relatively rapid divergence of the four distinctive 

lineages from two ancestral lines for the “classical” Y. pestis strains.  Although it is only possible 

to make very crude estimations of age of descent for these four lineages, the numbers of sSNPs 

are consistent with all of the lineages being present within the last 1,500 years of the 3 great 

pandemics (calculation not shown). 

Comparison of all five Y. pestis sequences reveals extensive DNA sequence 

rearrangement, widespread gene reduction and strain-specific IS elements, as well as SNPs. It 

was previously reported  that Y. pestis strains differ greatly in genome synteny, and that repeated 
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sequences most often were found at the borders of rearrangements (10, 13). Indeed, most 

rearrangements occur at IS elements and regardless of which genomes were chosen for two-way 

comparisons, we identified similar numbers of rearrangements to those previously observed 

between Y. pestis strains (13) and even between Y. pestis and Y. pseudotuberculosis (10) (data 

not shown). The question remains whether these observed rearrangements have any effect on 

transcription or whether this has an overall destabilizing influence on the genome. 

The distribution pattern of IS elements in the sequenced strains generally supports the 

SNP-derived phylogeny with several IS elements shared across all “classical” strains but not in 

91001 as well as IS elements found only in the CO92/Antiqua or KIM/Nepal516 pairs of strains. 

Only a few (5 in total) IS elements found to be shared by two or more strains did not conform to 

the predicted phylogeny (footnotes in Table 2); similar observations have been reported 

previously (2). Our analyses suggest that a small number of IS elements may have been precisely 

excised from their insertion locations, that identical insertion events have occurred in 2 different 

strains/lineages, or that there may be some limited horizontal transfer between Y. pestis strains 

that have resulted in mobilizing IS elements from one strain to a different strain/lineage (or 

alternatively, removing an IS element by introduction of wild type sequence). One example is an 

aminotransferase (YPO3250) that is disrupted by an IS100 in all sequenced Y. pestis strains 

except Nepal516, which instead has the wild type gene and no trace of an IS100. These data also 

suggest that certain IS elements may not be useful for typing or grouping strains and may explain 

certain discrepancies in phylogenetic groupings using different methods. 

Interestingly, the entire complement of IS1541 (and almost all IS1661) elements in strain 

91001 was acquired by the ancestor of all Y. pestis strains. In contrast, since 91001 diverged 

from the other strains, it has acquired a number of strain-specific IS100 and IS285 elements, 
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supporting the idea of actively integrating IS elements within the genome of Y. pestis. With the 

exception of Nepal516, IS100 appears to have been more active (greater number of new 

transposition events) than other IS elements, but the reason for this is unknown. 
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Functional reduction analysis also generally agrees with the SNP-based phylogenetic tree 

(Figure 3) as well as with a more limited study that identified the loss of gene regions across a 

panel of Y. pestis isolates using a CO92 gene-specific microarray (21). Similar to the IS and SNP 

data, the four “classical” strains appear to share an evolutionary path distinct from strain 91001 

based on functional reduction, and the KIM/Nepal516 and CO92/Antiqua  pairs also exhibit a 

larger number of shared function loss. The exceptions are the result of independent mutations: 

two shared losses between KIM and Antiqua; one shared loss between Nepal516 and 91001; 

eight shared losses between Antiqua and 91001 and 16 shared losses between CO92 and KIM 

(Supplemental data and Table 3). The two shared function losses between KIM and Antiqua are 

a putative siderophore biosynthetic enzyme and a putative membrane protein. The predicted 

functions suggest that both of the proteins could be involved in interactions with the 

environment, therefore these losses may reflect adaptations to the Y. pestis microenvironment. 

Similarly, the single functional loss shared between Nepal516 and 91001 is the arabinose operon 

regulatory protein. Although the observed shared loss of function between Antiqua and 91001 

contained several genes, they are exclusively in the prophage region described above and it is the 

result of independent deletion events. The shared losses between CO92 and KIM were possibly 

from a single deletion event. 

Strain 91001 has the highest number of strain-specific losses of function with a total of 

69. Interestingly, all but four of the 91001-specific pseudogenes have homologs with >90% 

identity in Y. pseudotuberculosis, suggesting that 91001 lost those genes while other virulent Y. 
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pestis strains retain them. It is possible that these genes may be involved in human-virulence 

and/or fitness in the human host. Some inactivated proteins may be related to pathogenicity, such 

as hemolysin (YPO2045), sulfatase and sulfatase modifier protein (YPO3046 and YPO3047), 

UPD-glycosyltransferase (YPO1985) and O-unit flippase-like protein (YPO3110) (Supplemental 

data). Hemolysin is a toxin that forms transmembrane channels and is involved in heme 

utilization and adhesion. The precise function of the sulfatase operon (YPO3046 and YPO3047) 

in Y. pestis is not known, however these enzymes belong to a family of proteins that hydrolyze 

various sulfate esters or catalyze sulphur insertions. In mammalian cells, the oligosaccharide 

moieties on glycoproteins, glycolipids and proteoglycans are frequently modified with sulfate. 

Sulfatase from pathogenic bacteria have been shown to interact with mucin (47) and a previous 

study suggested that mucin-sulphatase activity in Burkholderia cepacia and Pseudomonas 

aeruginosa may contribute to their association with airway infection in cystic fibrosis patients by 

possibly facilitating bacterial colonization (25). Thus, the deletion of the sulfatase and sulfatase 

modifier protein in strain 91001 may have contributed to its human-avirulent phenotype. Finally, 

the O-unit flippase is involved in translocating polysaccharide unit across the membrane while 

UDP-glycosyltransferase (YPO1985) is typically involved in O-antigen biosynthesis. Since Y. 

pestis is known to lack O-antigen, the actual functions of YPO3110 and YPO1985 may not 

directly involve O-antigen but perhaps other surface polysaccharides. 
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Antiqua also had a high number of strain-specific losses, even after discounting the 

deletion events which involved several genes (41 and 31, respectively). Interestingly, we found a 

correlation with the observed higher IS100 transposition activity in Antiqua, with 13 of the 31 

inactivations due to IS100 interruptions. The profile of Antiqua-specific loss of function contains 

a significant amount of proteins which interact with environment, such as glutathione S-
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reductase, chemotaxis protein, porin C protein, potassium efflux pump, insecticidal toxin, 

flagellar motor switch protein and 6 membrane proteins without specific known functions. A 

possible explanation for this may be that the genome has been adapting to the niche the Antiqua 

organism occupies. 

Discounting those genes lost in a single deletion event, the numbers of KIM-specific (14) 

and Nepal-specific (13) functional loss are similar. Surprisingly, only three CO92-specific losses 

of function were identified. It is possible that there was a selective advantage for the Orientalis 

biovar to maintain a greater repertoire of genes and to maintain flexibility and be able to adapt 

quickly to new host(s). The world-wide distribution of this group and the small number of CO92-

specific putative gene inactivations is consistent with this theory. A 31 amino acid deletion in 

YPO3937 (473 amino acids) confers the glycerol negative phenotype of biovar Orientalis (33), 

however since the deletion is below length cutoff threshold, it was not included in our study as a 

loss of function. Unique to strain CO92 are a hypothetical protein (YPO2469), a hemolysin 

activator protein (YPO3720) and a prophage that do not exist or have been inactivated in the 

other sequenced Y. pestis strains or Y. pseudotuberculosis. These genes may again have been 

retained by CO92 to maintain its ability to interact with a more variable environment.  

  Unexpectedly we found that Nepal516 has many exceptions compared with the other 

sequenced Y. pestis strains, including the apparent loss of function of TufB, the much smaller 

number of Nepal516-specific SNPs compared to that of the other strains (Figure 2), and the fact 

that IS100 has not been as active in Nepal516 as in the other strains (Table 2). Since both 

nsSNPs and sSNPs are equally affected, it is unlikely that this is due to selective pressure which 

should have a neutral effect on sSNPs, but rather that the mutation rate is responsible, suggesting 

the rate of mutation or evolution is slower in Nepal. The reason for this is not known, however a 
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possible explanation may be that this phenomenon is driven by fewer rounds of bacterial division 

with a relatively cooler local environment and hibernation of the host(s) that fostered fewer 

opportunities for transmission.  

Despite the observed differences between different strains of Y. pestis, the sequenced 

genomes reveal a highly conserved chromosomal backbone, reminiscent of what is observed in 

Bacillus anthracis (31). Within the five genomes of Y. pestis compared here, a single region 

present in strain CO92 was found to be unique (not shared with another Y. pestis genome), 

though independent studies have shown that this region which encodes phage genes is present in 

most, if not all 1.ORI strains as well as some 1.ANT strains (10, 19). We thus believe that most 

of the genomic sequence shared among the “classical” Y. pestis isolates is represented within this 

data set, though other sequences of non-classical isolates may harbor novel genomic regions not 

revealed in these analyses. 

Conclusions 

 The two completed genomes presented here, from the previously unrepresented Antiqua 

biovar, have provided important references for SNP discovery, for the study of insertion element 

distribution, genome rearrangement, and reductive evolution in Y. pestis. Comparisons of the 

four virulent “classical” strains to the human-avirulent strain 91001 have also provided further 

insight into Y. pestis human virulence. With sSNPs as the preferred method for elucidating 

phylogenetic relationships, strains Nepal516 and Antiqua were convincingly placed in two 

clearly separate branches, with one branch shared by strains KIM (Mediaevalis) and Nepal516,  

and the other shared by strains CO92 (Orientalis) and Antiqua. While IS element distributions 

and function loss across the strains generally agreed with such a phylogenetic representation, 

certain exceptions were found and are thought to be the result of lack of selective pressure in the 
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Y. pestis strains inhabited niche, of possible horizontal gene exchange between Y. pestis strains, 

or of homoplasy in the reductive processes. Though there is some evidence of convergent 

evolution, whether this is the primary mechanism underlying the observed discrepancies remains 

to be investigated. The Y. pestis genome is a clear example of one actively undergoing reductive 

evolution, as its lifestyle has altered from an enteropathogen to an intracellular pathogen.  The 

genome has slowly accumulated inactivations and deletions that result in loss of function, which, 

for the virulent strains (all strains except 91001), have little effect on pathogenicity. The 

differences between these strains and the human-avirulent 91001 provide an ideal starting point 

for future experiments to elucidate the mechanisms involved in Yersinia pathogenicity.  
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Table 1. General genome features for Yersinia pestis strains Antiqua and Nepal516 

 Antiqua Nepal516 
Chromosome Size (bp) 4,702,289 4,534,590 
G+C content (%) 47.70 47.58 
Coding sequences 4138 3956 
Average gene length (bp) 953 958 
Coding Density (%) 83.8 83.6 
16S-23S-5S rRNAs 7 7 
Transfer RNAs 68 72 
   
pMT Size (bp) 96,471 100,918 
G+C content 50.24 50.16 
Coding sequences 99 104 
Average gene length (bp) 832 820 
Coding Density (%) 85.3 84.5 
   
pCD Size (bp) 70,299 -* 
G+C content 44.83  
Coding sequences 89  
Average gene length (bp) 601  
Coding Density (%) 76.1  
   
pPCP Size (bp) 10,777 10,778 
G+C content 45.44 45.44 
Coding sequences 9 9 
Average gene length (bp) 573 573 
Coding Density (%) 47.8 47.8 
   
*pCD of Nepal516 was not completed in this study, see Materials and Methods 
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Table 2. Chromosome comparison between the sequenced Y. pestis strains 

 Antiqua Nepal516 91001 KIM CO92 
Molecular 
grouping (1) 1.ANT 2.ANT 0.PE4 2.MED 1.ORI 

Size (bp) 4,702,289 4,534,595 4,595,065 4,600,755 4,653,728 
Total IS elements 
IS100 75 32 30 34 44 
IS285 24 25 23 19 21 
IS1541 67 64 47 55 65 
IS1661 10 8 8 8 8 
Unique IS elements* 
IS100 39 4 15 6 13 
IS285 2 4 11 1 1 
IS1541 5 4 0 0 8 
IS1661 1 0 0 0 0 
 

*Some IS elements were shared between expected partners such as three IS100 and one IS285 

shared between Antiqua and CO92, as well as one IS100, one IS1661 and one IS1541 shared 

between Nepal516 and KIM. However, five exceptions were observed: one IS100 shared 

between 91001, Antiqua and CO92 but not present in Nepal or KIM; one IS100 in 91001, 

Antiqua, CO92 and KIM but not in Nepal; one IS285 in 91001, CO92, KIM and Nepal but not in 

Antiqua; one IS1541 in CO92 and in Y. pseudotuberculosis IP32053; one IS1541 in Antiqua and 

in Y. pseudotuberculosis IP32053 

 

 

 35



 

 

 

 

Table 3. Genome specific inactivation of genes 

 

Deletion specific to 
the genome(s) 

Number of proteins  
inactivated 

CO92 4 
KIM 20 

Antiqua 41 
Nepal516 13 

91001 69 
CO92, KIM 0 

CO92, Antiqua 11 
CO92, Nepal516 0 

CO92, 91001 0 
KIM, Antiqua 2 

KIM, Nepal516 16 
KIM, 91001 0 

Antiqua, Nepal516 0 
Antiqua, 91001 8 

Nepal516, 91001 1 
 

* For rows with 2 strains, the data indicate inactivations in the same CDS of both strains 
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Table 4. Prophage-like fragment specific to virulent Y. pestis strains 

 

Y. pestis Y. pseudo-
tuberculosis GENE 

CO92 KIM ANTIQUA NEPAL IP32953 
COG Product 

YPO2095 + + - + - - hypothetical 
protein 

YPO2096 + *+ - *+ - - hypothetical 
protein 

YPO2097 + *+ - *+ - - hypothetical 
protein 

YPO2098 + + - + - R putative phage 
lysozyme 

YPO2099 + + - + - - 
putative 
prophage 
endopeptidase 

YPO2100 + + - + - S phage regulatory 
protein 

YPO2101 + + - + - - hypothetical 
protein 

YPO2102 + + - + - - hypothetical 
protein 

YPO2104 + + - + + L 

transposase for 
the IS285 
insertion 
element 

YPO2108 + + + + - - hypothetical 
protein 

YPO2109 + + + + - - hypothetical 
protein 

YPO2110 + + + + - - hypothetical 
protein 

YPO2111 + + + + - - hypothetical 
protein 

YPO2112 + + + + - - hypothetical 
protein 

YPO2113 + + + + - - hypothetical 
protein 

YPO2114 + + + + - - hypothetical 
protein 

YPO2115 + + + + - - hypothetical 
protein 

YPO2116 + + + + - - hypothetical 
protein 

YPO2117 + + + + - - hypothetical 
protein 

YPO2118 + *+ *+ *+ - - hypothetical 
protein 

YPO2119 + + + + - S putative phage 
tail protein 

YPO2120 + + + + - S hypothetical 
protein 

YPO2122 + + + + - S hypothetical 
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protein 

YPO2123 + + + + - R 
putative phage 
minor tail 
protein 

YPO2124 + + + + - - hypothetical 
protein 

YPO2125 + + + + - - 
putative phage 
regulatory 
protein 

YPO2126 + + + + - K hypothetical 
protein 

YPO2127 + + + + - - 
putative phage-
related membrane 
protein 

YPO2128 + *+ *+ *+ - - 
putative phage-
related 
lipoprotein 

YPO2129 + + + + - S 
putative phage 
tail assembly 
protein 

YPO2130 + *+ *+ *+ - - hypothetical 
protein 

YPO2131 + + + + - S 
putative phage 
host specificity 
protein 

YPO2132 + + + + - - hypothetical 
protein 

YPO2133 + + + + - - hypothetical 
protein 

YPO2134 + + + + - - 
putative phage 
tail fiber 
assembly protein 

YPO2135 + *+ + + - - hypothetical 
protein 

YPO2487 + *+ *+ *+ *+ - putative 
membrane protein 

YPO2488 + + + + + - hypothetical 
protein 

YPO2489 + + + + + S hypothetical 
protein 

 

* The protein sequence was not found in the genome, however, the DNA fragment did exist in 

the intergenic region. 
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Figure 1. Circular representation of the strain Antiqua (A) and strain Nepal516 (B) 

chromosomes. The different rings represent (from outer to inner): 1 and 2, all genes color-coded 

by functional category; 3 and 4, IS elements (IS100, IS285, IS1541, IS1661); 5, deviation from 

average G+C content; 6, GC skew.  

 

 

Figure 2. Phylogenetic ordering of Yersinia by SNP analysis. The number of sSNPs and the 

number of nsSNPs (in parentheses symbols) are illustrated at the corresponding positions.  

 

 

Figure 3. Functional distribution of genes bearing SNPs. The number of genome-specific nsSNPs 

(Fig. 3a) and sSNPs (Fig. 3b) were grouped into COG functional classes. These were sub-

categorized based on what genome(s) they were found in (light orange: 91001; red: CO92; dark 

red: KIM; blue: Antiqua; light blue: Nepal516; green: KIM and Nepal516; yellow: Antiqua and 

CO92). COG functional classes: C, energy production; D, cell division; E, amino acid 

metabolism; F, nucleotide metabolism; G, carbohydrate metabolism; H, coenzyme metabolism; 

I, lipid metabolism; J, translation; K, transcription; L, DNA replication or repair; M, cell 

wall/membrane biogenesis; N, cell motility; O, posttranslational modification; P, inorganic ion 

metabolism; Q, secondary metabolites biosynthesis, transport and catabolism ; R, general 

function prediction only; S, function unknown; T, signal transduction; U, intracellular trafficking 

and secretion; V, defense mechanism
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