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Abstract 
 

Existing human genome assemblies have almost entirely excluded highly repetitive sequences 

within and near centromeres, limiting our understanding of their sequence, evolution, and 

essential role in chromosome segregation. Here, we present an extensive study of newly 

assembled peri/centromeric sequences representing 6.2% (189.9 Mb) of the first complete, 

telomere-to-telomere human genome assembly (T2T-CHM13). We discovered novel patterns of 

peri/centromeric repeat organization, variation, and evolution at both large and small length 

scales. We also found that inner kinetochore proteins tend to overlap the most recently 

duplicated subregions within centromeres. Finally, we compared chromosome X centromeres 

across a diverse panel of individuals and uncovered structural, epigenetic, and sequence 

variation at single-base resolution across these regions. In total, this work provides an 

unprecedented atlas of human centromeres to guide future studies of their complex and critical 

functions as well as their unique evolutionary dynamics.  

 

 

 

One-sentence summary: Deep characterization of fully assembled human centromeres reveals their 
architecture and fine-scale organization, variation, and evolution.  
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Introduction 

 

The human genome reference sequence has remained incomplete for two decades. Genome assembly 
efforts to date have excluded an estimated 5-10% of the human genome, most of which is found in and 
around each chromosome’s highly repetitive centromere, owing to a fundamental inability to assemble 
across long, repetitive sequences using short DNA sequencing reads (1, 2). Centromeres function to 
ensure proper distribution of genetic material to daughter cells during cell division, making them critical 
for genome stability, fertility, and healthy development (3). Nearly everything known about the 
sequence composition of human centromeres and their surrounding regions, called pericentromeres, 
stems from individual experimental observations (4–7), low-resolution classical mapping techniques (8, 
9), analyses of unassembled sequencing reads (10–13), or recent studies of centromeric sequences 
on individual chromosomes (14–16). As a result, millions of bases in each chromosome’s 
peri/centromere have remained largely uncharacterized and have been omitted from essentially all 
contemporary genetic and epigenetic studies. Emerging long-read sequencing and assembly methods 
have now enabled the Telomere-to-Telomere Consortium to produce the first complete assembly of an 
entire human genome (T2T-CHM13) (2). This effort relied on careful measures to correctly assemble, 
polish, and validate entire centromeric and pericentromeric repeat arrays for the first time (2, 17). By 
deeply characterizing these newly assembled sequences, we present the first high-resolution, genome-
wide atlas of the sequence content and organization of human peri/centromeric regions. 
 

Centromeres provide a robust assembly and attachment point for kinetochore proteins, which physically 
couple each chromosome to the mitotic or meiotic spindle (3). Compromised centromere function can 
lead to nondisjunction, a major cause of somatic and germline disease (18, 19). In many eukaryotes, 
the centromere is composed of tandemly repeated DNA sequences, called satellite DNA, but these 
sequences differ widely among species (20, 21). In humans, centromeres are defined by alpha satellite 
DNA (αSat), an AT-rich repeat family composed of ~171 bp monomers, which can occur as different 
subtypes repeated in a head-to-tail orientation for millions of bases (22, 23). In the largest αSat arrays, 
different monomer subtypes belong to higher order repeats (HORs); for example, monomer subtypes 
a,b,c can repeat as abc-abc-abc (24, 25). Each array can contain thousands of nearly identical HORs, 
but kinetochore proteins bind only a subset of HORs within a single HOR array on each chromosome 
(25). HOR arrays tend to differ in sequence and structure between chromosomes (26, 27) and, like 
other satellite repeats, they evolve rapidly, expanding and contracting in repeat copy number over time, 
generating a high degree of polymorphism across individuals (28–31). Active (kinetochore-binding) 
centromeric sequences are embedded within inactive pericentromeric regions, which often include 
smaller arrays of diverged αSat monomers that lack HORs (26, 32). Pericentromeric regions also 
contain transposable elements and segmental duplications, which sometimes include expressed genes 
(33, 34), and frequently contain non-centromeric satellite repeat families (Human Satellites 1-3, beta 
and gamma satellite, reviewed (35)), which have poorly understood functions. Given the unprecedented 
opportunity to explore these regions in a complete human genome assembly, we investigated the 
localization of inner kinetochore proteins within active centromeres and surveyed sequence-based 
trends in the structure, function, variation, and evolution of peri/centromeric DNA.  
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Complete assessment of αSat substructure and evolution 

 

Human peri/centromeric satellite DNAs represent 6.2% of the T2T-CHM13v1.0 genome (~189.9 Mb) 
(Supplemental Section 1, Table S1,2, Fig. S1), which is roughly equal to the entire length of 
chromosome 4. Nearly all of this sequence remains unassembled in the current GRCh38/hg38 
reference sequence (hereafter, hg38), including pericentromeric satellite DNA families that extend into 
each of the five acrocentric short arms. Based on decades of individual observations, a framework for 
the overall structure of a typical human peri/centromeric region has been proposed (Fig. 1A). Using the 
CHM13 assembly, we tested and largely confirmed this broad framework genome-wide at base-pair 
resolution, with some notable and surprising exceptions (Fig. 1B,C). 
 
Consistent with prior studies (reviewed by (36)), all centromeric regions contain long tracts, or arrays, 
of alpha satellite (αSat) monomers, which are organized in a head-to-tail orientation spanning millions 
of bases (85 Mb total genome-wide). A genome-wide assessment of CHM13 αSat monomers revealed 
a broad range of pairwise sequence identity, with limited deviation in repeat unit length (median 171 
bp, with 99.5% within the range 140-187 bp). We next compared these CHM13 monomers with those 
found in hg38, which are mostly limited to 59 Mb of centromere reference models that lack biologically 
meaningful long-range repeat structures (11). We found these monomer sets to be largely concordant 
with respect to both pairwise sequence identity (≥98%) and chromosomal localization, with only a small 
number of repeats specific to each respective assembly (CHM13 vs hg38) (Supplemental Section 1, 
Table S3).  
 
Using previously described methods (32, 37, 38), we performed complete, monomer-by-monomer 
classification of all αSat into 20 distinct suprachromosomal families (SFs; Supplemental Section 1). 
Each family is composed of SF-specific monomer classes (Table S4). SFs annotated include novel SFs 
01 and 02, which unite the sequences previously identified as archaic SF1 and SF2, respectively (37, 
38), and SFs13-18, which represent small pieces of the most ancient αSat and occur far from the 
centromere, presumably at the sites of long-defunct ancient centromeres (Table S5). Within each 
centromeric region, we identify between 1 and 9 HOR arrays, totaling 70 Mb genome-wide (62 Mb 
active HORs, 8 Mb inactive HORs, Fig. 1). Although 18 out of 23 chromosomes contain multiple, distinct 
HOR arrays, only one HOR array per chromosome binds inner kinetochore proteins and is thus 
designated as active with respect to centromere function (Table S3) (25). All other HOR arrays on the 
same chromosome are considered inactive, although it is possible for these inactive arrays to be 
competent for centromere function, as previously observed for ‘epialleles’ on chromosome 17 and for 
other cases where CENP-A is present on different HOR arrays between the two homologs (40, 41). 
The active array on each chromosome ranges in size from 5 Mb on chr18 down to 340 kb on chr21, 
which is near the low end of normal variation for this centromere (39). Adjacent to many highly 
homogeneous arrays are regions of highly divergent αSat HORs, in which HOR periodicity is somewhat 
or even completely destroyed (38), as well as highly divergent monomeric layers (32), together totaling 
15.2 Mb in CHM13. 
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Fig. 1. Overview of all peri/centromeric regions in CHM13. (A) Schematic illustrating the typical components of a human 
peri/centromeric region, including the canonical repeat structure, repeat unit length, and GC% of each satellite family. Each 
family’s assigned color is used consistently throughout the remaining figures. (B) Barplot showing the relative total lengths 
of each major satellite family genome-wide. Alpha satellite (αSat) is broken into active HORs (red), inactive HORs (orange), 
and divergent/monomeric (yellow). (C) Micrographs of representative DAPI-stained chromosomes from CHM13 metaphase 
spreads, next to color-coded maps of each centromere region. Large satellite arrays are labeled. To the left of each map is 
a track indicating the locations of potential assembly issues (gray) or sites that are likely to be heterozygous in the CHM13 
cell line (red). (D-F) Circos plots showing genome-wide relationships in sequence content for 3 different satellite families. 
Connecting line widths indicate the proportion of 75-mers that are shared between arrays. αSat lines are colored by their 
suprachromosomal family (SF) assignment. Radial barplots indicate specificity of 75-mers proportionally, with white 
indicating 75-mers unique to the array, light gray indicating 75-mers shared with other centromeric regions, and black 
indicating 75-mers shared with regions outside of centromeres. 
 
Utilizing HOR monomers and HORs primarily inferred from the hg38 centromere reference models, we 
provided initial annotation for all HOR arrays in CHM13 at the monomer level, revealing 80 HORs and 
>1000 different monomers in HORs. All HOR arrays  including HORs that were previously named 
received new names according to a new naming system especially designed for αSat HORs (38) (Table 
S3). Most of the HORs are represented in both the T2T-CHM13 assembly and the hg38 centromere 
reference models (Table S3). We confirmed the comprehensiveness and accuracy of this 
HOR/monomer annotation and of the CHM13 reference itself by observing the following expected 
features: (i) complete coverage of SF1-3 arrays by HOR annotations, (ii) the absence of significant 
contamination of one HOR array by monomers of the other, and by (iii) concordance with known 
monomer arrangements in canonical HORs. The annotated CHM13 assembly provides a unique 
opportunity to analyze αSat across an entire genome, which we detail below. 
 
New pericentromeric satellite families and detailed study of the largest human satellite arrays  

 

Outside of the αSat arrays, we generated detailed maps of each pericentromeric region, encompassing 
104.7 Mb of non-αSat sequences (Supplemental Section 1). Classical human satellites 2 and 3 
(HSat2,3, totaling 28.7 and 47.6 Mb, respectively) constitute the largest contiguous satellite arrays 
found in the human genome, with large arrays on chromosomes 1, 9, and 16 (13.2, 27.6, and 12.7 Mb 
respectively). HSat2 and HSat3 are derived from a simple ancestral (CATTC)n repeat that diverged 
into distinct families and 14 previously characterized subfamilies (10, 42) . HSat1 describes two distinct 
sequence families that were discovered within the same AT-rich fraction of genomic DNA isolated by 
classic separation methods (42, 43). We now provide a new naming system for these two HSat1 
families to clarify their identity and origin: HSat1A (formerly "SAR"), which is a 42 bp repeat constituting 
the most AT-rich regions of the genome, and HSat1B (formerly “HSATI”) which is a composite of AT-
rich sequences and Alu fragments, found almost entirely on the Y chromosome (44).  
 
Beta satellite (βSat) represents the next-largest family after αSat and HSat1-3 (7.7 Mb genome-wide).  
It is enriched on the acrocentric short arms (2, 45), and within the pericentromeric regions of 11 
chromosomes, and is defined by a 68 bp repeat unit (46). βSat can be further subdivided into simple 
arrays and beta-composite arrays, in which βSat repeats are interspersed with LSau elements (47–49). 
Gamma satellite DNA (γSat), a well-characterized 220 bp tandem repeat on chromosomes 8 and X 
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(15, 16), was identified within all acrocentric short arms and six pericentromeric regions (50, 51) (630 
kb total). Although both βSat and γSat represent smaller satellite families in the human genome, they 
are more GC-rich than other satellites (βSat, 52%; γSat, 72%; αSat, 39%) and contain dense CpG 
methylation (Fig. S2). All remaining annotated pericentromeric satellite DNAs (collectively referenced 
as ‘p-censat’) total 5.55 Mb, with 1.19 Mb representing new satellite array predictions (49). Non-satellite 
bases observed between adjacent arrays and extending into the p-arms and q-arms are considered 
‘centric transition’ regions, which largely represent long tracts of segmental duplications, including 
expressed genes (Supplemental Section 2) (2, 52). 
 
Novel chromosomal localizations and polymorphisms of satellite subfamilies 

 

Distinct repeat arrays from the same satellite family show varying degrees of similarity with each other. 
For example, centromeres on chromosomes 13/21, 14/22 and 1/5/19 have near-identical HORs that 
have confounded studies in the past (25, 36–38). T2T-CHM13 is the first assembly to successfully 
assign each of these active arrays to its specific chromosome, permitting a more comprehensive 
assessment of their respective repeat structures and sequence composition. As HOR 1/5/19 presents 
an especially problematic case because of dimeric expansions (38), we demonstrated that the arrays 
were chromosome-specific with reference to flow-sorted chromosome libraries (Supplemental Section 
3, Fig. S3). We next developed separate consensus HORs, an HMM-based automatic HOR annotation 
tool, and browser tracks for each array and discovered that each chromosome has a distinct haplotype 
characterized by chromosome-specific sequence differences (3-20 base changes per HOR) and 
sometimes structural variants. 
  
To provide a genome-wide view of the overall sequence similarity between different αSat arrays, we 
obtained the full set of 75-mer sequences within each array and searched for exact matches to the rest 
of the genome (Fig. 1D), readily identifying the hierarchical evolutionary relationships between subsets 
of αSat arrays (which can be organized into SFs and sub-SFs; (reviewed in (36)). This hierarchical 
subfamily organization is also observed for HSats and βSats, although their inter-array divergence 
levels appear lower than for αSats overall (Fig. 1E-F).  
 
Using standards developed in previous work (10, 26, 32, 37, 38), we assigned the largest satellite DNA 
families (αSat, HSat3, and HSat2) into their respective sequence subfamilies, determining some of their 
chromosomal localizations for the first time. For example, we identified a 280 kb HSat3 array on chr17 
and found that it belongs to subfamily B1, which had never previously been localized to a particular 
chromosome (10). This subfamily is entirely specific to chr17. While we found novel chromosomal 
localizations of several HSat3 subfamilies (Fig. 2), we also noticed a conspicuous lack of HSat3B2 on 
CHM13 chr1, contrary to expectations (10). To examine whether this was true for other individuals, we 
searched for contigs overlapping the chr1 pericentromeric region across 16 haplotype-resolved draft 
assemblies from genetically diverse individuals, from the Human Pangenome Reference Consortium 
(HPRC) (53) (Supplemental Section 4). This revealed that the chr1 HSat3B2 array in CHM13 belongs 
to a haplotype with 400 kb polymorphic deletion, which we detected in 29% (8/28) of those examined 
(Fig. 2A). 
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Novel structural rearrangements and genes in peri/centromeric regions 

 

Annotating strand orientations across entire satellite arrays revealed several novel and unexpected 
anomalies (Fig. 2, Table S6,7). While diverged αSats are known to contain many sequence inversions 
(54), we quantified this phenomenon genome-wide for the first time (Fig. 2F), and found a 1.7 Mb 
inversion inside the active αSat HOR array on chr1 (Fig. 2A), along with inversions in inactive HORs 
on chromosomes 3, 16, and 20 (Fig. 2B). Surprisingly, the large pericentromeric HSat3B5 array on chr9 
and the beta satellite arrays on chr1 and the acrocentrics (Fig. 2A and Fig. S4) contain over 200 
inversion breakpoints. Apart from inversions, two multi-megabase HSat1A arrays appear to have 
inserted and expanded within the active HOR arrays of chromosomes 3 and 4 (Fig. 2B), and given the 
concordant strand orientations of the flanking αSat arrays, these apparent insertions were unlikely to 
have arisen from inversions. The large insertions and inversions within active HOR arrays are 
particularly surprising (Fig 2, chrs 1, 3, 4), because they reveal dynamism within an area of the genome 
previously considered highly homogeneous (30, 55). We sought to investigate these further by 
searching for evidence of these insertion/inversion breakpoints in the set of HPRC draft assemblies 
(Fig. S5). We found that the chr1 active HOR inversion is polymorphic across individuals, evident in 
about half of ascertainable haplotypes (11/24), while the HSat1A insertions on chr3 and chr4 were 
evident in all ascertainable haplotypes (32/32 and 33/33, respectively; Fig. S6). We also found evidence 
for an ancient duplication event that predated African ape divergence and involved a large segment of 
the ancient chr6 centromere plus about 1 Mb of adjacent p-arm sequence. This duplication has created 
a new centromere locus that hosts the current active cen6 HOR array. The duplication is visible as two 
nested centromere-flanking intra-chromosomal segmental duplications about 1 Mb in size and an old 
~200 kb αSat array that follows the q-arm duplication and presumably contains the decayed remnants 
of the old centromere (Supplemental Section 5, Table S8). 
 
Like inversions and insertions, transposable elements (TEs) are virtually absent from homogeneous 
HOR arrays but are enriched in divergent αSat (Fig. 2F) (56, 57). The CHM13 assembly also revealed 
that certain novel satellites are composed entirely of combinations of TEs, which we refer to as 
“composite satellites” (49) (Hoyt et al. 2021). Consistent with individual published observations (44, 47, 
58), we also found that other satellites, such as HSat1, HSat3, and βSat, often include fragments of 
ancient TEs as part of their repeating units (Fig. 2A,F)—a phenomenon we rarely observe in αSat HOR 
arrays (Fig. S7). 
 
Finally, we compared our pericentromeric maps to gene annotations (Table S9,10). One region on 
chr17, located between the large HSat3 and αSat arrays (Fig. 2D), contains two protein-coding genes: 
KCNJ17, which encodes a disease-associated potassium channel in muscle cells (59), and UBBP4, 
which encodes a functional ubiquitin variant that may play a role in regulating nuclear lamins (60). 
Notably, KCNJ17 is missing from GRCh38, which causes inaccurate and missed variant calls in 
homologous genes KCNJ12 and KCNJ18 (61). Interestingly, this region also contains a long non-
coding RNA annotation (LINC02002), which starts inside an SST1 element and continues into an 
adjacent 33 kb array of divergent αSat (Fig. 2D). Unexpectedly, we also identified a processed paralog 
of an apoptosis-related protein-coding gene, BCLAF1 (BCL2 Associated Transcription Factor 1), as 
part of a segmental duplication embedded within an inactive HOR array on chr16 (Fig. S8). 
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Fig. 2. Novel discoveries in three peri/centromeric regions. (A) A close view of the transition region between the large 
αSat and HSat2 regions on chr1. The first track shows satellite family classifications, color coded as in Fig. 1 and shown at 
the bottom left of the figure. Strand (relative to a canonical polarity for each satellite family) is indicated by the positioning 
of each rectangle above (+ strand) or below (- strand) the line. The second track indicates the positions of transposable 
elements (TEs) that overlap αSat or HSat1,2,3, colored by TE type. The third track indicates the transcription start sites of 
pericentromeric gene annotations, colored by type. The fourth track indicates the subfamily assignments for HSat2 and 
HSat3 (according to subfamilies defined in (10), as well as suprachromosomal family (SF) assignments for αSat arrays. 
Large arrays are labeled. (B) As in (A) but for the peri/centromeric region of chr3. (C) As in (A) but for the peri/centromeric 
region of chr17, with the newly localized HSat3B1 array indicated with an asterisk. (D) A zoomed-in view of gene annotations 
between the αSat and HSat3 arrays on chr17, with genes colored by classification. (E) A heatmap showing the major and 
minor localizations of each αSat HOR SF (upper, red) and each HSat2,3 subfamily (lower, blue). Novel localizations are 
indicated with the letter N. The polymorphic chr1 HSat3B2 array is marked with a ‘-’. Note: HSat3A3 and 3A6 are almost 
entirely found on chrY, which is not present in CHM13. (F) Barplots illustrating the number of inversion breakpoints (strand 
switches) or the number and type of TEs detected per megabase within different satellite families genome-wide. “div” = 
divergent alpha satellite (divergent HORs + monomeric).  
 
 
New methods uncover the fine repeat structure of satellite DNA arrays 

 

To further chart the structure of peri/centromeric regions at high resolution, we compared individual 
repeat units within and between different satellite arrays. We decomposed each αSat HOR array first 
into individual monomers and then into entire HORs, revealing the positions of full-size canonical HORs 
and structural variant HORs resulting from insertions or deletions (Supplemental Section 6, Table S11). 
These indels are often not in register with arbitrarily chosen monomer start sites, creating hybrid 
monomers. For example, if the canonical HOR structure is abc-abc-abc, a deletion variant might occur 
as ac-ac-ac (i.e. an in-register deletion of b) or a/bc-a/bc-a/bc where a/b is a hybrid (i.e. an out-of-
register deletion overlapping the junction between a and b). HOR structures were characterized by two 
different approaches: we applied hg38-based manual HOR inference to the CHM13 assembly (38), 
and performed de-novo inference from CHM13 assembly (Supplemental Section 6). Both approaches 
yielded the same canonical HORs for active arrays (62–64). We also searched for these canonical and 
variant HOR types in HiFi sequencing reads from 16 genetically diverse individuals. While some 
chromosomes, such as chr7, are composed almost entirely of canonical HOR units, other 
chromosomes, such as chr10, contain many structural variant HOR types, with high variation in the 
relative frequency of these variants across individuals (Fig. 3A and Fig. S9).  
 
Repeat structure decomposition of other satellite families is less straightforward because, unlike αSat, 
some families have inconsistent or unknown repeat unit sizes. For example, although both HSat2 and 
HSat3 are thought to have evolved from an ancient simple repeat of (CATTC)n, they have long since 
diverged on different chromosomes and, at least in some cases, they have been shown to be composed 
of longer repeat units on the order of multiple kilobases (10). We propose calling these longer repeat 
units nested tandem repeats (NTRs), to distinguish them from higher order repeats, which are 
composed of discrete numbers of monomers of similar lengths. To expand our ability to annotate repeat 
structure within newly assembled satellite DNA arrays, we created NTRprism, a versatile algorithm for 
discovering and visualizing satellite repeat periodicity (Fig. 3B and Fig. S10). NTRprism is somewhat 
analogous to classical restriction digest experiments that revealed repeat periodicities in certain satellite 
families (65), but it is greatly enhanced by the ability to computationally examine all possible k-mers, 
not just those targeted by restriction enzymes. Using this tool, we discovered new HORs in HSat1 and 
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βSat arrays, as well as new NTRs in multiple HSat2,3 arrays (Fig. 3B and Fig. S10). We also applied 
this tool in smaller windows across individual arrays, showing that repeat periodicity can vary across 
an array, consistent with NTRs evolving and expanding hyper-locally in some cases (Fig. S10). 
 
Genome-wide evidence of layered expansions in centromeric arrays 

 

Previous αSat studies have hypothesized a layered expansion model for centromeric αSat arrays (36), 
in which distinct new repeats periodically emerge and expand within an active array, displacing the 
older repeats sideways and becoming the new site of kinetochore assembly. Over time, distinct layers 
of progressively older and more divergent repeats are expected to expand out on either side, flanking 
the active centromere core with mirror symmetry (Fig. 3C). The repeats that seed new layers may 
originate from outside the array (e.g. by insertion of an αSat sequence from another chromosome) or 
from mutations within the same array (Fig. 3D). As the new centromere core expands, the flanks rapidly 
shrink and accumulate mutations, inversions, TE insertions, and other satellite expansions (16, 32, 38). 
Previous efforts to document this layered expansion pattern have focused on divergent αSat 
compartments that surround HOR arrays (32). Here, we performed a study of active αSat arrays in their 
entirety, together with adjacent flanking regions, to survey the degree of peri/centromeric symmetry, 
divergence, and decay signatures, providing the first detailed, genome-wide evidence in support of this 
model. 
 

First, in agreement with prior studies, we observed a symmetrical flanking arrangement of two types of 
divergent αSat: divergent HORs (dHORs) (Table S12), and monomeric αSats (Table S13), which 
represent ancient, decayed centromeres of primate ancestors (32). We classified divergent αSat into 
distinct SFs and dHOR families, and demonstrated how these sequences accumulate mutations, 
inversions, and TE insertions over time (Table S14). In monomeric αSats, L1s are common, and the 
age of the oldest L1s increases with the age of the αSat layer (Fig. 3C). Although L1s are extremely 
rare in αSat HOR arrays, when they do occur, they are always the youngest L1Hs elements, which are 
known to be still active in humans (Fig. 3C, Table S15) (49, 66). In agreement with previous studies, 
we document a gradient of size (Fig. 3C), and a gradient of intra-array divergence (17 to 26%) preceded 
by a steep (~10%) increase that marks the transition between HOR arrays and outer layers (Fig. 3C), 
(16, 32, 38). In total, molecular dating of the flanking αSats by divergence (grouped by SF-layers), 
shared occurrence in primate lineages (32), and the age of embedded L1 elements revealed an age 
gradient away from the central active array (Fig. 3C,D, Table S15). 
 
We next asked if the layered expansion pattern overlaps the active arrays themselves. As shown in 
Fig. 3D, the sequences seeding the expanding satellite array can be either introduced from within (intra-
array seeding) (32) or from an external HOR (or non-HOR) array (inter-array seeding) (67, 68) (Table 
S16). In total, we document five cases of inter-array type symmetry (Fig. 3D) of which only one was 
known before (69). In some cases of the inter-array model, the active HOR array originates from a 
different SF than the flanking inactive array (chrs 1 and 16) (Fig. 3D). This, together with a well-studied 
case of inter-array symmetry in cen17 (70) provides evidence of how entire arrays have been displaced 
recently in favor of an introduced sequence.  
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Fig. 3. Genome-wide evidence of layered expansions in centromeric arrays. (A) On the left are tracks showing HOR 
structural variant positions across the active αSat arrays on chr7 and chr10. Canonical HORs are shown in light gray, and 
variants are shown in various colors. On the right are barplots for these same chromosomes showing the proportions of the 
same structural variant types among HORs identified on HiFi sequencing reads from 16 diverse human cell lines. (B) 
Illustration and demonstration of the NTRprism method for identifying repeat periodicities within any satellite DNA family, 
including novel periodicities identified for 3 arrays below. (C) Comparing the age and divergence of LINE transposable 
elements to the respective age and divergence of the αSat suprachromosomal families (SFs) that they are embedded in. 
(D) Three different modes of centromere displacement supported by the CHM13 assembly. (i) Five centromeres in which 
the active HOR array is surrounded by inactive HOR arrays from the same origin, consistent with insertion and expansion 
of the active array. (ii-iii) Active HOR arrays from 9 chromosomes, illustrating the ordering of monomeric suprachromosomal 
families surrounding the array on the p and q arms (rainbow colors), along with the locations of two major HOR-haplotypes 
(red and gray) within each array, supporting the recent expansion of a new HOR-hap from the center of the array. The 
HSat1 insertion and expansion in cen3 is denoted with polka dots. (E) A zoomed-in view of the major αSat HORs in cen 3 
(red and gray, as in D), further subdivided into finer HOR-hap clusters, showing further HOR-hap symmetry. Bottom left: a 
radial tree showing the phylogenetic relationships between all HORs, colored by fine HOR-hap assignments as in the track 
above. Red and Gray ellipses show the major HOR-hap assignments of each subclade. Bottom right: a phylogenetic tree 
built from HOR-hap consensus sequences, rooted with a ‘mock’ cen3 repeat representing an ancestral sequence. 
 
 
Moreover, detailed study of active arrays in their entirety provided evidence of intra-array symmetry, 
defined by classification of HORs by their shared sequence variants. Such variants were known for 
decades (30, 71, 72) and recently were noted in the first completely assembled centromeres from 
chromosomes X (73, 74) and 8 (16), where the central part of the active array was found to contain 
HOR variants slightly different from those on the flanks. To test if this array structure is typical, we 
aligned individual HOR units within the same array and clustered them into “HOR-haplotypes” or “HOR-
haps” (Supplemental Section 6). Initial broad classifications of entire arrays into 2-4 distinct HOR-haps 
revealed that active HOR arrays are also composed of distinct layers, which typically expand from the 
middle (dark red versus grey, Fig. 3D).  
 
Further classification of sequences within each broad HOR-hap identified additional substructure, and 
evidence for symmetric patterns (Fig. 3E). To examine whether the middle HOR-haps are likely to be 
the youngest evolutionarily, we built phylogenetic trees of consensus HOR-haps (Fig. 3E) and rooted 
them using reconstructed “mock” SF-ancestral sequences built from consensus monomers for each 
SF. We also performed complete phylogenetic analysis of all HORs. The identification of evolutionarily 
younger and older HOR-haps was supported by both methods, as shown for chr3 (Fig. 3E). In addition, 
the intra-array divergence in central HOR-haps is usually slightly lower than in the flanking arrays, 
indicating that the central HOR-haps have expanded more recently. Together, these findings present 
strong genome-wide evidence for a layered expansion pattern within active arrays. 
 
Satellite array organization at sites of kinetochore assembly 

 
Human centromeres are defined epigenetically as the specific subregion bound by inner kinetochore 
proteins within each active αSat HOR array (21, 75). Centromeres contain a combination of epigenetic 
marks distinguishing them from the surrounding pericentromeric heterochromatin, including the 
presence of the histone variant CENP-A (76, 77), “centrochromatin”-associated histone modifications 
(78), and reduced CpG methylation (15, 16, 79). To study HOR organization at sites of kinetochore 
assembly, we identified discrete regions of CENP-A enrichment within each active array using 
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published native CHM13 ChIP-seq (NChIP) data (16) along with CUT&RUN (80) data generated in this 
study (Supplemental Section 7).  
 
Consistent with previous studies, CENP-A binding is almost exclusively localized within αSat HOR 
arrays, with one active array per chromosome (25) (Table S17). To demarcate specific subsets of 
‘active HORs’, we developed a new repeat-sensitive short-read alignment method (Fig. 4A) using a 
collection of informative markers across each active array to precisely map each overlapping read. We 
identified unique 100 bp marker sequences covering 5.9% of all bases in all active arrays in CHM13. 
These markers are non-uniformly distributed showing depletion of coverage at the sites of centromere 
protein enrichment (Fig. S11), which we determine to be due to recent, local duplications. To increase 
the comprehensiveness of our short-read mapping strategy, we also included “region-specific markers” 
observed at two or more locations within a set maximum distance from each other. These region-
specific markers allowed us to ask if sequences specific to a given region showed evidence of 
enrichment, broadening our coverage of the array. We studied centromere protein enrichment patterns 
using a combination of these single-copy and region-specific markers, either by directly determining 
the enrichment of these sequences across read datasets (reference-independent (81), Fig. S12) or by 
filtering read alignments based on overlap (marker-spanning alignments) (Supplemental Section 7). 
Use of these two orthogonal methods allowed us to determine the span of constitutively bound CENP-
A within each array and delineate active HOR arrays containing each chromosome’s centromere (Table 
S17). 
 
In agreement with previous studies, we found the strongest CENP-A enrichment near sites reported to 
be depleted in CpG methylation, or centromere dip regions (CDRs) (16, 79). Notably, some 
chromosomes show evidence for multiple peaks within each CDR region, which could represent 
interspersed domains, variation in the organization of CENP-A nucleosomes across the two 
homologous chromosomes, or polymorphic organization across the population of cells (79). Here, we 
extend these findings and report that the complete span of the centromere region, as defined by the 
CENP-A enrichment patterns, extends outside of CDRs by hundreds of kilobases across all 
chromosomes (Fig. 4C). Furthermore, on some chromosomes, we detected smaller regions of 
centromere protein enrichment outside of the primary CDR, with some overlapping a minor, secondary 
CDR (chromosome 4) or no CDR at all (chromosome 18) (Fig. 4C, Fig. S13). In total, these findings 
issue the first map of human centromeres in a complete genome. In doing so, we identified subregions 
within each HOR array that are competent to support kinetochore assembly and centromere function. 
 
In relation to the layered expansion pattern, we found that CENP-A is commonly enriched in the 
youngest HOR-haplotypes within the majority of arrays (Table S17). Furthermore, for each centromere 
region we increased the number of HOR-hap clusters to study more refined groupings of HORs that 
are enriched for CENP-A and associated with the sites of kinetochore assembly (Fig. 4B-E). In the 
active array on chromosome 12, we identified CENP-A enrichment on one of two large macro-repeat 
structures, both presenting similar HOR-hap sequences (Fig. 4B, Fig. S14). Constructing phylogenetic 
trees from consensus repeats revealed a subset of HORs that are evolutionarily derived from the 
ancestral SF-specific class monomers (as shown in Fig. 4F for chromosomes 4, 6, 7, and 12, Fig. S15). 
Further investigation into the region of CENP-A enrichment on chromosome 12 revealed a zone of 
recent HOR expansions (i.e. eight sites of recent duplications within a ~365 kb  
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Fig. 4. Kinetochore proteins tend to bind recently expanded centromeric subregions. (A) Schematic illustrating two 
approaches to define enrichment of kinetochore proteins in centromeric regions using short-read data from 
NChIP/CUT&RUN. (B) The chr12 αSat HOR array, with megabase coordinates listed at the top. Track 1: coverage from 
alignment-based marker-assisted mapping of CENP-A NChIP reads. Track 2: a heatmap representing reference-free 
region-specific marker enrichment in _ bp bins. Track 3: heatmap showing relative CpG methylation frequency. Tracks 4/5: 
HOR-haplotypes defined by kmeans clustering with k=7 or k=2. Track 6: heatmap representing the number of identical 
copies of each HOR occurring within the adjacent 10 repeat units, as a measure of recent duplication events. Bottom: A 
dotplot from a self-alignment of the array, illustrating the local nature of recent duplications, with arrows pointing to a zone 
of recent duplication. The inset shows a smaller view of the entire array visualized as a dotplot with a smaller word size 
(allowing for detection of older duplications), showing evidence of large macro-repeats across the array. (C) As in (B) but 
for 9 different centromeres, with the full span of CENP-A enrichment framed by black windows. (D) As in (B) tracks 1, 3, 2, 
4, & 6 but for chr4, with an inset highlighting a secondary CENP-A enrichment site and minor CpG depletion site on the 
other side of the interrupting HSat1 array. (E) As in (B) tracks 1, 3, 2, 4, 5, & 6 but for chr6, which, unlike most chromosomes, 
has its CENP-A enrichment site over an older HOR-hap region. (F) Horhap consensus trees as in Fig. 3E, with the location 
of the CENP-A binding region indicated with an arrow. 
 
 
region, (Supplemental Section 7, Fig. S16) that coincides with the CDR and distinguishes one macro-
repeat region from the other. We observed similar zones of recent expansion that overlap recent HOR-
haps on most other chromosomes (Fig. 4C, shown for example on centromere 7 in Fig. S15), although 
we identified a few notable exceptions to this general trend. For example, on chromosome 4, which has 
two CENP-A regions occurring on either side of a 1.7 Mb HSat1A array, we found that the larger CENP-
A region spans a slightly younger HOR-hap and the smaller CENP-A region spans an older HOR-hap 
(Fig. 4D,F). Similarly, we observe CENP-A enrichment within an older HOR-hap layer on centromere 
6, over a megabase away from the site of a recent duplication event (Fig. 4E,F). In summary, we provide 
support of the layered expansion model, and observe that human centromeres are commonly 
positioned over the youngest layers within each array and that these layers are prone to recent 
duplications. 
 
Genetic and epigenetic variation across human X centromeres 

 

Satellite DNA arrays are known to be highly variable in size across individuals; in fact, the extremes of 
this size variation are often plainly visible under the microscope in chromosomal karyotypes, and they 
have been described for decades, yet the clinical significance of these variants remains unknown and 
largely unexplored (82, 83). More recent studies have provided low-resolution sequencing-based 
evidence for variability in both satellite array lengths and the frequency of certain sequence and 
structural variants within human populations (10–12), suggesting accelerated sequence evolution in 
these regions compared to the rest of the genome. However, satellite array variation and evolution 
remain poorly understood at base-level resolution due to the lack of complete centromere assemblies. 
 
To address this, we deeply characterized and compared centromere array assemblies from chrX across 
seven diverse males, thus capturing the full extent of biologically important sequence variation (Fig. 
5A, Supplemental Section 8, Fig. S17). We assigned repeats to seven HOR-haps, revealing both 
localized and broad variation within each array. For example, we identified large, tandem duplications 
(spanning hundreds of kilobases) in two assemblies relative to CHM13 (HG01109, PUR and HG03492, 
PJL, Fig. S18). Four of the seven arrays contain zones of recent duplication in the younger HOR-hap, 
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in a similar position to that of CHM13, with all remaining assemblies showing a trend of recent 
duplication within a shared region closer to the p-arm (spanning different subsets of more divergent 
and less derived older HOR-haps). Notably, we found evidence for an additional HOR-hap type in 
ancient lineages (84) that did not participate in the late pleistocene emigration of modern humans from 
Africa, (Fig. 5A, dark red), representing an independent core of expanding centromeric sequence. 
 
Next, we studied how this variation within αSats relates to variation across single-nucleotide markers 
that are in linkage disequilibrium (LD) with the centromere, i.e. markers that tend to be co-inherited with 
the centromere. Because meiotic recombination rates are extremely low in pericentromeric regions 
(due to the “centromere effect”; (85)), centromeres are embedded in long haplotypes, which are called 
cenhaps (Fig 5B; (84)). Cenhaps are identified by first clustering pericentromeric single-nucleotide 
variants into phylogenetic trees, and then splitting them into large clades of shared descent. Here, we 
divided a group of 1599 males genotyped using published short-read sequencing data (86) into 12 
cenhaps (with 98 individuals remaining unclassified; Fig. 5C, Fig. S19, Table S18). We also defined 
array-specific and HOR-hap-specific k-mer markers allowing us to utilize short-read sequencing data 
to estimate the absolute size of each individual’s chrX centromere array (Supplemental Section 8, Table 
S19) (11, 84)), along with the relative proportion of that individual’s array assigned to each HOR-hap. 
The results revealed that different cenhaps have different αSat array size distributions as well as 
different average HOR-hap compositions (Fig. 5C, Fig. S20). As shown in Fig. 5D, two of the 12 
cenhaps, 1 and 2, are very common outside of Africa (overall, 49% and 47%, respectively), while the 
other cenhaps exhibit a range of frequencies across the samples from Africa as well as those with 
recent African admixture (ASW, PUR, CLM, ACB). This pattern is consistent with the accepted 
demographic bottleneck associated with early human migration (87). The observed concentration of 
cenhap and αSat variation in African individuals underlines the need for greater representation of 
African genomes in pan-genome assembly efforts. 
 
To explore the variation within one of the large cenhap groups (cenhap 2), we compared fine-scale 
cenhap phylogenies and HOR-hap assignments across 567 individual X chromosomes, revealing a 
degree of further substructure and variation in the αSat array on a more recent evolutionary timescale 
(Fig. 5E). To dissect this further, we compared two finished centromere assemblies from CHM13 and 
HG002, a cell line whose chrX array had been constructed using T2T assembly methods, and whose 
array structure had been experimentally validated by both pulse-field gel electrophoresis Southern blots 
and by digital droplet PCR (2). CHM13 and HG002 have similar array sizes and belong to cenhap 2 
(Fig. 5E). We also studied patterns of CENP-A CUT&RUN enrichment in HG002 relative to CHM13 
(79). We found both genomes to be highly concordant across the array, apart from three regions, where 
we observe recent amplifications and/or deletions of repeats (Fig. 5F). Notably, the region with the most 
pronounced structural differences between CHM13 and HG002 coincides with the strongest CENP-A 
enrichment in both arrays. Therefore, even though inner kinetochore proteins are present in both arrays 
over CDRs and young HOR-haps, the HOR sequences enriched with CENP-A represent local 
duplication events that are not shared and distinguish the two arrays (marked in yellow, Fig. 5G, Fig. 
S21).  
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Fig. 5. Evidence for substantial genetic and epigenetic variation in a human centromere. (A) Comparing the active 
αSat HOR array on chrX (DXZ1) between CHM13 (top) and 6 HiFi read assemblies from diverse cell lines. Tracks indicate 
HOR-hap classifications with k=7 (top) and k=2 (middle) along with recent HOR duplication events (bottom, as in Fig. 4B). 
An African-specific HOR-hap (dark red) is emphasized with red asterisks. A recent duplication in HG03492 is indicated with 
gray bars above. (B) A schematic illustrating the concept of cenhaps, in which the low local recombination rate in the 
centromere proximal regions lead to the evolution of single nucleotide variants into large, centromere-spanning haplotypes. 
(C) Left: tree illustrating the relationships of 12 cenhaps defined using short-read data from 1599 genetically diverse males 
from the 1000 Genomes Project. The height of each cenhap triangle is proportional to the number of individuals in that 
cenhap. Middle: barplots illustrating the average HOR-hap compositions for all individuals within each cenhap. Right: 
ridgeline plots indicating the distribution of estimated total array sizes for all individuals within each cenhap, with individual 
values represented as jittered points. (D) World map showing the locations of all populations represented among the 1599 
males, with pie charts indicating the proportion of cenhap assignments within each population, with the same colors used 
in (C). (E) A detailed tree showing the relationships of all cenhap 2 individuals inferred from their single-nucleotide variant 
data, along with a barplot as in (C) for each individual and a colorbar indicating the super-population assignment of each 
individual. (F) Comparison of the DXZ1 assembly for CHM13 and HG002, which are both in cenhap2. Tracks are as in (A), 
with the addition of gray shading to the top track to indicate regions that align closely between the two individuals, and 
yellow indicating high divergence between the two individuals. Dotted line indicates the homologous site of a chm13 
expansion on the HG002 array. Bottom: dotplots representing the % identity of self-alignments within the array, with a color-
key and histogram below. (G) Left: a zoom-in of the chm13 kinetochore region with a self-alignment dotplot (exact match 
word size 2000) revealing patterns of recent nested duplication. Right: a model for the recent evolution in this region. (H) 
Left: comparison of CENP-A NChIP enrichment from CHM13 and HuRef cell lines in DXZ1 HOR-haps, for 2 replicates 
(gray/black). Right: comparison of HOR-hap assignments from input controls. Bottom: asterisks highlighting the CENP-A 
enriched regions from HuRef and CHM13, with respect to the CHM13 array. Colors represent HOR-haps as in (A).  
 
 
Finally, we asked if CENP-A enrichment patterns were consistently found in the younger HOR-haps, 
as observed in CHM13 and HG002, across publicly available ChIP-seq datasets (Fig. S22). Using the 
T2T-CHM13 X array as a reference, we mapped these available datasets and determined CENP-A 
enrichment for each X HOR-hap relative to the matched input DNA. Notably, in several individuals we 
observed CENP-A enrichment within the older HOR-hap subregion, proximal to the p-arm, indicating  
the presence of a centromere X epiallele (as shown for three XY individuals, HuRef (88) in Fig. 5H, and 
also supported with data from HT1080b (89) and MS4221 (90)). Further, we compared two independent 
CUT&RUN experiments from the RPE-1 cell line (XX) (91) and found consistent evidence for 
heterozygous positions of CENP-A within the same cell line, with enrichment on both older and newer 
HOR-haps, indicating that the two X homologs carry different functional epialleles. Three additional 
46,XX cell lines (IMS13q, PDNC4, K562 (92)) were determined to be consistent with CHM13, providing 
evidence that the same CENP-A+ HOR-hap is shared across both homologous X chromosomes in 
each line. In total, these findings uncover frequent variation in the position of the X centromere, 
indicating that individuals may have heterozygous and homozygous epialleles within the population. 
Further, these observations highlight the need to study both epigenetic and genetic variation in 
centromeric regions, across both related and unrelated individuals and across populations of cells over 
time, to better define the trends and exceptions regarding centromeric epiallele positioning and 
inheritance. 
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Discussion 

 

This work has produced detailed maps of previously unassembled centromeric and pericentromeric 
regions, which represent the largest fraction of newly introduced sequence in the complete T2T-CHM13 
reference assembly (2). We produced detailed annotations and resources to facilitate further analysis 
of these complicated loci by the community. In doing so, we revealed surprising large and small scale 
variations in the organization and composition of active centromeres. The most dramatic variants 
include the interruption of two active centromeric arrays by a different satellite repeat family (on chrs 3 
and 4), and a large inversion in another active array (on chr 1). We also found strong genome-wide 
evidence for a layered expansion model of centromere evolution, supported by ancient evolutionary 
patterns in the divergent satellites that flank the active centromere, as well as by recent sequence 
expansions within the active centromere. We defined sets of short markers specific to each array that 
can be used for mapping short sequencing reads and for interrogating peri/centromeric structure and 
function, such as designing oligo-FISH probes and guide RNAs for CRISPR-based experiments. We 
also demonstrated the utility of these markers to accurately localize short reads from protein-DNA 
interaction mapping experiments and whole-genome shotgun sequencing datasets. Furthermore, we 
developed a new method, NTRprism, for visualizing and quantifying tandem repeat periodicity in any 
satellite family, and we used this to discover novel repeat structure within multiple HSat arrays. 
 
Our new tools and resources allowed us to characterize satellite array variation to new depths, 
uncovering a large polymorphic deletion of an entire HSat3 array, along with a novel expansion of a 
particular chrX alpha satellite HOR-haplotype within African populations. Additionally, we found a recent 
duplication in the chrX HOR array, representing hundreds of kilobases, that is common in individuals 
from a specific centromere-spanning haplotype group (cenhap 1), which can explain why individuals 
harboring this cenhap have larger average array sizes compared to other cenhaps. The evidence for 
such large duplications in human history was revealed by our assessment of centromeric macro-
repeats, including those on chromosomes 12, 6, an X. The high degree of polymorphism in these 
regions underlines the need to produce telomere-to-telomere assemblies from many diverse 
individuals, to fully capture the extent of human variation in these regions and to shed light on their 
recent evolution and the functional consequences of this evolution. Achieving this goal will require an 
ability to produce accurate, complete, phased assemblies from diploid individuals. Centromeric regions 
would seem to present the greatest challenge for phased assembly due to their repetitive nature, but 
their high degree of variation may assist these efforts. Now, equipped with the T2T-CHM13 assembly 
and the approaches we developed here to study and compare the most challenging repetitive regions 
in the genome, we are optimistic that future high-quality, phased, diploid, T2T assemblies are within 
reach. 
 
Finally, apart from genetic variation in these regions, we identified epigenetic variation in the location 
of centromere proteins within an array, as has been described previously on other chromosomes (40, 
41, 93, 94). Future investigations need to study centromeric protein localization at fine scales across 
many individuals, in order to better understand centromeric establishment and propagation, and how 
this relates to the underlying genetic variation found within each array. In light of our observation that 
CENP-A tends to localize to the most recently expanded HORs genome-wide, many questions remain 
about the evolutionary and molecular mechanisms responsible for the relationship between the 
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kinetochore and the layered expansion patterns of satellite DNAs. It’s possible that satellite expansions 
occur neutrally, and more recently expanded subregions coincidentally attract the kinetochore—this is 
feasible in light of the evolutionary patterns we observe within non-centromeric satellite arrays. Another 
possibility is what we refer to as the “kinetochore selection hypothesis,” in which the kinetochore plays 
a causal role in amplifying particular HOR variants to which it preferentially binds (36). These models 
are not mutually exclusive, and they are also compatible with models of centromere drive or other 
molecular drive models (95, 96). Experiments in model organisms have demonstrated that extreme 
array sequence variants increase meiotic and mitotic nondisjunction rates and can promote both 
mutational drive and/or (female) meiotic drive (97–99). Similar drive mechanisms, along with selection 
for variants that promote high-fidelity chromosome transmission, may also play a role in shaping 
centromeric sequence diversity in the human population. 
 
Exploring these models will require careful experimental systems and methods for precisely measuring 
interactions between kinetochore proteins and repetitive DNA, as well as how these interactions affect 
the fidelity of chromosome transmission. While the short-read mapping methods that we developed 
enable the use of existing protocols like NChIP (100) and CUT&RUN (80) to provide sensitive protein-
DNA interaction information at broad scales within satellite arrays, we anticipate that new long-read 
methods for mapping protein-DNA interactions will be essential for providing high-resolution binding 
footprint information, including in regions that lack single-copy or region-specific markers (101). We 
anticipate a future in which we will soon have pan-genome and pan-epigenome references in all human 
peri/centromeric regions, finally making them accessible for careful study using modern genomic tools. 
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