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Abstract We study the complete intersection property and the algebraic invariants (index of regularity, degree)
of vanishing ideals on degenerate tori over finite fields.We establish a correspondence between vanishing ideals
and toric ideals associated to numerical semigroups. This correspondence is shown to preserve the complete
intersection property, and allows us to use some available algorithms to determine whether a given vanishing
ideal is a complete intersection. We give formulae for the degree, and for the index of regularity of a complete
intersection in terms of the Frobenius number and the generators of a numerical semigroup.
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1 Introduction

Let K = Fq be a finite field with q elements and let v1, . . . , vn be a sequence of positive integers. Consider
the degenerate projective torus

X := {[(xv1
1 , . . . , xvn

n )]|xi ∈ K ∗ for all i} ⊂ P
n−1,

parameterized by the monomials xv1
1 , . . . , xvn

n , where K ∗ = Fq\{0} and P
n−1 is a projective space over the

field K . This set is a multiplicative group under componentwise multiplication. If vi = 1 for all i , X is just a
projective torus.
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Let S = K [t1, . . . , tn] = ⊕∞
d=0Sd be a polynomial ring over the field K with the standard grading. Recall

that the vanishing ideal of X , denoted by I (X), is the ideal of S generated by the homogeneous polynomials
that vanish on X . To study I (X), we will associate with this a semigroup S and a toric ideal P that depend on
v1, . . . , vn and the multiplicative group of Fq .

In what follows β denotes a generator of the cyclic group (K ∗, ·), di denotes o(βvi ), the order of βvi for
i = 1, . . . , n, and S denotes the semigroup Nd1 + · · · + Ndn . If d1, . . . , dn are relatively prime, S is called a
numerical semigroup. As is seen in Sect. 3, the algebra of I (X) is closely related to the algebra of the toric
ideal of the semigroup ring

K [S] = K [yd1
1 , . . . , ydn

1 ] ⊂ K [y1],
where K [y1] is a polynomial ring. Recall that the toric ideal of K [S], denoted by P , is the kernel of the
following epimorphism of K -algebras

ϕ : S = K [t1, . . . , tn] −→ K [S], f
ϕ�−→ f (yd1

1 , . . . , ydn
1 ).

Thus, S/P 	 K [S]. Since K [y1] is integral over K [S] we have ht(P) = n − 1. The ideal P is graded if
one gives degree di to variable ti . For n = 3, the first non-trivial case, this type of toric ideals were studied by
Herzog [14]. For n ≥ 4, these toric ideals have been studied by many authors [2,4,5,8,9,23].

In this paper, we relate some of the algebraic invariants and properties of I (X) with those of P and S. We
are especially interested in the degree and the regularity index, and in the complete intersection property.

One of the most well known properties that P and I (X) have in common is that both are Cohen–Macaulay
graded lattice ideals of dimension 1 [14,19].

The contents of this paper are as follows. In Sect. 2, we introduce some of the notions that will be needed
throughout the paper.

A key fact that allows us to link the properties of P and I (X) is that the homogeneous lattices of these
ideals are closely related (Proposition 3.2). If g1, . . . , gm is a set of generators for P consisting of binomials,
then h1, . . . , hm is a set of generators for I (X), where hk is the binomial obtained from gk after substituting ti
by tdi

i for i = 1, . . . , n (Proposition 3.3). As a consequence if n = 3, then I (X) is minimally generated by 2 or
3 binomials (Corollary 3.4). If I (X) is a complete intersection, one of our main results shows that a minimal
generating set for I (X) consisting of binomials corresponds to a minimal generating set for P consisting of
binomials and viceversa (Theorem 3.6). As a consequence I (X) is a complete intersection if and only if P is
a complete intersection (Corollary 3.7).

We show a formula for the degree of S/I (X) (Lemma 3.11). The Frobenius number of a numerical
semigroup is the largest integer not in the semigroup. For complete intersections, we give a formula that
relates the index of regularity of S/I (X) with the Frobenius number of the numerical semigroup generated by
o(βrv1), . . . , o(βrvn ), where r is the greatest common divisor of d1, . . . , dn (Corollary 3.13).

The Frobenius number occurs in many branches of mathematics and is one of the most studied invariants in
the theory of semigroups. A great deal of effort has been directed at the effective computation of this number,
see the monograph of Ramírez-Alfonsín [18].

The complete intersection property of P has been nicely characterized, using the notion of a binary tree
[2,4] and the notion of suites distinguées [5]. For n = 3, there is a classical result of [14] showing an algorithm
to construct a generating set for P . Thus, using our results, one can obtain various classifications of the com-
plete intersection property of I (X). Furthermore, in [2] an effective algorithm is given to determine whether
P is a complete intersection. This algorithm has been implemented in the distributed library cimonom.lib [3]
of Singular [11]. Thus, using our results, one can use this algorithm to determine whether I (X) is a complete
intersection (see Example 3.14). If I (X) is a complete intersection, this algorithm returns the generators of
P and the Frobenius number. As a byproduct, we can construct interesting examples of complete intersection
vanishing ideals (see Example 3.16).

We show how to compute the vanishing ideal I (X) using the notion of saturation of an ideal with respect
to a polynomial (Proposition 3.18).

It is worthmentioning that our results could be applied to coding theory. The algebraic invariants of S/I (X)
occur in algebraic coding theory as we now briefly explain. An evaluation code over X is a linear code obtained
by evaluating the linear space of homogeneous d-forms of S on the set of points X ⊂ P

n−1. A linear code
obtained in this way, denoted by CX (d), has length |X | and dimension dimK (S/I (X))d . The computation
of the index of regularity of S/I (X) is important for applications to coding theory: for d ≥ reg S/I (X) the
code CX (d) coincides with the underlying vector space K |X | and has, accordingly, minimum distance equal
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to 1. Thus, potentially good codes CX (d) can occur only if 1 ≤ d < reg (S/I (X)). The length, dimension
and minimum distance of evaluation codes CX (d) arising from complete intersections have been studied in
[6,10,12,15,16,20,21].

For all unexplained terminology and additional information, we refer to [7] (for the theory of lattice ideals),
[22,24] (for commutative algebra and the theory of Hilbert functions).

2 Preliminaries

We continue to use the notation and definitions used in Sect. 1. In this section, we introduce the notions of
degree and regularity via Hilbert functions, and the notion of a lattice ideal.

The Hilbert function of S/I (X) is given by HX (d) := dimK (Sd/I (X) ∩ Sd), and the Krull-dimension of
S/I (X) is denoted by dim(S/I (X)). The unique polynomial

h X (t) =
k−1∑

i=0

ci t
i ∈ Q[t]

of degree k − 1 = dim(S/I (X)) − 1 such that h X (d) = HX (d) for d  0 is called the Hilbert polynomial
of S/I (X). The integer ck−1(k − 1)!, denoted by deg(S/I (X)), is called the degree of S/I (X). According to
[13, Lecture 13], h X (d) = |X | for d ≥ |X | − 1. Hence

|X | = hX (d) = c0 = deg(S/I (X))

for d ≥ |X | − 1. Thus, |X | is the degree of S/I (X).

Definition 2.1 The index of regularity of S/I (X), denoted by reg(S/I (X)), is the least integer � ≥ 0 such
that hX (d) = HX (d) for d ≥ �.

The index of regularity of S/I (X) is equal to the Castelnuovo Mumford regularity of S/I (X) because this
ring is Cohen–Macaulay of dimension 1.

Remark 2.2 The Hilbert series of S/I (X) can be written as

FX (t) :=
∞∑

i=0

HX (i)t i = h0 + h1t + · · · + hr tr

1 − t
,

where h0, . . . , hr are positive integers. The number r is the regularity index of S/I (X) and h0 +· · ·+hr is the
degree of S/I (X) (see [24, Corollary 4.1.12]). The same observation holds for any graded Cohen–Macaulay
ideal I ⊂ S of height n − 1.

Recall that a binomial in S is a polynomial of the form ta − tb, where a, b ∈ N
n and where, if a =

(a1, . . . , an) ∈ N
n , we set

ta = ta1
1 · · · tan

n ∈ S.

A binomial ideal is an ideal generated by binomials.
Given c = (ci ) ∈ Z

n , the set supp(c) = {i |ci �= 0} is the support of c. The vector c can be written as
c = c+ − c−, where c+ and c− are two non-negative vectors with disjoint support. If ta is a monomial, with
a = (ai ) ∈ N

n , the set supp(ta) = {ti | ai > 0} is called the support of ta .

Definition 2.3 A subgroup L of Zn is called a lattice. A lattice ideal is an ideal of the form

I (L) = ({tα+ − tα
−| α ∈ L}) ⊂ S

for some lattice L in Zn . A lattice L is called homogeneous if there is an integral vector ω with positive entries
such that 〈ω, a〉 = 0 for a ∈ L.

Definition 2.4 An ideal I ⊂ S is called a complete intersection if there exists g1, . . . , gm such that I =
(g1, . . . , gm), where m is the height of I .
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Remark 2.5 A graded binomial ideal I ⊂ S is a complete intersection if and only if I is generated by a set of
homogeneous binomials g1, . . . , gm , with m = ht(I ), and any such set of homogeneous generators is already
a regular sequence (see [24, Proposition 1.3.17, Lemma 1.3.18]).

Lemma 2.6 Let S = K [t1, . . . , tn] be a polynomial ring with the standard grading. If I is a graded ideal of
S generated by a homogeneous regular sequence f1, . . . , fn−1, then

reg(S/I ) =
n−1∑

i=1

(deg( fi ) − 1) and deg(S/I ) = deg( f1) · · · deg( fn−1).

Proof We set δi = deg( fi ). By Villarreal [24, p. 104], the Hilbert series of S/I is given by

FI (t) =
∏n−1

i=1 (1 − tδi )

(1 − t)n
=

∏n−1
i=1 (1 + t + · · · + tδi −1)

(1 − t)
. (2.1)

Thus, by Remark 2.2, reg(S/I ) = ∑n−1
i=1 (δi − 1) and deg(S/I ) = δ1 · · · δn−1. ��

3 Complete intersections and algebraic invariants

We continue to use the notation and definitions used in Sects. 1 and 2. In this section, we study vanishing
ideals over degenerate projective tori. We study the complete intersection property and the algebraic invariants
of vanishing ideals. We will establish a correspondence between vanishing ideals and toric ideals associated
to semigroups of N.

Let D be the non-singular matrix D = diag(d1, . . . , dn). Consider the homomorphisms of Z-modules:

ψ : Zn → Z, ei �→ di ,

D : Zn → Z
n, ei �→ di ei .

If c = (ci ) ∈ R
n , we set |c| = ∑n

i=1 ci . Notice that |D(c)| = ψ(c) for any c ∈ Z
n . There are two

homogeneous lattices that will play a role here:

L1 = ker(ψ) and L = D(ker(ψ)).

The map D induces a Z-isomorphism between L1 and L. It is well known [24] that the toric ideal P is the
lattice ideal of L1. Below, we show that I (X) is the lattice ideal of L.

Lemma 3.1 The map ta − tb �→ t D(a) − t D(b) induces a bijection between the binomials ta − tb of P whose
terms ta, tb have disjoint support and the binomials ta′ − tb′

of I (X) whose terms ta′
, tb′

have disjoint support.

Proof If f = ta − tb is a binomial of P whose terms have disjoint support, then a − b ∈ L1 and the terms of
g = t D(a) − t D(b) have disjoint support because

supp(ta) = supp(t D(a)) and supp(tb) = supp(t D(b)).

Thus, |D(a)| = ψ(a) = ψ(b) = |D(b)|. This means that g = t D(a) − t D(b) is homogeneous in the standard
grading of S. As (βvi )di = 1 for all i , it is seen that g vanishes at all points of X . Hence, g ∈ I (X) and the
map is well defined.

The map is clearly injective. To show that the map is onto, take a binomial f ′ = ta′ − tb′
in I (X) with

a′ = (a′
i ), b′ = (b′

i ) and such that ta′
and tb′

have disjoint support. Then, (βvi )a′
i −b′

i = 1 for all i because
f ′ vanishes at all points of X . Hence, since the order of βvi is di , there are integers c1, . . . , cn such that
a′

i − b′
i = ci di for all i . Since f ′ is homogeneous, one has |a′| = |b′|. It follows readily that c ∈ L1 and

a′ − b′ = D(c). We can write c = c+ − c−. As a′ and b′ have disjoint support, we get a′ = D(c+) and
b′ = D(c−). Thus, the binomial f = tc+ − tc−

is in P and maps to ta′ − tb′
. ��

Proposition 3.2 P = I (L1) and I (X) = I (L).
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Proof As mentioned above, the first equality is well known [24]. Since I (X) is a lattice ideal [19], it is gen-
erated by binomials of the form ta+ − ta−

(this follows using that ti is a non-zero divisor of S/I (X) for all i).
To show the second equality, take ta+ − ta−

in I (X). Then, by Lemma 3.1, a+ − a− ∈ L and ta+ − ta−
is in

I (L). Thus, I (X) ⊂ I (L). Conversely, take f = ta+ − ta−
in I (L) with a+ − a− in L. Then, there is c ∈ L1

such that a+ − a− = D(c+ − c−). Then, tc+ − tc−
is in P and maps, under the map of Lemma 3.1, to f .

Thus, f ∈ I (X). This proves that I (L) ⊂ I (X). ��
Proposition 3.3 If P = ({tai − tbi }m

i=1), then I (X) = ({t D(ai ) − t D(bi )}m
i=1).

Proof We set gi = tai −tbi and hi = t D(ai )−t D(bi ) for i = 1, . . . , n. Notice that hi is equal to gi (td1, . . . , tdn ),
the evaluation of gi at (t

d1
1 , . . . , tdn

n ). By Lemma 3.1, one has the inclusion (h1, . . . , hm) ⊂ I (X). To show the

reverse inclusion take a binomial 0 �= f ∈ I (X). We may assume that f = ta+ − ta−
. Then, by Lemma 3.1,

there is g = tc+ − tc−
in P such that f = t D(c+) − t D(c−). By hypothesis we can write g = ∑m

i=1 fi gi for

some f1, . . . , fm in S. Then, evaluating both sides of this equality at (td1
1 , . . . , tdn

n ), we get

f = t D(c+) − t D(c−) = g(td1
1 , . . . , tdn

n ) =
m∑

i=1

fi (t
d1
1 , . . . , tdn

n )gi (t
d1
1 , . . . , tdn

n ) =
m∑

i=1

f ′
i hi ,

where f ′
i = fi (t

d1
1 , . . . , tdn

n ) for all i . Then, f ∈ (h1, . . . , hm). ��
Corollary 3.4 If n = 3, then I (X) is minimally generated by at most 3 binomials.

Proof By a classical theorem of Herzog [14], P is generated by at most 3 binomials. Hence, by Proposition 3.3,
I (X) is generated by at most 3 binomials. ��

Given a subset I ⊂ S, its variety, denoted by V (I ), is the set of all a ∈ A
n
K such that f (a) = 0 for all

f ∈ I , where An
K is the affine space over K . Given a binomial g = ta − tb, we set ĝ = a − b. If B is a subset

of Zn, 〈B〉 denotes the subgroup of Zn generated by B.

Proposition 3.5 [4, Proposition 2.5] Let B = {g1, . . . , gn−1} be a set of binomials in P. Then, P = (B) if
and only if the following two conditions hold:

(i′) L1 = 〈ĝ1, . . . , ĝn−1〉, where L1 = ker(ψ).
(ii′) V (g1, . . . , gn−1, ti ) = {0} for i = 1, . . . , n.

We come to the main result of this section.

Theorem 3.6 (a) If I (X) is a complete intersection generated by binomials h1, . . . , hn−1, then P is a complete
intersection generated by binomials g1, . . . , gn−1 such that hi is equal to gi (t

d1
1 , . . . , tdn

n ) for all i. (b) If P is
a complete intersection generated by binomials g1, . . . , gn−1, then I (X) is a complete intersection generated
by binomials h1, . . . , hn−1, where hi is equal to gi (t

d1
1 , . . . , tdn

n ) for all i .

Proof (a) Since tk is a non-zero divisor of S/I (X) for all k, it is not hard to see that the monomials of hi have
disjoint support for all i , i.e., we can write hi = ta+

i − ta−
i for i = 1, . . . , n − 1. We claim that the following

two conditions hold.

(i) L = 〈a1, . . . , an−1〉, where ai = a+
i − a−

i and L is the lattice that defines I (X).
(ii) V (h1, . . . , hn−1, ti ) = {0} for i = 1, . . . , n.

As I (X) is generated by h1, . . . , hn−1, by López and Villarreal [17, Lemma 2.5], condition (i) holds. The
binomial tq−1

i − tq−1
n is in I (X) for all i because F∗

q is a group of order q − 1. Thus, V (I (X), ti ) = {0} for
all i . From the equality (h1, . . . , hn−1, ti ) = (I (X), ti ), we get

V (h1, . . . , hn−1, ti ) = V (I (X), ti ) = {0}.
Thus, (ii) holds. This completes the proof of the claim.

By (i) and Proposition 3.2, there are b1, . . . , bn−1 in L1 = ker(ψ) such that ai = D(bi ) for all i . Accord-
ingly a+

i = D(b+
i ) and a−

i = D(b−
i ) for all i . We set gi = tb+

i − tb−
i for all i . Clearly, all the gi ’s are in P and

hi is equal to gi (t
d1
1 , . . . , tdn

n ) for all i . Next, we prove that P is generated by g1, . . . , gn−1. By Proposition 3.5
it suffices to show that the following two conditions hold:
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(i′) L1 = 〈b1, . . . , bn−1〉, where L1 = ker(ψ).
(ii′) V (g1, . . . , gn−1, ti ) = {0} for i = 1, . . . , n.

First we show (i′). Since b1, . . . , bn−1 are in L1, we need only show the inclusion “⊂”. Take γ ∈ ker(ψ),
then D(γ ) ∈ L, and by (i) it follows that γ ∈ 〈b1, . . . , bn−1〉.

Next we show (ii′). For simplicity of notation, we may assume that i = n. Take c in the variety
V (g1, . . . , gn−1, tn) and write c = (c1, . . . , cn). Then, cn = 0 and gi (c) = cb+

i − cb−
i = 0 for all i , were cb+

i

means to evaluate the monomial tb+
i at the point c. Let i be a fixed but arbitrary integer in {1, . . . , n − 1}.

We can write

bi = b+
i − b−

i = (b+
i1, . . . , b+

in) − (b−
i1, . . . , b−

in)

and ai = a+
i − a−

i = (a+
i1, . . . , a+

in) − (a−
i1, . . . , a−

in). Then

hi (c
v1
1 , . . . , cvn

n ) = (cv1
1 )a+

i1 · · · (cvn
n )a+

in − (cv1
1 )a−

i1 · · · (cvn
n )a−

in

= c
v1d1b+

i1
1 · · · c

vndnb+
in

n − c
v1d1b−

i1
1 · · · c

vndnb−
in

n . (3.1)

We claim that hi (c
v1
1 , . . . , cvn

n ) = 0. To show this we consider two cases.

Case (I): b+
in > 0. Then, as gi (c) = cb+

i − cb−
i = 0 and cb+

i =0, one has cb−
i = 0. Hence, there is j such

that b−
i j > 0 and c j = 0. Thus, by Eq. (3.1), hi (c

v1
1 , . . . , cvn

n ) = 0.

Case (II): b+
in = 0. If c j = 0 for some b+

i j > 0, then cb−
i = 0 because gi (c) = 0. Hence, there is k such

that ck = 0 and b−
ik > 0. Thus, by Eq. (3.1), hi (c

v1
1 , . . . , cvn

n ) = 0. Similarly, if c j = 0 for some b−
i j > 0,

then cb+
i = 0 because gi (c) = 0. Hence, there is k such that ck = 0 and b+

ik > 0. Thus, by Eq. (3.1),
hi (c

v1
1 , . . . , cvn

n ) = 0. We may now assume that c j �= 0 if b+
i j > 0, and cm �= 0 if b−

im > 0. Let β be a generator

of the cyclic group (F∗, ·). Any c j �= 0 has the form c j = β j� . Thus, using that (βv j )d j = 1, we get that

(c
v j
j )

d j b
+
i j = 1 if b+

i j > 0 and (c
v j
j )

d j b
−
i j = 1 if b−

i j > 0. Hence, by Eq. (3.1), hi (c
v1
1 , . . . , cvn

n ) = 0, as required.
This completes the proof of the claim.

As hi (c
v1
1 , . . . , cvn

n ) = 0 for all i , the point c′ = (cv1
1 , . . . , cvn

n ) is in V (h1, . . . , hn−1, tn). By (ii), the point
c′ es zero. Hence, c = 0 as required. This completes the proof of (ii′). Hence, P is a complete intersection
generated by g1, . . . , gn−1.

(b) It follows from Proposition 3.3. ��
Using the notion of a binary tree, a criterion for complete intersection toric ideals of affinemonomial curves

is given in [4]. In [2] an effective algorithm is given to determine whether P is a complete intersection. If P
is a complete intersection, this algorithm returns the generators of P and the Frobenius number.

In our situation, the next result allows us to: (A) use the results of [4,5,14] to give criteria for complete
intersection vanishing ideals over a finite field, (B) use the effective algorithms of [2] to recognize complete
intersection vanishing ideals over finite fields and to compute its invariants (see Example 3.14).

Corollary 3.7 I (X) is a complete intersection if and only if P is a complete intersection.

Proof Assume that I (X) is a complete intersection. By Remark 2.5, there are binomials h1, . . . , hn−1 that
generate I (X). Hence, P is a complete intersection by Theorem 3.6. The converse follows by similar reasons.

��
Lemma 3.8 If r = gcd(d1, . . . , dn) and d ′

i = o(βrvi ), then di = rd ′
i and gcd(d ′

1, . . . , d ′
n) = 1.

Proof It follows readily by recalling that o(βrvi ) = o(βvi )/ gcd(r, o(βvi )). ��

In what follows X ′ will denote the degenerate torus in Pn−1 parameterized by x
v′
1

1 , . . . , x
v′

n
n , where v′

i = rvi
and r = gcd(d1, . . . , dn). Below, we relate I (X) and I (X ′).

Proposition 3.9 The vanishing ideal I (X) is a complete intersection if and only if I (X ′) is a complete inter-
section.
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Proof Let P and P ′ be the toric ideals of K [yd1
1 , . . . , ydn

1 ] and K [y
d ′
1

1 , . . . , y
d ′

n
1 ], respectively, where d ′

i =
o(βrvi ) for all i . It is not hard to see that P = P ′. Then, by Theorem 3.6, P is a complete intersection if and
only if I (X) is a complete intersection and P ′ is a complete intersection if and only if I (X ′) is a complete
intersection. Thus, I (X) is a complete intersection if and only if I (X ′) is a complete intersection. ��
Definition 3.10 The set X∗ := {(xv1

1 , . . . , xvn
n )| xi ∈ K ∗ for all i} ⊂ K n is called an affine degenerate torus

parameterized by xv1
1 , . . . , xvn

n .

Lemma 3.11 |X∗| = d1 · · · dn and deg(S/I (X)) = |X | = d1 · · · dn/ gcd(d1, . . . , dn).

Proof Let Si = 〈βvi 〉 be the cyclic group generated by βvi . The set X∗ is equal to the Cartesian product
S1 × · · · × Sn . Hence, to show the first equality, it suffices to recall that |Si | is o(βvi ), the order of βvi . Notice
that any element of X∗ can be written as ((β i1)v1, . . . , (β in )vn ) for some integers i1, . . . , in . The kernel of the
epimorphism of groups X∗ �→ X , x �→ [x], is equal to

{(γ, . . . , γ ) ∈ (K ∗)n : γ ∈ 〈βv1〉 ∩ · · · ∩ 〈βvn 〉}.
Hence, |X∗|/| ∩n

i=1 〈βvi 〉| = |X |. Since 〈βvi 〉 is a subgroup of K ∗ for all i and K ∗ is a cyclic group, one has
| ∩n

i=1 〈βvi 〉| = gcd(d1, . . . , dn) (see for instance [1, Theorem 4, p. 4]). Thus, the second equality follows. ��
Definition 3.12 If S is a numerical semigroup ofN, the Frobenius number of S, denoted by g(S), is the largest
integer not in S.

Consider the semigroup S ′ = Nd ′
1 + · · · +Nd ′

n , where d ′
i = o(βrvi ) for i = 1, . . . , n. By Lemma 3.8, one

has gcd(d ′
1, . . . , d ′

n) = 1, i.e., S ′ is a numerical semigroup. Thus, g(S ′) is finite. If the toric ideal of K [S ′] is
a complete intersection, then g(S ′) can be expressed entirely in terms of d ′

1, . . . , d ′
n [4, Remark 4.5].

Corollary 3.13 (i) deg(S/I (X)) = d1 · · · dn/ gcd(d1, . . . , dn).
(ii) If I (X) is a complete intersection, then

regS/I (X) = gcd(d1, . . . , dn)g(S ′) +
n∑

i=1

di − (n − 1).

Proof Part (i) follows at once from Lemma 3.11. Next, we prove (ii). Let P and P ′ be as in the proof of
Proposition 3.9. With the notation above, by Lemma 3.8, we get that di = rd ′

i for all i . The toric ideals P
and P ′ are equal but they are graded differently. Recall that P and P ′ are graded with respect to the gradings
induced by assigning deg(ti ) = di and deg(ti ) = d ′

i for all i , respectively. Let g1, . . . , gn−1 be a generating
set of P = P ′ consisting of binomials. Then, by Theorem 3.6, I (X) is generated by h1, . . . , hn−1, where hi

is gi (t
d1
1 , . . . , tdn

n ) for all i . Accordingly, I (X ′) is generated by h′
1, . . . , h′

n−1, where h′
i is gi (t

d ′
1

1 , . . . , t
d ′

n
n ) for

all i . If Di = deg(hi ) and D′
i = deg(h′

i ), then Di = r D′
i for all i . As P ′ is a complete intersection generated

by g1, . . . , gn−1 and degP ′(gi ) = D′
i for all i , using [4, Remark 4.5], we get

g(S ′) =
n−1∑

i=1

D′
i −

n∑

i=1

d ′
i =

n−1∑

i=1

(Di/r) −
n∑

i=1

(di/r).

Therefore, using the equality reg S/I (X) = ∑n−1
i=1 (Di − 1) (see Lemma 2.6), the formula for the regularity

follows. ��
Example 3.14 To illustrate how to use the algorithm of [2] we consider the degenerate torus X , over the field
Fq , parameterized by xv1

1 , . . . , xv5
5 , where v1 = 1,500, v2 = 1,000, v3 = 432, v4 = 360, v5 = 240, and

q = 54,001. In this case, one has

d1 = 36, d2 = 54, d3 = 125, d4 = 150, d5 = 225.

Using [2, Algorithm CI, p. 981], we get that P is a complete intersection generated by the binomials

g1 = t31 − t22 , g2 = t34 − t25 , g3 = t33 − t4t5, g4 = t81 t32 − t34 ,
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and we also get that the Frobenius number of S is 793. Hence, by our results, the vanishing ideal I (X) is a
complete intersection generated by the binomials

h1 = t1081 − t1082 , h2 = t4504 − t4505 , h3 = t3753 − t1504 t2255 , h4 = t2881 t1622 − t4504 ,

the index of regularity and degree of S/I (X) are 1,379 and 8,201,250,000, respectively.

The next example is interesting because if one chooses v1, . . . , vn at random, it is likely that I (X) will be
generated by binomials of the form tm

i − tm
j .

Example 3.15 Let Fq be the field with q = 211 elements. Consider the sequence v1 = 42, v2 = 35, v3 = 30.
In this case, one has d1 = 5, d2 = 6, d3 = 7. By a well known result of Herzog [14], one has

P = (t22 − t1t3, t41 − t2t23 , t31 t2 − t33 ).

Hence, by our results, I (X) = (t122 − t51 t73 , t201 − t62 t143 , t151 t62 − t213 ) and this ideal is not a complete inter-
section. The index of regularity and the degree of S/I (X) are 25 and 210, respectively. The Frobenius number
of S is equal to 9. Notice that the toric relations t301 − t302 , t351 − t353 , t422 − t423 do not generate I (X).

The next example was found using Theorem 3.6. Without using this theorem it is very difficult to construct
examples of complete intersection vanishing ideals not generated by binomials of the form tm

i − tm
j .

Example 3.16 Let Fq be the field with q = 271 elements. Consider the sequence v1 = 30, v2 = 135, v3 = 54.
In this case, one has d1 = 9, d2 = 2, d3 = 5. The ideals P and I (X) are complete intersections given by

P = (t1 − t22 t3, t52 − t23 ) and I (X) = (t91 − t42 t53 , t102 − t103 ).

By Lemma 2.6, the index of regularity of S/I (X) is 17 and by Corollary 3.13 the Frobenius number of S is 3.

The computation of the vanishing ideal. In this part we show how to compute the vanishing ideal using the
notion of saturation of an ideal with respect to a polynomial.

The next lemma is easy to show.

Lemma 3.17 If ci j := lcm{di , d j } = lcm{o(βvi ), o(βv j )}, then t
ci j
i − t

ci j
j ∈ I (X).

The set of toric relations T = {tci j
i −t

ci j
j : 1 ≤ i, j ≤ n} does not generate I (X), as is seen in Example 3.15.

If vi = 1 for all i , then ci j = q − 1 for all i, j and I (X) is generated by T .
For an ideal I ⊂ S and a polynomial h ∈ S the saturation of I with respect to h is the ideal

(I : h∞) := { f ∈ S| f hk ∈ I for some k ≥ 1}.
Proposition 3.18 Let I ′ be the ideal (t

ci j
i −t

ci j
j | 1 < i < j ≤ n), where ci j = lcm{di , d j }. Ifgcd(d1, . . . , dn)=1,

then I (X) = (I ′ : (t1 · · · tn)∞).

Proof We claim that L = 〈ci j ei − ci j e j | 1 ≤ i < j ≤ n〉. By Villarreal [24, Proposition 10.1.8], we get

L1 = 〈(d j/ gcd(di , d j ))ei − (di/ gcd(di , d j ))e j | 1 ≤ i < j ≤ n〉.
Thus, the claim follows from the equality L = D(L1). The inclusion “⊃” follows readily using that ti is
a non-zero divisor of S/I (X) for all i because I (X) is a lattice ideal containing I ′ (see Lemma 3.17). To
show the inclusion “⊂”, take a binomial f = ta − tb ∈ I (X). By Proposition 3.2, I (X) = I (L). Thus,
a − b ∈ L. Using the previous claim and [17, Lemma 2.3], there is δ ∈ N

n such that tδ f ∈ I ′. Hence,
f ∈ (I ′ : (t1 · · · tn)∞). ��
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