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COMPLETE KAHLER MANIFOLDS 
WITH ZERO RICCI CURVATURE. I 

G. TIAN AND SHING TUNG YAU 

The problem of constructing complete manifolds with zero Ricci curvature 
is important for both physicists and geometers. When the manifold is compact 
and Kahler, this problem was solved satisfactorily by the second author in 1976. 
While it is not difficult to construct explicit examples of noncompact manifolds 
with zero Ricci curvature, a complete understanding of complete noncompact 
manifolds with zero Ricci curvature is still needed. . Therefore, immediately 
after the work in 1976, the second author proposed a scheme to classify these 
manifolds. This is the first part of the papers being written by the authors 
on a systematic research on the existence of these metrics. They have natural 
applications to algebraic geometry which shall be reported on later. 

A typical theorem we prove is the following. Let D be a neat, almost ample 
smooth divisor in a projective manifold M. Let Q be any (1, 1 )-form repre-
senting the first Chern class of K~l ® D- 1 • Then there is a complete Kahler 
metric with Q as its Ricci form. (We define a divisor to be neat if no compact 
algebraic curve in M\D is homologous to a linear sum of curves supported in 
D.) In particular, if D is the anticanonical divisor, there is a complete Ricci 
flat Kahler metric on M\D. If K~l ®D- 1 is ample, M\D carries a complete 
Kahler metric with positive Ricci curvature. Naturally, such theorems immedi-
ately imply theorems on the topology of M\D. For example, D is connected 
and the fundamental group of M\D is almost nilpotent. 

The assumption on the smoothness of D can be removed. When D has 
normal crossing and higher multiplicity, the situation is more complicated and 
we shall deal with it later. 

This paper can be looked upon as a study of the solutions of a global complex 
Monge-Ampere equation on a Kahler manifold. The uniqueness of such an 
equation is very interesting and largely unknown. It is presumably related to 
the automorphism of the manifold. 
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580 G. TIAN AND S. T. YAU 

1. AN EXISTENCE THEOREM FOR SOME COMPLEX 
MONGE-AMP~RE EQUATIONS 

Let (M, g) be a complete Kahler manifold and Wg be the Kahler form 
associated to the metric g. In local coordinates (ZI' ... , zn)' the metric g is 
represented by the tensor (gi])I~i,j~n' where n = dimcM, and 

yCT n _ 
Wg = ""bl L gijdzi 1\ dZr 

i ,j=1 

Consider the following complex Monge-Ampere equation on M, 

{ 
( yCT _)n f n 

Wg + ""bl0orp = e wg , 
(1.1) 

yCT - 00 1 
Wg + ""bl0orp > 0, rp E e (M, R ), 

where ron = W A··· A wand f is a given smooth function satisfying the g g g 
integrability condition 

(1.2) 

For any solution rp of equation (1.1), the (1, 1 )-form ro g + ?o8 rp defines 
a new Kahler metric. By the well-known expression of the Ricci curvature on a 
Kahler manifold, one can easily check (cf. [Y2]) that the Ricci curvature form 
of this new metric is given by Ric(g) - ?o8f. Thus, in order to construct 
the Kahler metric with prescribed Ricci curvature, it suffices to solve equation 
(1.1) with properly chosen function f. For instance, if Ric(g) - ?o8 f > 0, 
then the solution of (1.1) gives a Kahler metric with positive Ricci curvature. 
In 1976, the second author solved the famous Calabi's conjecture by proving 
the solvability of (1.1) when M is compact. Here we study the solvability of 
(1.1) when M is noncompact. We will prove an existence theorem (Theorem 
1.1) for (1.1) under certain assumptions on the decay of f at infinity. This 
existence theorem will be applied later to construct complex Ricci flat metrics 
and complete Kahler metrics with positive Ricci curvature on many complete 
Kahler manifolds. 

In order to state our theorem, we need the following definitions. 

Definition 1.1. Let (X, di) be a complete Riemannian manifold, and let K, 
a, P be nonnegative numbers. We say that the manifold (X, di) is of 
(K , a, P)-polynomial growth if its sectional curvature is bounded 
by K, Volds2(BR(xo)) ~ eRa. for all R > 0, and Volds2(B1(x)) ~ 

e- I (1 + dist( Xo ' x)) - fJ for some fixed point Xo in M and some constant 
e independent of x. Here BR(xO) denotes the geodesic ball with center at Xo 
and radius R, and Volds2 denotes the volume associated to the metric di. 
Definition 1.2. We say that the complete Kahler manifold (M, g) is of quasi-
finite geometry of order I + ~ if there are positive numbers, > 0, 'I > '2 > 0 
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such that for any x in M , there is a holomorphic map rp x from a domain Ux 
in en containing the origin 0 onto the geodesic ball Br(x) satisfying: 

(1) rpx(O) = x, Dr ~ Ux ~ Dr ' where Ds = {z E enllzl $ s}. 
2 1 

(2) The pull-back metric rp;g is a Kahler metric in Ux such that in the 
natural coordinate system on en , the metric tensor of rp;g and its derivatives 
up to order I are bounded and o-Holder-continuously bounded. 

In the following, denote by V g and Ilg the gradient and the laplacian of the 
metric g, respectively. 

Theorem 1.1. Let (M, g) be a complete Kahler manifold of quasi-finite geom-
etry of order 2 +! and with (K, 2, P)-polynomial growth. Let f be a smooth 
function satisfying the integrability condition (1.2) and, for some constant C, 

(1.3) s~{IV gfl, Illgfl} $ C, If(x)1 $ (1 + ~X))N ' x EM, 

where N c. 4+2P and p(x) = distg(xo' x) is the distance function on M from 
a fixed point xo. 

Then equation ( 1.1) has a bounded, smooth solution rp such that OJ g + 
ffla8rp defines a complete Kahler metric equivalent to g. Infact, the supreme 
norms of rp and its derivatives can be bounded by constants depending only on 
f, C, N, K, P, and the order of the derivative. 

We will prove this theorem in §§2 and 3. 

Remarks. (1) The manifold (M, g) under consideration is parabolic, i.e., the 
volume growth is not greater than quadratic growth. This restriction on the 
volume growth could be removed by some estimates on the Green's kernel of 
some elliptic operator of second order. 

(2) One should be able to prove that the resulting metric in Theorem 1.1 is 
asymptotically as close to g as possible if the function f and its derivatives 
decay sufficiently fast. We shall return to this question in the future. 

We end this section by a proposition on the quasi-finite geometry of a Kahler 
manifold with some assumptions on the curvature. 
Proposition 1.2. Let (M, g) be a complete Kahler manifold with its sectional 
curvature and the covariant derivative of its scalar curvature bounded. Then 
(M, g) is of quasi-finite geometry of order 2 + !. 
Proof. Denote by R(g) and S(g) the sectional curvature and scalar curvature, 
respectively. By scaling, we may assume that 

(1.4) 

Then for any point x in M, there is no conjugate point of x in the geodesic 
ball B7(/2(X). Then the exponential map expx : B7(/2(0) c TxM ..... B7(/2(X) c M 
is locally diffeomorphic. By pulling back the complex structure of M and the 
Kahler metric g, we obtain a new Kahler manifold (B7(/2(0) , exp; g) with 
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582 G. TIAN AND S. T. YAU 

boundary 8Bx /2(0). Clearly, the injectivity radius Inj Rad(O) is nl2 for the 
manifold (Bx /2(0) , exp: g). Let p(y) = distexp; g(Y, 0) be the distance func-
tion from 0 on (Bx / 2 (0) , exp: g). Then p is smooth. By the Hessian compar-
ison theorem (cf. [SY, GW)), the functions / and log(p2) are plurisubhar-
monic on B, = {y E TxMlp(y) < r} and 

A -2 (1.5) ~88p ~ e > 0 on B,(O) , 

where r, e are two small positive numbers independent of x, and the opera-
tors 8, a are induced from those on M by expx' 

Next, consider the a-equation au = v on (B" exp: g) , where v is a smooth 
(0, I)-form with 8v = 0 and u E eOO(B" Rl). By using Hormander's L2_ 
estimate with weight function 4n log(/) + rp(/) for a suitable convex function 
rp and taking r smaller if necessary, we can construct local holomorphic co-
ordinates (Zl"'" Zn) on (B" exp: g) (cf. [SY, GW)). Thus we conclude 
that B, is a domain in en satisfying (1) in Definition 1.2. In the local sys-
tem (zl"'" zn), the metric exp: g is represented by a hermitian matrix 
(~)l$i ,j$n' By the boundedness of the curvature tensor of exp: g , one can 
prove that 

(i) gi}(O) = c5ij , e- 1 id:5 (gij):5 eid, 
(ii) sup{18gi}18zklli :5 i, j, k :5 n} :5 e, 

B, 

where e is a uniform constant and id denotes the identity matrix. We refer 
readers to [Jo] for details of the proof of these. 

Now we have the following elliptic equations: 

(1.6) 

( 1 7) A () ~ kl st 8 g Is 8 gtj R' ( ) (1 d ( )) . - u g gij + .LJ g g 8- -8 _ = IC g i} = - og et gi} i}' 
zi ~k s,t,k,l=l 

By the assumption, the scalar curvature of exp: g is a uniformly bounded 
!-Holder continuous function. Then from (i), (ii) above and the applications of 
the standard Schauder estimate [GT] to (1.6) and (1.7), it follows that (M, g) 
is of quasi-finite geometry of order 2 + ! . 

2. WEIGHTED SOBOLEV INEQUALITIES 

In this section, we will prove some weighted Sobolev inequalities on a man-
ifold with polynomial growth. These inequalities are needed in the proof of 
Theorem 1.1. They may not be optimal. We are satisfied by the fact that they 
are sufficient for our later use. 
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Proposition 2.1. Let (X, di) be an n-dimensional complete Riemannian man-
ifold with (K, Q, P)-polynomial growth, where K > 0 and Q, P ~ O. Let 
p(x) = dist(xo' x) be the distance junction from the fixed point Xo given in the 
definition of the manifold with polynomial growth. Let I = Q + 2 + 2p. Then 
for any Lipschitz junction f on M with vanishing (1 + p) -I-average, i.e., 

(2.1) fM(1 + p(x»-lf(x)dV = 0, 

we have 
(2.2) (Ix (1 + p(x»-/lf(x)12(n+I)/(n-l) dV) (n-I)/2(n+l) ~ Co (Ix IV fl2 dV) 1/2 , 

where d V is the volume form of the metric d i and Co is a constant depending 
only on K, n, Q, p. 
Remark. To make the integral in (2.1) meaningful, we assume that the func-
tion f in Proposition 2.1 is absolutely L I-integrable with respect to the weight 
(1 + p)-I . 

The rest of this section is devoted to the proof of this proposition. 
We start our proof with some notation. For each point x in X, every other 

point in X can be joined to x by a minimal geodesic. The exponential map 
expx identifies a domain D(x) in the tangent space TxX with an open set in 
X which is within the cut-locus of x in X. Denote by Sx the unit sphere in 
TxX. Then we can write the domain in a polar coordinate system as 

(2.3) D(x) = {(r, 0)10 E Sx' 0 ~ r ~ r(O)} , 

where r(O) is a function defined on Sx' 
For every y in D(x) , we can write the volume element of X at y as 

,Jg(x, y)rx(y)n-l drdO, where g is the determinant of the metric di and 
r x is the distance function on X from x. For every measurable subset E of 
D(x) , we define the cone of x over E to be 

(2.4) Cx(E) = {(r, 0)1 for some 1', (1', 0) E E}, 

where (r, 0) is the polar coordinate system at x. Note that these notations 
are taken from [Yl]. 

Lemma 2.1 [Yl, Lemma 4]. Let f be a Lipschitz junction defined on D(x). 
Thenfor E = {y E BR(x)lf(y) = O}, where BR(x) is the geodesic ball in X, 
we have 

(2.S) p,(Sy n Cy(E»lf(y)1 

~ 1 1;;1 (z)(JK(y, z)ry(z)n-I)-I dV(z), 
Cy(E)nBR+Tx<y)(Y) y 

where p, denotes the euclidean measure on Sy and y E BR(x). 

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



584 G. TIAN AND S. T. YAU 

Lemma2.2. Let Ro = 1l/2.Ji(. Then for any R ~ j-Ro and y in BR(x)nD(x), 

(2.6) C(K, n)-1 ~ Iy'g(x, y)1 ~ C(K, n), 

where C(K, n) > 0 is a constant depending only on K and n. 
Proof. The distance rx is smooth in the open subset BR(x) n D(x). Since 
X\D(x) is the cut locus of (X, di) with respect to the point x, any geodesic 
)I connecting a point yin BR(x)nD(x) to x lies entirely in BR(x)nD(x). By 
the assumption on the curvature of di and the Hessian comparison theorem 
(cf. [SY, GWD, 

n -1 nK 
.1s·rs·(rx(y» ~ .1rx(Y) ~ rx(Y) + Trx(Y) ' 

where y E BR(x) nD(x), .1 stands for the laplacian of (X, di), and rs' and 
.1s' are the distance function from the north pole and the laplacian of Sn with 
the standard metric with constant curvature K. 

Hence, an easy computation shows 

(2.7) I n - 11 ' .1rx(Y) - rx(Y) ~ C (K, n)rx(Y) ' Y E BR(x) n D(x) , 

where C' (K , n) is a constant depending only on K and n. But 
n-I 8 

(2.8) .1rx(Y) = -( -) + -;-logy'g(x, y), 
rx y vrx 

and so the lemma follows from (2.7) and y'g(x, x) = 1. 

Lemma 2.3. For any R > 0 and any point x in X, E c BR(x) and y E BR(x) , 
we have 

(2.9) 

where J.I. 

(2.10) 

Lu(Sy n Cy(E n D(y»))] 
-1 

1T(O) 
~ Volds2(E)-1 sup y'g(y, (r, 0»rn- 1 dr, 

OESy 0 

is the euclidean measure on Sy and the function r( 0) is defined by 

r(O) = sup {rlthe geodesic )lo(t) is minimal in [0, r], 
r < R + rx(Y) and 1'0(0) = y, y~(O) = 0 E Su}. 

Proof. It is well known that the cut locus of y in X has volume measure zero. 
Therefore, 
(2.11) Volds2(E) = Volds2(E n D(y» ~ Volds2(Cy(E n D(y» n BR(x». 

Note that any point in Cy(E n D(y» n BR(x) can be joined to y by a unique 
minimal geodesic Yo with D(y) n BR+r,,(y)(Y). It follows from (2.11) that 

Volds2(E) ~ r dO reO) y'g(y, (r, 0»rn- 1 dr 
lsy ncy (EnD(Y)) 10 

1r(O) I 
~ J.I.(Sy n Cy(E n D(y») sup y'g(Y, (r, O»rn- dr. 

OESy 0 

Then the lemma follows. 
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Now for the given Lipschitz function f on X and a fixed R > 0, we define 
a new function kR(f) as 

(2.12) 
kR(f)(x) = sup{kl V01ds2({y E BR(x)lf(y) ~ k}) ~ ! Volds2 (BR (x))} 

for x EX. 

Then kR(f) is a measurable function on X. Actually, one can easily show that 
kR(f) is upper semicontinuous. 

Lemma 2.4. Let (X, di) be a complete Riemannian manifold with its sectional 
curvature bounded by K and Volds2(B I (x)) ~ Co/(l + dist(xo , x)/ for some 
constant Co and fixed point Xo in X. Put p(x) = dist(xo ' x). Then for 
any Lipschitz function f on X and R ~ min{ Ro' I}, where Ro is defined in 
Lemma 2.3, 

(2.14) (Ix (1 + p(x))-2Pb lf(x) - kR(f)(x)lu dV) I/b 

~ CR2e Ix IV fl2 dVg , 

where V denotes the gradient of (X, di), e = (n - c5(n - 2))/2c5, 1 ~ c5 < 
nl(n - 2), and C is a constant depending only on K and n. 
Proof. Define f+ = max{f - kR(f) , O}, f_ = max{ - f + kR(f) , O}, and 
E±(x) = {y E BR(x)lf±(y) = O} for any x in X. Then Volds2(E±) ~ 
! Volds2 (BR(x)) by the definitions of kR(f) and f±. 

Applying Lemma 2.1 to f+, L, respectively, we have 

In the following, we will always use C to denote a constant depending only 
on K and n. 

By Lemmas 2.2 and 2.3, and the Schwartz inequality, we conclude from 
(2.14) and (2.15) that for e = (n - c5(n - 2))/2c5, 
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Define a function X(X, y) on X x X by X(x, y) = 1 for rx(Y) < R, and 
X(x, y) = 0 for rx(Y) ~ R. Then by (2.16), 

(2.17) (Ix (1 + p(X»-2P6If(x) - kR(f)(x)1 16 dV(X») 1/6 

::5 CR2n+t (Ix (1 + p(X»-2P6(Yoldi (BR(x)))-U dV(x) 

. [lxX(X, y)lV' fI2(y)rx (y)-n+2-ll dV(y)f) 1/6. 

By the Volume Comparison Theorem [Bi], we obtain 
CRn 

(2.18) Yolds2(BR(x)) ~ CRnYolds2(BI(x» ~ po 
(1 + p(x» 

Hence, by (2.17), (2.18), Young's inequality, and Lemma 2.2, 
(2.19) 

(Ix (1 + p(x))-2P6If(x) - kR(f)(x)lu dV) 1/16 

::5 CRll/2 (Ix dV(x) (Ix X(x, y)lV' fI 2(y)rx(y)2-n-ll dV(y)r y/u 
::5 CR&/2 ( ( IV' fI2(y) dV(y) . sup (r ry(x) -(n-2+t)6 dV(X») 1/6) 1/2 

1 X yEX 1 BR(y) 

::5 CRIl (Ix IV' fI2(y) dV(y») 1/2 . 

The lemma is proved. 

Lemma 2.5. Let (X, di) and f be as in Lemma 2.4, and let R ::5 
min{I, Ro}, where Ro is given in Lemma 2.2. Thenfor 1 ::5 J < n/(n - 2), 

(2.20) ( If(y) - kR(f)(x) 116 dV(y) ( )
1/16 

lBR(x) 

::5CRll (I+p(x)/ ( lV'fI2(y)dV , ( )
1/2 

lBlR(x) 

where e = (n - (n - 2)J)/20 and C is a constant depending only on K and n. 
Proof. Define f± and E± as in the proof of Lemma 2.4. Then for each y E 
BR(x) , by Lemma 2.1, 
(2.21) p.(Sy n Cy(E+))lf+(y)1 

::5 ( IV' f+l(z)(JK(y, z)ry(z)n-I)-I dV(z), 1 Cy(E+)nB3R(x) 

(2.22) p.(Sy n Cy(E_))IL (y)1 

::5 ( IV' LI(z)(JK(y, z)ry(z)n-I)-I dV(z). 1 Cy(E_ )nB3R(x) 
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As before, we can derive from (2.21), (2.22), Lemma 2.2, and Lemma 2.3 
the estimate 

CR2n+£ 1 2 2 -n+2-£ 
I/(y) - kR(f)(x)1 :5 2P IV II (z)ry(z) dV(z) 

(1 + p(x)) B 3R (x) 
(2.23) 

for any Y in BR(x). Then this lemma follows from the same argument as that 
in the proof of Lemma 2.4. 

Next we need to estimate the growth of the function kR(f). 

Lemma 2.6. Let (X, di) and I be as in Lemma 2.4. Then lor 1 :5 t5 < 
n/(n - 2), 

(2.4) IkR(f)(x) - kR(f)(xo)1 

:5 CR-n(6+l)/20(1 + p(X)l(1+1/6)+1 (Ix IV 112(z) dV) 1/2 

Proof. Given x in X ,let y be the minimal geodesic joining Xo to x. Choose 
a sequence of points {Yj}O~j~N on the geodesic y such that Yo = xO' YN = x, 
and Yj = y(t) , where tj = 1:tp(x). Take N to be [p(x)/R] + 1, where [.] 
denotes the integer part. We will always use C to denote a constant depending 
only on K and n. 

By Lemma 2.5, for 0 :5 j :5 N - 1 , 

(1 6 )1/6 
(2.25) IkR(/)(y) - kR(f)(Yj+I)1 dV(y) 

BR(Yj)nBR(Yj +1) 

:5 CR2(1 +p(y))P. ( f IV/12(Z)dV(Z)) 1/2. 
J B3R(y)UB3R(Yj +1) 

Let Zj = y«tj + t j+I )/2); then BR/2(z) C BR(Yj) n BR(yj +I ). By the Volume 
Comparison Theorem [Bi], 

Voldi(BR(y) n BR(yj + l )) ~ Volds2(BR/2(z)) ~ CRn Voldi(BI (Zj)) 

~ CRn /(1 + p(z)l. 
It follows from (2.5) that 

(2.26) 

Note that by our choices of Yj , the number of the balls B3R (y) having 
nonempty intersection is less than 5. Thus by summing (2.26) over j, we have 
completed the proof of the lemma. 
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Now we can finish the proof of Proposition 2.1. Let I = a + 2 + 2ft , and put 
b=(n+l)j(n-l) and R=min{Ro' 1}=min{nj2JK, I}. By the equation 
(2.1), 

(2.27) IIx (1 + p(x))-' kR(f)(z) dvi ~ Ix (1 + p(x))-'If(x) - kR(f)I(z) dV. 

Then it follows from Lemmas 2.4 and 2.6 that 

(2.28) IkR(f)(xo)1 (Ix (1 + p(x))-' dV) 

~ C (Ix IV fl2 dV),/2 (1 + Ix (1 + p(x))-' dV) , 

where C = C(K, n) depends only on K and n. 
Since Voldi(Br(xO)) ~ Cra. by assumption, by a standard argument using 

Fubini's theorem, we can show the last integral in (2.28) is bounded. Thus 

(2.29) IkR(f)(x)I' (Ix (1 + p(x))-' dV) 

~ C(1 + p(x)/2n l (n+I)+1 (Ix IV fl2 dV) 1/2 

Applying Lemma 2.4 again, we have 

(f )(n-I)/2(n+l) (f )1/2 })a+ p(x))-'lf(x)1 2(n+I)/2(n-l)dV ~CO }xlVfl2dV , 

where Co = Co(K, n, a, ft) is a constant depending only on K, n, a, and 
ft . Thus the proposition is proved. 

Remark. The same proof shows that (2.2) still holds for the weight function 
(1 + p(x))-' with I = a + 1 + e + 2ft and e > 0, except that the constant Co 
may depend on e. 

3. THE PROOF OF THEOREM 1.1 

This section is devoted to the proof of Theorem 1.1. We shall use the per-
turbation method. We start with an approximation lemma. We will adopt the 
notation in Theorem 1.1. 

Lemma 3.1. Let f be the function in Theorem 1.1. Then there is a sequence 
of smooth functions fm (m 2: 1) such that each fm has compact support, the 
sequence {fm} converges to f uniformly on M as m - 00, and 

(3.1) IM(e fm -l)W;=O, 

(3.2) m;x{IV gfl(x) , Idgfl(x)} ~ C, Ifml(x) ~ (1 + ~X))N ' 

where N 2: 4 + 2ft as in Theorem L 1 and C is some uniform constant. 
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Proof. First we produce an exhaustive smooth function. By smoothing the 
distance function p, one can construct a positive function '" on M\Bl (xo) 
satisfying 

(i) p(x)::5 C",(x) for p(x) sufficiently large (say, for instance, p(x) ~ C) , 
(ii) sUPM{IV g",l, Idg",n ::5 C , 

where C is some constant depending only on K and P (cf. [Wu)). 
Choose a positive function " on Rl such that ,,(t) ~ 1, ,,(t) = 1 for 

t ::5 2C , and lim/_oo ,,(t) = +00. We can take our exhaustive function to be 
"(,,,). For simplicity, we denote it by ",. 

Let r' > 0 be a small number such that /(x) is smooth in Br,(xO)' Let 
,: [0, 00) ~ [0, 1] be a cut-off function with '(t) == 1 for t::5 1 and '(t) == 0 
for t ~ 2, 1"1, 1'''1::5 1 . Define 

where em is a constant determined by the integrability condition (3.1). Then 
!" has compact support and satisfies (3.2). By (1.2) and the decay assumption 
of f, one can easily check that limm _ oo em = O. Therefore, fm converges to 
f uniformly. The lemma is proved. 

Replacing f in equation (1.1) by fm' we obtain a sequence of perturbed 
complex Monge-Ampere equations, 

{
(COg + v::: alirp ) n = efmro; on M, 

( R - ) 00 1 ro g + ---:scaarp > 0, rp E C (M, R ). 

Our strategy to solving (1.1) is to show that (3.3)m admits solutions and a 
subsequence of those solutions converges to that of (1.1). First we prove that 
(3.3)m is solvable. 

LemDla 3.2. Let (M, g) be a complete Kahler manifold of quasi-finite geometry 
of order 2 + !. Then the following equation for e > 0 has a unique solution: 

{ 
( CO + R alirp) n = efmHrp ron on M 

g 2n g' 
(3.4)m,e r-T 

( v-I - ) 00 1 COo + ---:scaarp > 0, rp E C (M, R ). 

Moreover, the (1, I)-form COg + ff/alirp defines a Kahler metric equivalent to 
g. 
Proof. This is due to S. Y. Cheng and S. T. Yau [CY]. One can also find a 
detailed proof of a slightly general version of it in [TY]. 

Denote by rpm e the unique solution of (3.4) me' We want to find a subse-
quence {e"}"> 1 such that lim" e" = 0 and the 'rpm. converge to a solution J J_ J-+OO J '~j 
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of (3.3)m' By standard elliptic theory, it suffices to prove the uniform C2 , 1/2_ 

estimate of the solutions rpm,e. We will use the integral method to estimate the 
CO -norms of rpm e. The next lemma guarantees that we can do integration by 
parts on M for the equation (3.4)m:e. Recall that for a function IfI on M, 
1fI+(X) = max{O, IfI(X)} and 1fI_(X) = max{O, -1fI(x)}. 

Lemma 3.3. For any constants e > 0, p ~ I , and q ~ 0, we have 

(3.5) iM[(1 + p(x))qlrpm,ell 

+ IV g«1 + p(x))qrpm,e)121(1 + P(X))Qrpm, i P- 2]w; < 00. 

Proof· Let rJ be a cut-off function rJ(t) = 1 for t 5 1, rJ(t) = 0 for t ~ 2, 
and IrJ'(t)I, IrJ"(/)15 2. For simplicity, write lflii = (I + p(x))ii(rpm,e)+. 

Define rJR(X) = rJ(p(x)J R) for R > o. Multiplying (I + p(x))ii IfI;P-1 rJ'i by 
both sides of (3.4)m ,e' we obtain 

A f ii 2 2p-1 - n-I n-I 
(3.6) 27t lM(1 +p(x)) rJR(X)lfIii 88rpm,e A (wm,e+···+ W g ) 

1 ii 2 2p-l f. +e9' n = (1 + p(x)) rJR(X)/P,- (e m m.' - l)w , M Q g 

where wm,e = Wg + l/ff!8lirpm,e. 
Integrating (3.6) by parts and using the fact that wm,e is equivalent to wg ' 

one can derive the following from (3.6): 

(3.7) 

where C is a constant. 
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Since fm has compact support, the first integral on the right of (3.7) is finite. 
Thus by the definition of '1R' we obtain 

{2 2p n ( 2 I Pl2 n (3.8) 1M'1R(X)"'ii Wq + 1M '1R(X) V'g'''ii Wg 

$ C' { 1 + 1M 17;R(x)",:f W; } , 

where C' is a constant and ij' = ij - 1 j p . 
The solution rpm, e is bounded, so by the assumptions of Theorem 1.1, for 

ij = -Nj2p, the integral fM ",:p w; < +00. Thus by using (3.8) inductively 
and letting R -+ 00 , we can easily see 

1M {« 1 + p(x))q rpm,t); + IV' g« 1 + p(x))q rpm,t)~12}w; < 00. 

One can estimate the integral of « 1 + p(x))q rpm eL similarly. The lemma then 
follows. ' 

Corollary. Let (M, g) and rpm, e be as above. Then 

(3.9) { (efm+trpm .• - l)wn = o. 
1M g 

Proof. We adopt the notations used in the proof of Lemma 3.3. By (3.4)m,e' 
we may have 

(3.10) Al- n-I n-I -2- orpm e 1\ o'1R(X) 1\ (wm e + ... + Wg ) 
1C M' , 

= { (efm+trpm .• _ l)wn • 
1M g 

The integral on the left-hand side of (3.10) is dominated by ~ fM IV' grpm ,tiro; . 
Thus, in order to show (3.9), it suffices to prove that fM IV' grpm,tlw; < +00. 
Let q = a + 1, where a is the rate of volume growth of (M, g). Then 
fM(1 + p(X))-2qro; < +00. On the other hand, by Lemma 3.3, 

( 2q 12 n 1M(I+ p(x)) lV'grpm,e (})g<+OO. 

Thus by the Holder inequality, 

1M lV'rpm,el w; $ (1M (1 + p(X))2qlV'rpm,i w;) 1/2 

. (1M (1 + p(X))-2Q w; y/2 
< +00. 

Lemma 3.4. Let (M, g) be as in Theorem 1.1. Then there is a constant C 
independent of m and e, such that 

(3.11) 1M (1 + p(x))-Nlrpm,e - Avep(rpm,e)12(2n+I)/(2n-l)w; $ C, 
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where Avep(rpm,e) is the average of rpm,e with respect to the weight (l+p(x))-N, 
i.e., 

IM(1 + p(X))-N rpm eWng 
(3 12) Ave (m ) - ' . p Tm,e - IM(1 + p(X))-N w; 

Proof. For simplicity, we put'll = rpm,e - Avep(rpm,e)' Multiplying rpm,t by 
both sides of (3.4) m,e and integrating by parts, which is justified by Lemma 
3.3, we obtain 

A f - n-l n-2 n-l 
(3.13) 2'1t 1M a'll" a'll" (wm,e + Wm,t" Wg + ... + Wg ) 

= f rp (l_elm)wn + f rp (l_et/Pm")elmwn. 1M m,e g 1M m,t g 

By integrability condition (3.1) of fm and the fact rpm t (et/Pm .• - 1) ~ 0, it 
follows from (3.13) that ' 

(3.14) 1M 'V grp,2W; ~ 1M ,rpllelm - l'w;. 
Applying Proposition 2.1 to (3.14) and using (3.2), 

1M (1 + p(x))-N,rp,2(2n+l)/(2n-l)w; ~ C 1M ''11/(1 + p(X))-N w;, 

where C is a constant independent of m and e. 
Now the lemma follows from the Holder inequality and the assumption on 

the volume growth of (M, g). 

Lemma 3.5. There is a constant C independent of m and e, such that 
(I) -infMrpm,t ~ C, sUPM(rpm,t-Avep(rpm,e)) ~ C whenever Avep(rpm,e) 

~O. 

(2) sUPMrpm,t ~ C, -infM(rpm,t-Avep(rpm,t)) ~ C whenever Avep(rpm,e) 
~o. 

Proof. Since the proofs are the same for both cases, we just prove (1). We will 
use Moser's iteration. 

Put'll = (rpm,t -Ave(rpm,e))+; then rpm,e(x) ~ 0 whenever rp(x) ~ O. It 
follows that rp(et/pm •• - 1) ~ 0 on M. By (3.4) m,e' we may have 

l'v (q+l)/2,2 n < q + 11/ ,q, 1m _ I, n grp Wg _ 4 'II e Wg. 
M M 

Using (3.2) and Proposition 2.1, 

(3.15) 

( f )(2n-l)/(2n+l) 1M (1 + p(X))-N,rp(Q+l)/2 - Avep(rp(Q+l)/2),2(2n+l)/(2n-l)w; 

~ Cq 1M (1 + p(X))-N,rp,Qw;. 
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Note that C always denotes a constant independent of m and e in this proof. 
Since iM(1 + p(X»-N w; is bounded, it follows from (3.15) that 

(3.16) ( r ) (2n-I)/(2n+l) 
1M(1 + p(x»-N(1 + \'IID(q+I)(2n+I)/(2n-l)w; 

~ Cq IM(1 + p(x»-N(1 + \'IIDq+1w;. 
Put qo = 2(2n + 1)/(2n -1) and qj+1 = qj(2n + 1)/(2n - 1) for j ? o. We use 
1I·lIq to denote the Lq-nonn with respect to the weight (1 + p(X»-N. Then 
(3.16) implies 

j ( (2n + 1 )j) «2n-I)/(2n+l))j /2 
11(1 + \'IIDll qj+ 1 ~ P 2C 2n _ 1 11(1 + \'IIDll qo 

1=0 

~ CII(1 + \'IIDllqo · 

Note that the last constant C may be different from the previous one, but it is 
still independent of m and e. Now by Lemma 3.4 and letting j go to infinity, 
we obtain 

sup(fPm e - Avep(fPm e» = Jim 1I'11l1q. ~ c. 
M' ')--+00 )+1 

Since we assume that Avep(fPm,e) ? 0 in case (1), it follows from Lemma 3.4 
that lI(fPm,eLllqo ~ C. Then by the same argument as above, we can also prove 
that - infM fPm,e ~ C. 
Lemma 3.6. Let (M, g) be as in Theorem 1.1. Then there are two constants 
C3 and C4 independent of m and e, such that 

(3.17) O<n+~ In <CeC4("m.<-infM "m.<). - gTm,e - 3 
Proof. We refer readers to [Y2] for the proof of this. Note that we still have the 
maximum principle for our manifold (M, g), since the curvature is bounded 
(cf. [TY]). 

Now we are ready to estimate the CO -nonns of the solutions fP m, e • 

Lemma 3.7. For each m, there is a constant C(m) such that SUPM \fPm e\ ~ 
C(m). 
Proof. By (3.1) and (3.9), 

(3.18) 

Since fPm,£ is not identically zero, it follows from (3.18) that both SUPM fPm,e 
and - inf M fP m, e are strictly positive. Note that the maximum principle holds 
on (M, g). Applying the maximum principle to (3.4)m,e' we conclude that 
both the maximum and the minimum of fP m e are attained in the compact 
support of 1m. Let xmax and x min be in Supp(fm)' satisfying 

fPm e(xmin ) = inffPm e < o. , M' 
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Now we have two cases: 
(1) Avep('Pm,e) ~ O. 
(2) Avep('Pm,e) < O. 

G. TIAN AND S. T. YAU 

The proof for the second case is similar to that for the first one. Thus we 
may assume that Avep('Pm,e) ~ O. By Lemma 3.5, there is a constant C 
independent of m and e such that 

(3.19) 

Put VI = ('Pm,e - infM'Pm,e - lL. Then 0 ~ VI ~ 1 and VI(xmin) = 1. 
Choose r > 0 such that Br(xmin ) is a convex geodesic ball of M. Without loss 
of generality, we may assume r = 1. Let G(x, y) be the Green's function of 
the Dirichlet problem on B\ (xmin) and let '1 be a cut-off function on Bl (xmin) 
such that '1(x) == 1 for x E Bl/2(xmin) and '1(x) == 0 for x outside B3/4(Xmin)' 
By Lemma 3.5 and (3.19), there are two constants C~ and C4 , such that 

(3.20) , c'" d m + n < C e 4 m,' g'i'm,e - 3 • 

Multiplying '12(X)G(xmin , X)VI(X) by both sides of (3.20), we obtain 

- 1M dgVl(X) • '12 (X) VI (X) G(Xmin ' x)co; 

~ C; 1M VI(x),hx)G(xmin ' x)co;, 

where C; = C~eC4. Integrating by parts and using the inequality ab ~ !a2 + 
!b2 , we deduce 

(3.21) 

The functions G(xmin , x) and V' gG(xmin , x) are bounded independently of 
e on Supp(V' g'1) ~ BJ (xmin)\BJ/2(xmin)' Therefore by Green's formula and 
(3.21), 

(3.22) 
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/I where C4 is a constant independent of e. By the Holder inequality, 

{ (f) Ij(2n-l) 
1 S C;' 1ll 11fI1 2n - 1W; 

B,(xmin ) ( 1 ) (2n-2)j(2n-l) 1 } . G(. )(2n-l)j(2n-2) n I 12 n 
Xmm ' X W g + IfI W g • 

B, (xmin ) B, (xmin ) 

Thus for some constant C5 independent of e, 

It follows that 
(3.23) 

1 S C5 meas{Supp(lfI) n BI (xmin )}. 

1M (1 + p(X))-N tpm,e w; 

S r (1 + p(X))-N tpm,ew; + C6 1 M\B, (xmin)nSupp('P) 

S kC6 + s1ff tpm ,e (1M (1 + p(X))-N W; - (2 + p(xmin))-N C;I) , 

595 

where C6 is a constant depending only on (M, g). Then by (3.19) and (3.23), 
sUPM tpm e S C(m) for some constant C(m). The proof for the second case 
is similar· except that we use !:!.gtpm,e + n > 0 instead of (3.20). The lemma is 
proved. 

The following high order estimate is essentially proved in [Y2]. 

Lemma 3.8. There is an a priori estimate of the derivatives V'!tpm ,e(x) in terms 
of the geometry of (M , g) , and 

2 3 
sUPM{ltpm,el,l!:!.gtpm,el} and sUPB,(x){lfml, IV' gfml, IV' gfml, lV'mfml}· 

Corollary. For each m, the complex Monge-Ampere equation (3.3)m admits a 
solution tp m satisfying 

(i) SUPM Itpml S C(m) for some constant C(m). 
(ii) fM lV'tpmI2w; < +00. 

Proof. It follows from Lemmas 3.7, 3.6, 3.8, and the elliptic theory [GT] that 
there is a sequence {tp m, e) with lim j--oo e j = 0 and the tp m ,ej converge as 
j -+ 00. Let tpm = limj __ oo tpm,e· Then tpm satisfies equation (3.3)m and (i) 

J 

in the above. For (ii), we multiply tpm e by both sides of (3.4)m e and integrate 
the resulting equation:' , 

(3.24) R r - n-l n-l 27r 1M tpm,/)8tpm,e 1\ (wm,e + ... + Wg ) 

= 1M tpm ,e(1 - e fm +£9'm·,)w;. 
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By Lemma 3.3, we can integrate (3.24) by parts and obtain 

1M IV' gV'm,lm;-1 :::; 41M lelm - I11V'm,elm; < 00. 

Then Corollary (ii) follows from (i) and Fatou's lemma. 

Next we will prove that a subsequence {mj}j>l with limj .... oo mj = 00, the 
functions V'm - Avep(V'm) converge to a solution V' of (1.1). As before, it 

} } 

suffices to prove the C2,1/2-estimate of V'm - Avep(V'm)' By Lemmas 3.6 and 
3.8, it is equivalent to showing 

(3.25) sup lV'm - Avep(V'm)1 :::; C, 
M 

where C is a constant independent of m. 
Obviously, the function V'm - Avep(V'm) is still a solution of (3.3)m' So we 

may assume that Avep(V'm) = O. 

Lemma 3.9. For each m, we have 

(3.26) lim .!.. r 1V'V'mlmn = O. 
R .... oo R } B2R(XO)\BR(XO) g 

Proof. By the Holder inequality, 

r 1V'V'mlm; 
} B2R(XO)\BR(XO) 

::s: (Volg (B2R (Xo))) 1/2 ( r 1V'V'mI2m;) 1/2 
} B2R(XO)\BR(XO) 

Then the lemma follows from Corollary (ii) of Lemma 3.8 and the assumption 
that Volg (B2R(Xo)) :::; CR2 for some constant C. 

Remark. This is the only place we need the quadratic growth of the volume of 
(M, g). 

Note that Lemma 3.4 holds for V'm' Now Lemma 3.9 guarantees that we can 
apply the same argument in the proof of Lemma 3.5 to the solution V'm and the 
equation (3.3)m' Thus (3.25) follows from Lemma 3.4 and the same proof as 
that of Lemma 3.5. Then we obtain a solution V' of (1.1). It is easy to see from 
the above proof that sUPM{IV'I, 1V'2V'1} can be bounded by a constant depending 
only on K, p, and the datum in (1.3). Thus Theorem 1.1 is proved. 

4. PRESCRIBED RICCI CURVATURE PROBLEM 
ON QUASI-PROJECTIVE MANIFOLDS 

Let M = M\D be a quasi-projective manifold, where M is a projective 
manifold and Dc M is a smooth divisor with normal crossings. We pose the 
following problem. 
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Problem. Given a (1, 1 )-form {l E C1 (K;/ ®[D]-l) , is there a complete Kahler 
metric with its Ricci curvature equal to {lIM? 

In case M is compact, i.e., D = 0, the answer to the above problem is "yes" 
by the second author [Y2]. In this section, we will apply Theorem 1.1 to give a 
partial solution to the problem in case M is noncompact. Precisely, we want 
to prove the following 

Theorem 4.1. Let M = M\D with M a projective manifold and D a smooth 
divisor in M. Suppose that D is ample. Then for any (1, 1 )-form {l in 
C1 (K;/ ® [D)-I), there is a complete Kahler metric g on M with its Ricci 
curvature Ric(g) equal to {lIM' Moreover, the Kahler form Wg of g is defined 
by 

(4.1) 

where n = dime M, S is the defining section of the divisor D, 11·11 is a norm of 
[D) with positive definite curvature form, and rp is a bounded smooth function 
on M such that the derivatives of rp are uniformly bounded with respect to the 
metric induced by the form ali( -log IISII2)(n+I)/n 

Note that the (1, I)-form "i7ali(-logIlSII2)(n+l)/n in (4.1) is indeed posi-
tive definite. The assumptions in Theorem 4.1 can be weakened, especially for 
complex surfaces, i.e., diffic M = 2. This will be discussed in the next section. 
For simplicity, we prefer to adopt this cleaner version (i.e., Theorem 4.1). 

Theorem 4.1 has the following two important corollaries. 

Theorem 4.2. Suppose that M = M\D, where M is a projective manifold and 
D is a smooth anticanonical divisor. Also suppose that K;/ is ample. Then M 
admits a complete RiCci-flat Kahler metric of form (4.1). 
Proof. Now [D) = K~I , so we can take {l = 0 in C1 (K~l ® [Dr l ). Theorem 
4.1 implies this theorem. 

Example 1. Let M = C pn , and D be a smooth hypersurface of degree n + 1 . 
Then M = C pn\D admits a complete Ricci-flat Kahler metric. 

Theorem 4.3. Let M = M\D be as in Theorem 4.1, and (KM ® [D])-I be 
ample. Then M admits a complete Kahler metric with positive Ricci curvature. 
Proof. We simply take {l in C1 «KM®[D])-I) to be a positive form and apply 
Theorem 4.1. 

Example 2. Let M = C pn , and D be a smooth hypersurface of degree 5 
n. Then M = Cpn\D admits a complete Kahler metric with positive Ricci 
curvature. 

In the rest of this section, we prove Theorem 4.1. We will first construct a 
complete Kahler metric, the Ricci curvature of which is asymptotic to {l near 
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D. Then we will verify that this metric has those properties stated in Theorem 
1.1. Finally, Theorem 1.1 is used to complete the proof of Theorem 4.1. 

By the ampleness of D, we can choose a hermitian metric II· II of the line 
bundle [D] such that its curvature form w is positive definite and IISII < 1 
on M. We fix the (1, I)-form 0 in CI(K;/ ® [D]-I). By the adjunction 
formula, the anticanonical line bundle K~I is just (K;/ ® [D]-I)I D • Thus 
OlD is in the cohomology class CI (D), where CI (D) means the first Chern 
class of the submanifold D. By the solution of the Calabi conjecture [Y2], 
there is a smooth function rp on D such that wiD + fj!88rp defines a Kahler 
metric on D with OlD as its Ricci form. Note that such a rp is not unique, 
but unique up to a constant, i.e., any such rp is equal to rpo + C' , where rpo is 
fixed and C' is a constant. We will determine this constant C' later. Extend 
rp to the whole manifold M, still denoted by rp, and let II· II, be the norm 
e-'II·II of [D]. Put (J), = (J) + fj!88rp. Then w, is the curvature form of 
11·11,. By adding a function of form CIISII2 to rp, we may assume that w, is 
equivalent to (J) in a neighborhood of D. Thus there is a 0, > 0 such that in 
the open neighborhood {x E MIIIS(x)1I < o,}, 

(4.2) C;IW ~ W, ~ C,W, 

where C, is some constant and may depend on rp. Note that since S = 0 on 
D, we may always choose the extension of rplD to M such that IISII, < 1 on 
M. Now for any positive number N > 0, we define 
(4.3) 

wN = ~ { :1: lIn 88(-10gIlSII!)(n+I)/n - CN88(--10g(ANIISII 2»-N} , 

where AN and CN are two constants determined later. Put 

1 ( )N+I CN = N(-2nlogo,)I/n -210go,-m;xlrpllogAN J.I." 

and AN ~ 1, where J.I., is a constant such that w, ~ -J.l.,W on M. By a 
straightforward computation, we have the following expression for wN : 

2 - 2 
W = (-n log IISI1 2) lin W + A 8 log IISII, 1\ 8 log IISII, 

N "271: (-n log IISII!)(n-I)/n 

(4.4) + NC w 
N (-10g(ANIISII2»N+I 

_ N(N + I)C A 8l0g1lS1121\8l0g1lS112. 
N 271: (-10g(ANIISII2»N+2 

Then from this expression, one can check that w N is equivalent to the form 
fj!88( -log IISII2)(n+I)/n when AN is sufficiently small. Therefore, we have 
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proved 

Lemma 4.1. For some eN and }.. N' the (1, 1 )-form W N defines a complete 
Kahler metric g N on M such that its associated Kahler form is W N . 

Remark. It is easy to prove that if the induced metric of the form 

is complete, so is g N • 

r-r 8a( -log IISI1 2)(n+l)/n 
2n 

The following lemma follows from straightforward computations by using 
(4.4). 

Lemma 4.2. Fix a point Xo in M. Let r( x) be the distance function of (M , g N ) 
from xo. Then the volume growth of (M, gN) is of order 0(r2n /(n+l) and 
VOIg)B1 (x» = O(r(x)-(n-I)/(n+I) for x in M, where Bl (x) is the geodesic 
ball of (M, gN) with center at x and radius one. 

Remark. For the fixed points Xo in M, the distance function r(x) is of order 
0« -log IISU!/n+l)/2n(x» for x close to D. 

Lemma 4.3: Let R(gN) be the bisectional curvature tensor of the metric gN. 
Then 
(4.5) 

where 11·llgN is the induced norm by the metric gN. 
Proof. Note that it is not even obvious that R(gN) is bounded. So we will 
sketch a proof of (4.5) here. It is based on some complicated computations. 

Put 
nl+l/n /(n+l) 

{jJ = (~) 8a(_IOgIlSII!)(n+l)/n. 

Then both {jJ and W rp are positive definite in a neighborhood U of D, and 
{jJ is equivalent to W N in U. Since the bisectional curvature is dominated by 
holomorphic sectional curvature, estimate (4.5) is equivalent to 

(4.6) IR(gN)(c;, C;, C;, c;)l(x) = g(c;, C;);. 0(r(x)-2/(n+l) 

for any point x in Un M and c; in TxM, where g is the induced hermitian 
metric by {jJ. 

For any given point x in Un M , we may choose a local frame of [D] at x 
and local coordinates (z 1 ' ••• , Z n) of M, such that in such a local system, 

(i) the holomorphic section S of [D] is locally represented by the holo-
morphic function zn + Il, where Il is a constant such that IIlI = IIS(x)11 . 

(ii) The hermitian metric 1I·llrp is locally represented by a positive function 
a with a(x) = 1, da(x) = 0, and d(8aj8 z.)(x) = o. 

(iii) If gaP = grp(8j8za , 8j8zp), where grp is the induced metric in U 
by wrp' then gaP(x) = t>aP' (8gap j8zy )(x) = 0 for P < n, and 
(8gapj8z.)(x) = 0 for a < n. 
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For simplicity, put F = -log IISII!. At the point x, by (i), (ii), (iii) above, 
we have 

(4.7) 

(4.8) g(e, e)(x) = (I: lea l2) • (nF)I/n + IEnI2(nF)-(n-l)/nlenI2, 
a=1 

where e = E:=1 ea%za E Tx M . 
Note that r(x) = O(F(n+l)/2n). Thus (4.6) is equivalent to 

(4.9) I t R(gN)C;p7~a.~/ e7rl(x) ~ CF(x)-I/n • g(e, e)(x), 
a,p,7,0=1 

where C is a universal constant independent of x and 
2 

o gNaP -1 uvogNauogNvp 
R(gN)aP"!"J(x) = - 0 0 (x) + (gN) -!l-~(x), 4.10 

Z7 Zo uZy uZo 

where gNaP = gN(%za' %zp). 
Without loss of generality, we may assume A.N = 1. Let (g~p) be the metric 

tensor associated to (J) in (ZI' ... , zn)' We will use O(F(x)-I/n) to denote a 
quantity bounded by CF- 1/ n with a constant independent of x. 

By computation, we have 

(4.11) 
og - og-

!lNaP (x) = (nF)I/n !l ap (x) + (nF)-(n-l)/nFn(x)J7nJ~p 
uZy uZy 

2 + lEn I FnJ anJ pnJyn + FnJ anJyp 
(nF)(n-l)/n 

_ n -; 1 F-(2n-l)/nFn(x)JanJpnJ7n + NCN(f _ qJ)N-I(X) °!lg~P (x) 
n uZy 

'-N-2 I 
- N(N + l)CN(F - 91) (x)gaP(x), (FnJyn - 'Pn) 

+ N(N + 1)(N + 2)CN (FnJan - qJa)(Frf5pn -:J)(FnJYn - 'P7) (x), 
(F - 'P) 

(4.12) o2gNap (x)ea~P err = O(F(x)-I/n) -(e e)2(x) + IEnl41enl4 (x). 
OZ70Z0 g , (nF)(n-l)/n 

By using (4.11) and (i), (ii), (iii) above, we can prove 

(4.13) L (g;I)UvO:~auo:;vP (x) = O(F(x)-I/n)g(e, e)2(x). 
u,v<n Y 0 
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It follows from (4.8) and the definitions of g and gN that 

det(gN)(x) = det(g)(x)(1 + O(F(x)-l-l/n-N)) 

(4.14) = (IFn12 + nF)(x)(1 + O(F(x)-l-l/n-N)) 

= (IFn12 + nF)(x)(1 + O(F(x)-1/n-1-N)). 

Therefore, 

( 4.15) (g;l)iiV(X) = o( ~~11;::~1 F-1-N-1/n(X)) ' 

_ ( F)(n-1)/n 
(g;l)nn(x) = n 2 (x)(1 + O(F(x)-1-N-1/n)). 

IFni + nF 
(4.16) 

Using (4.11) and (4.15), one can show 

( 4.17) 

( L(g;l)iiV O:;Qii O:;VP (x) + L(g;\uno:;QuO:;np (X)) ·eQ~P eyt 
v<n l' tS u<n l' tS 

= O(F-1/n)g(e, e)2(x) , 

(4.18) (g;l)iinOogNQii °og~np (x)eQ~P e1't z1' ZtS 

= O(F-1/n) ~(e e)2(x) + (nF + IF 12)-1 IFnl61enl4 
• 

g , n (nF)(n-1)/n 

Combining (4.10), (4.12), (4.13), (4.17), and (4.18) we obtain the required 
estimate (4.9). The lemma is proved. 

Lemma 4.4. Let S(gN) be the scalar curvature o/the metric gN. Then 

( 4.19) 

Proof. The proof follows from some computations similar to those in the proof 
of Lemma 4.3. We omit it. 

Remark. Actually, we can prove that max{IS(gN)I(x), IIOS(gN)lI gN (x)} has fast 
decay at infinity, i.e., near D. But since we do not need this strong property of 
S(gN) , we will not prove it here. 

In order to apply Theorem 1.1 to our case here, we need to find a function 
fN such that 

( 4.20) 

As in the proof of Lemma 4.3, let g' be the Kahler metric associated to (J). 

Then Ric(g') - (J) is in the cohomology class C1 (K;/ ® [D]-l). It implies that 
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there is a function If! on M such that 

(4.21) , J=T -n = Ric(g ) - W + 2iCaalf!. 

Note that this If! is unique up to a constant. Our function IN will be defined 
by 

( 4.22) 2 (det(g )) IN = -log IISII - log det(;) - If! , 

where If! is a function satisfying (4.21). We will first choose If! properly such 
that IN has fast decay along D. 

Choose a finite covering {Ujh~j9 of D such that 

(1) UI~j9 Uj ~ {x E MIIIS(x)1I < <S(II} C {x E Mlw(II(x) > O}. 
(2) For each Uj , there is a local coordinate system (z{, ... , z~) such that 

the section S is represented by the function Z~ in Uj and (z{, ... , 
Z~_I) is a local system of Uj n D . 

Lemma 4.5. There is a If! satisfying (4.21) such that· the function IN defined 
in (4.22) is asymptotically olorder 0(r-(2nN+2n+2)/(n+I»). Furthermore, the 
gradient V IN and the laplacian ~.fN with respect to g N are uniformly bounded. 
Proof. The boundedness on V'IN and !1IN can be proved by some direct com-
putations. So it suffices to check that IN = 0(r-(2nN-2n-I)/(n+I») in each open 
subset Uj . For simplicity, we drop the subscripts j, N, etc., and put I = IN ' 

za = z~, gN = (Ga/i)I~a,p~n' and g(ll = (ga/i)I~a,p5,n in local coordinates 
(zl' ... , zn)· 

By definition, we compute 

IISII2w; =IISII2(-nlOgIlSII!)I/nW(II+NCN W 2N+I)n-1 
N (-logIiSIl ) 

2 - 2 (4.23) A a log IISII(II A a log IISII(II 

( 1 N(N + l)CN ) O(lISIlI/2) 
. (-n log I\SI\;)(n-I)/n - (-log I\SI\2)N+2 + , 

where 0(IISIlI/2) denotes a volume form bounded by CIISII 1/ 2wn near D for 
some constant. 

Let 11·11 be represented by a positive function aj on Uj such that IISII21u = 
} 

ajlz~12 . Also let (g;a/i) be the metric tensor of g' in (z{, ... , z~). Then we 
can define a volume form VD on D by 

(4.24) v: 1 - det(g;a/i) 1 <a, p<n 
DU. - , , aj 

1 :5 i:5 J. 
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By the definition of VD , we have 

( 4.25) 

Thus by the choice of w rp , 

( 4.26) 

where C is a positive constant. We choose !If such that C = 1 and !If satisfies 
(4.21). Then in Uj , 

2 ' 2 IISII det(gN) = a)znl det(GaP)I~a,p~n 

( 4.27) ) 2 -N-l-l/n 
=ajdet(gaP l~a,p~n-l +O«-logIlSIl ) ) 

-'1/ I ) 2 -N-l-l/n 
=e det(gaP l~a,P~n+O«-logIlSIl ) ). 

It follows that flu = 1 + O«_logIlSIl2)-N-l-l/n). Usingthe fact that r(x) = 
} 

O«_logIlSII(x))(n+l)/2n), the lemma is proved. 

Finally, we come to see whether or not fN satisfies the integrability condition 
(1.2). As we have already seen, gN depends not only on the extension of qJlD 
to M, but also on the choice of qJ ID ' which is unique only up to a constant. 
We fix the function qJ in the previous discussions. Note that wrp+.A = wrp for 
any constant A.. Then the function !If in Lemma 4.5 remains unchanged when 
qJ is replaced by qJ + A. in the definition of gN' 

Lemma 4.6. There is a A. such that if we use qJ + A. to replace qJ in the above 
definition of g N' then the resulting fN satisfies 

(4.28) 1M (e fN - l)w~ = 0, 

where w N is the Kahler form of g N . 
Proof. By using integration by parts, it is easy to check 

Note that now wN is defined as 

(4.29) 

On the other hand, ef w~ = e -'1/ wn IIISII 2 • It is independent of A. by the remark 
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before this lemma. An easy computation shows 

(4.30) -n-:!..::.!...88(-10 IISII2 )(n+l)/n ( 
l+ln r-Tl ) n 

n + 1 2n g ,,+l 

A 2 - 2 n-l = n 27t8 {(log IISII" - A)8 log IISII" 1\ ro" } 

( 
l+l/n r-Tl ) n 

= : + 1 V2~ 1 88( -log IISII!)(n+l)/n - nAco;. 

Therefore, 

{ (efN _ l)run = { {_I_e -III ron _ (A nl+l/n 88(-10 IISII2 )(n+l)/n) n} 
J M N J M IISII2 2n n + 1 g" 

- nA £ ro;. 

The first integral is finite and independent of A, while the second one is 
nA 1M ron . So we can choose A such that (4.28) holds. 

Now we can finish the proof of Theorem 4.1. Choose a sufficiently large 
N, say lOOn. Then by Lemmas 4.1, 4.2, and 4.3, (M, gN) is a complete 
Kahler manifold of (K, 2n/(n+l), (n-l)/(n+l»-polynomial growth for some 
constant K. By Lemmas 4.4 and 4.5, we can apply Theorem 1.1 to equation 
(1.1) with g = g N and I = IN' Then for the solution (jJ, the induced metric 
rug + ff/88(jJ is the complete metric we want in Theorem 4.1. Theorem 4.1 is 
proved. 

5. GENERALIZATIONS OF THEOREM 4.1 AND THEIR APPLICATIONS 

In the main theorem of the last section, the divisor D corresponding to 
infinity is assumed to be ample. This is a rather restrictive assumption. In order 
to produce more complete Ricci-flat Kahler manifolds and complete Kahler 
manifolds with nonnegative Ricci curvature, we should weaken the assumption 
on the ampleness of the divisor D. We will take up this task in this section. 
Because the proofs of the theorems here are essentially the same as that of 
Theorem 4.1, we will not give the details. 
Definition 5.1. Let M be a projective manifold, D c M a divisor. Then 

(i) D is called almost ample if there is an integer m such that the global 
section in IfJ(M, &'(mD) gives a birational morphism from M into some 
projective space C pN and this morphism is biholomorphic on a neighborhood 
of D. 

(ii) D is said to be neat if no curve C in M disjoint from D can be 
written as a linear sum of the curves supported in D in H 2(M, R). 

Remark. If M is a complex surface and D2 > 0, then D is automatically neat. 
It follows from the Hodge Index Theorem. In general, we do not know how to 
characterize the neatness of a divisor D in higher dimensions. 
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Theorem 5.1. Let M = M\D, where M is a projective manifold and D c M is 
a neat, almost ample smooth divisor. Then given any (1, 1 )-form 0 representing 
the cohomology class CI (K;/ ® [Dr l ), there is a complete Kahler metric with 
o as its Ricci form. Moreover, this metric is asymptotically equivalent to the one 
in (4.1). 
Proof. By the Hahn-Banach theorem and the neatness of D, one can find a 
cohomology class Wo in JI.2(M, Z) n HI, I(M, C) such that 

(5.1) i Wo > 0 

for any effective curve I' with 1" D = 0, and WolD = O. 
It follows that for a large integer k > 0, Wo + kCI (D) is numerically effec-

tive and big, i.e., f/ Wo + kCI (D)) > 0 for any effective curve I' in M and 
f".M(wo + kCI(D))n > 0, where n = dilllcM. Then by Nakai's criterion [Ha], 
the class Wo + kCI (D) gives an ample line bundle L on M. 

Take a positive (1, 1 )-form W L representing the Chern class c I (L). Let W 
be the semipositive form obtained by pulling back the standard Fubini-Study 
form on C pN under the morphism <I> m ' where C pN and <I> m are given in 
Definition 1.1. By the choice of our L, the class wLID is cohomological to 
wiD' so there is a function 'II on M such that 

(5.2) 

and 'II vanishes outside a neighborhood of D. Define 

(5.3) 

then WElD = O. 
As in the proof of Theorem 4.1, we let rp be a function on M such that 

wiD + ?08rp1D defines a .Kahler metric with OlD as its Ricci form. Let 11·11 
be the hermitian metric of [D] with curvature form w, and II· II, = e -, II . II . 
Then the approximated metric is 

(5.4) w = ~ _n -08(-10 IISIl2 )(n+I)/n 
11{ I+I/n 

N 2n n + 1 g, 

+ CN 08( -IOgANIISII2)-N} + f.lNWE' 

where S is the defining section of D, and AN' f.l N' and C N are constants. 
Note that we may assume that rp vanishes outside a neighborhood of D. Then 
one can check that for properly chosen rp, CN ' AN' and f.lN' the form wN 
induces a complete Kahler metric g N on M with the same properties as stated 
in Lemmas 4.1-4.5. Now this theorem follows from Theorem 1.1 by the same 
arguments as in the proof of Theorem 4.1. 
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Next, we suppose that M is a fiber space over a smooth algebraic curve S 
with connected fibers. Let 7r : M -+ S be the projection. We further assume 
that D = 7r- I (Ds) with D;s c S consisting of finitely many smooth reduced 
fibers. 

Theorem S.2. Let M = M\D with M, D described as above. Then given any 
(1, I)-form 0 in the cohomology class CI (K;/ ® [D]-I), there is a complete 
Kahler metric with 0 as its Ricci form. Moreover, this metric has the volume 
growth of linear order. 
Proof. As before, we still denote by S the global section defining D. In this 
special case, the section S is actually the pull-back of a section S D on S 
defining D;s. Let L be an ample line bundle on M and OJ be a positive 
(1, I)-form representing CI(L). By [Y2], there is a" smooth function rp on D 
such that OJID + 'fl88rp defines a Kahler metric on D with OlD as its Ricci 
form. Note that such a rp is unique up to constants. We extend this rp to M, 
still denoted by rp. Let 11 be a cut-off function, i.e., 11: RI -+ RI, 11(t) == 1 
for t $ I, 11(t) == 0 for t 2: 2, and 1111 $ 1. Choose a small number R > 0, 
such that the function 11(IISII2 / R) vanishes outside a small neighborhood of D 
and, in the support of 11(1IS II 2 / R) , the form OJ + 'fl88rp is positive alo~g the 
fiber directions. Now we define " 

(5.5) OJ.,=OJ+ ~88(11("~12)rp). 

Then OJ.,lx-'(t) is always positive definite for any t in S. Our approximated 
metric gA is defined by assigning its Kahler form OJ A as 

H- 22-(5.6) (J) A = A.OJ., + 'u21l88 ( -log IISII ) + V7r OJo, 

where A., ,U, and v are properly chosen constants and OJo is a Kahler form on 
S. Then this theorem follows from Theorem 1.1 by the same arguments as in 
the proof of Theorem 4.1. 

Remarks. (1) Theorem 5.2 can be generalized in the following situation. Let 
7r : M -+ S be a fiber space over another projective manifold S with connected 
fibers. We further assume that D = 7r- I (Ds ) is biholomorphic to Dsx F with 
D;s c S smooth and F a smooth, reduce fiber in D of Mover S. We also 
assume that Ds c S is almost ample and neat. Let PI : D == D;s x F -+ D;s and 
P2 : D == D;s x F --+ F be two natural projections. Then one can prove: given 
any (1, I)-form 0 in CI(K~I ® [Drl) such that OlD = P~OI + P;02' where 
0 1 E C1 (Ki 1 ® [Dsr I) and O2 E C1 (F) , there is a complete Kahler metric on 
M = MID with 0 as its Ricci form and this metric has the volume growth of 
order less than two. 

(2) Let M be a fiber space over Sand D c M as in (1). Then if M 
admits a complete Kahler metric with nonnegative Ricci curvature, there must 
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be some constraints on the base S. In fact, by the generalized Schwartz lemma 
[Y3], one can prove the following statement: Let (M, g) be a complete Kahler 
manifold with nonnegative Ricci curvature. Then there is no holomorphic map 
from M into a Kahler manifold N such that its Ricci curvature is bounded 
from above by a negative constant and this map is of full rank at least at one 
point. 

Corollary 5.1. Let M = M\D be either in Theorem 5.1, Theorem 5.2, or in 
remark (1) above. Assume that D is in the anticanonical class. Then M admits 
a complete Ricci flat Kahler metric. 

Corollary 5.2. Let M = M\D be either in Theorem 5.1 or in Theorem 5.2. 
Let CI(K;/ ® [Drl) contain a nonnegative form. Then M admits a complete 
Kahler metric with nonnegative Ricci curvature. 

We end this section with an application of Theorem. 5.1, etc., to the upper 
bound for the growth of finitely generated subgroups in 7t I (M) for some quasi-
projective manifold M. We define the growth function y associated with a 
finitely generated group and a specified choice of generators {gl' ... ,gp} for 
the group as follows. For each positive integer s let y(s) be the number of 
distinct group elements which can be expressed as words of length ~ s in the 
specified generators and their inverses [Mil. 

Definition 5.2 [Mil. Let X be a smooth manifold. We say that the fundamental 
group 7t(X) is of polynomial growth of order less than k if for any finitely 
generated subgroup of 7t I (X) and a specified choice of generators, the associated 
growth function y satisfies 

k y(s) ~ Csfor some constant C. 

Theorem 5.3. Let M = M\D be either in Theorem 5.1 or Theorem 5.2. Let 
CI(K~I ® [D]-I) contain a nonnegative form. Then the fundamental group 
7t I (M) is of polynomial growth of order less than the real dimension of M . 
Proof. It follows from Corollary 5.2 and [Mi]. 

Note that in our case, the fundamental group 7t1 (M) is indeed finitely gener-
ated since M can be compactified. In general, it is not yet known whether or not 
the fundamental group of a complete Riemannian manifold with nonnegative 
Ricci curvature is necessarily finitely generated. 

6. A FINAL REMARK 

In this last section, we summarize the previous results of §§4 and 5 on com-
plete Ricci-flat metrics in a simple and clean form for complex surfaces. We 
start with an easy lemma. 
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Lemma 6.1. Let M be a projective complex surface and D be a smooth anti-
canonical divisor. Then M is biholomorphic to one of the following: 

(1) The surface obtained by blowing up C p2 at finitely many points along 
a smooth cubic curve in C p2 . 

(2) Cpl x Cpl. 
(3) Cpl x T~, where T~ is the complex torus of dimension 1. 

Proof. First note that if M contains an exceptional curve E of type one, then 
we can blow down this E to obtain a surface satisfying the assumptions of 
the lemma. Thus we may assume that M is relatively minimal. On the other 
hand, since K;/ = [D] , the Kodaira dimension of M is -00. It follows from 
classification theory [BPV] that M is a ruled surface. If M is rational, then 
M is either C p2 or one of the Hirzebruch surfaces. So D2 = K1 = 9 or 
8. It follows that C1 (M) is numerically positive. So M is either CP2 or 
Cpl x Cpl. If M is not rational, it is a ruled surface over a curve C of genus 
~ 1 . By the adjunction formula, K D is trivial and D intersects with each fiber 
at two points. It implies that the genus of C is one and D consists of two 
disjoint tori. One easily checks that M must then be Cpl x T~. The lemma 
is proved. 

Combining this lemma with Theorems 5.1 and 5.2, we have 

Theorem 6.1. Let M = M\D be a quasi-projective surface with M smooth and 
D a smooth anticanonical divisor in M. Then if D2 ~ 0, M admits a complete 
Ricci-flat Kahler metric. 

Remark. Let M = M\D as in Theorem 6.1. We do not know whether or not 
the condition D2 ~ 0 is necessary for the existence of a complete Ricci-flat 
metric on M. For such a pair (M, D), by Lemma 6.1, D2 < 0 if and only if 
M is a surface obtained by blowing up C p2 at more than nine points along a 
cubic curve in C p2 and D is the quadratic transformation of that cubic curve. 
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