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COMPLETE KAHLER MANIFOLDS
WITH ZERO RICCI CURVATURE. I

G. TIAN AND SHING TUNG YAU

The problem of constructing complete manifolds with zero Ricci curvature
is important for both physicists and geometers. When the manifold is compact
and Kibhler, this problem was solved satisfactorily by the second author in 1976.
While it is not difficult to construct explicit examples of noncompact manifolds
with zero Ricci curvature, a complete understanding of complete noncompact
manifolds with zero Ricci curvature is still needed. - Therefore, immediately
after the work in 1976, the second author proposed a scheme to classify these
manifolds. This is the first part of the papers being written by the authors
on a systematic research on the existence of these metrics. They have natural
applications to algebraic geometry which shall be reported on later.

A typical theorem we prove is the following. Let D be a neat, almost ample
smooth divisor in a projective manifold A . Let Q be any (1, 1)-form repre-
senting the first Chern class of K-A}’ ® D™'. Then there is a complete Kihler
metric with Q as its Ricci form. (We define a divisor to be neat if no compact
algebraic curve in M\D is homologous to a linear sum of curves supported in
D .) In particular, if D is the anticanonical divisor, there is a complete Ricci
flat Kihler metric on M\D. If K-A}l @D~ is ample, M\D carries a complete
Kihler metric with positive Ricci curvature. Naturally, such theorems immedi-
ately imply theorems on the topology of M\D. For example, D is connected
and the fundamental group of M\D is almost niipotent.

The assumption on the smoothness of D can be removed. When D has
normal crossing and higher multiplicity, the situation is more complicated and
we shall deal with it later.

This paper can be looked upon as a study of the solutions of a global complex
Monge-Ampere equation on a Kihler manifold. The uniqueness of such an
equation is very interesting and largely unknown. It is presumably related to
the automorphism of the manifold.
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580 G. TIAN AND S. T. YAU

1. AN EXISTENCE THEOREM FOR SOME COMPLEX
MONGE-AMPERE EQUATIONS

Let (M, g) be a complete Kihler manifold and w , be the Kahler form
associated to the metric g. In local coordinates (z,, ..., z,), the metric g is
represented by the tensor (gﬁ), <i,j<n> Where n =dimc M, and

v=i1 <& _
W, = Y .Zl g;dz,NdZ,.
i,j=
Consider the following complex Monge-Ampere equation on M ,

n
(wg + —'_165¢> = efwz, ,

2n

w, + —”z;la&a >0, ¢eC®M,RY,

(1.1)

where w; =W, AN, and f is a given smooth function satisfying the
integrability condition

(1.2) /M(ef - ) =0.

For any solution ¢ of equation (1.1), the (1, I)-form w et %65(/) defines
a new Kiahler metric. By the well-known expression of the Ricci curvature on a
Kihler manifold, one can easily check (cf. [Y2]) that the Ricci curvature form
of this new metric is given by Ric(g) — %85 f. Thus, in order to construct
the Kihler metric with prescribed Ricci curvature, it suffices to solve equation
(1.1) with properly chosen function f. For instance, if Ric(g)— >§a§ f>0,
then the solution of (1.1) gives a Kéhler metric with positive Ricci curvature.
In 1976, the second author solved the famous Calabi’s conjecture by proving
the solvability of (1.1) when M is compact. Here we study the solvability of
(1.1) when M is noncompact. We will prove an existence theorem (Theorem
1.1) for (1.1) under certain assumptions on the decay of f at infinity. This
existence theorem will be applied later to construct complex Ricci flat metrics
and complete Kahler metrics with positive Ricci curvature on many complete
Kihler manifolds.

In order to state our theorem, we need the following definitions.

Definition 1.1. Let (X, dsz) be a complete Riemannian manifold, and let X,
o, B be nonnegative numbers. We say that the manifold (X, dsz) is of
(K, a, B)-polynomial growth if its sectional curvature is bounded
by K, Vol,2(Bg(xy)) < CR® for all R > 0, and Vol .(B,(x)) >
c'a+ dist(x,, x))_’? for some fixed point x;, in M and some constant
C independent of x . Here Bp(x,;) denotes the geodesic ball with center at x,
and radius R, and Vol 452 denotes the volume associated to the metric ds’.

Definition 1.2, We say that the complete Kihler manifold (M, g) is of quasi-
finite geometry of order / + ¢ if there are positive numbers r >0, r, >r, >0
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COMPLETE KAHLER MANIFOLDS WITH ZERO RICCI CURVATURE 581

such that for any x in M, there is a holomorphic map ¢, from a domain U,
in C” containing the origin 0 onto the geodesic ball B (x) satisfying:

(1) 9,(0)=x, D, CU,CD,,where D;={z¢ C"||z| < s}

(2) The pull-back metric ¢; g is a Kdhler metric in U,_ such that in the

natural coordinate system on C", the metric tensor of ¢.¢ and its derivatives
up to order / are bounded and J-Holder-continuously bounded.

In the following, denote by V ¢ and A 2 the gradient and the laplacian of the
metric g, respectively.

Theorem 1.1. Let (M, g) be a complete Kdhler manifold of quasi-finite geom-
etry of order 2 + % and with (K, 2, B)-polynomial growth. Let f be a smooth
Sfunction satisfying the integrability condition (1.2) and, for some constant C,

C
(1.3) sup{|V fl, A, f1} < C, N ———, xeM,
o & TE VNS T
where N > 4+28 and p(x) = dist, (x,, x) is the distance function on M from
a fixed point x.

Then equation (1.1) has a bounded, smooth solution ¢ such that w, +
5/2——?65¢ defines a complete Kéhler metric equivalent to g. In fact, the supreme
norms of ¢ and its derivatives can be bounded by constants depending only on
f, C, N, K, B, and the order of the derivative.

We will prove this theorem in §§2 and 3.

Remarks. (1) The manifold (M, g) under consideration is parabolic, i.c., the
volume growth is not greater than quadratic growth. This restriction on the
volume growth could be removed by some estimates on the Green’s kernel of
some elliptic operator of second order.

(2) One should be able to prove that the resulting metric in Theorem 1.1 is
asymptotically as close to g as possible if the function f and its derivatives
decay sufficiently fast. We shall return to this question in the future.

We end this section by a proposition on the quasi-finite geometry of a Kahler
manifold with some assumptions on the curvature.

Propesition 1.2. Let (M, g) be a complete Kdhler manifold with its sectional
curvature and the covariant derivative of its scalar curvature bounded. Then
(M, g) is of quasi-finite geometry of order 2+ % .

Proof. Denote by R(g) and S(g) the sectional curvature and scalar curvature,
respectively. By scaling, we may assume that

(1.4) sup{|R(g)],(x). IDS(&)l, ()} < 1.

Then for any point x in M , there is no conjugate point of x in the geodesic
ball B, /z(x) . Then the exponential map exp, : B, /2(0) CT,M— B, /Z(x) cM
is locally diffeomorphic. By pulling back the complex structure of M and the
Kihler metric g, we obtain a new Kihler manifold (B, /2(0), exp; g) with
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582 G. TIAN AND S. T. YAU

boundary 0B, /2(0). Clearly, the injectivity radius InjRad(0) is n/2 for the
manifold (B, /2(0) , exp; g). Let p(y) = distexp. g(y , 0) be the distance func-
tion from O on (B, /2(0) , exp; g). Then p is smooth. By the Hessian compar-

ison theorem (cf. [SY, GW]), the functions p2 and log(pz) are plurisubhar-
monicon B, ={y € T, M|p(y) <r} and
v_i

(1.5) 2—7:;:)5;;2 >C>0 onB,0),

where r, C are two small positive numbers independent of x, and the opera-
tors 8, 0 are induced from those on M by exp, -

Next, consider the §-equation du = v on (B,, exp, g), where v isasmooth
(0, 1)-form with v = 0 and u € C*(B,, R'). By using Hormander’s L’-
estimate with weight function 47 log( pz) +o( pz) for a suitable convex function
¢ and taking r smaller if necessary, we can construct local holomorphic co-
ordinates (Z,,...,Z,) on (B, exp; g) (cf. [SY, GW]). Thus we conclude
that B, is a domain in C” satisfying (1) in Definition 1.2. In the local sys-
tem (z,,..., z,), the metric exp; g 1is represented by a hermitian matrix
(gz.—j)IS ij<n By the boundedness of the curvature tensor of exp; g, one can
prove that

(1) g,j(o) = 5,‘] > C_] id < (g,j) <Cid,
(ii) sgp{lagg/azklll <i,j,k<n}<C,

where C is a uniform constant and id denotes the identity matrix. We refer
readers to [Jo] for details of the proof of these.
Now we have the following elliptic equations:

(1.6) —A(logdet(g;5)) = S(exp, &),

% ki Etagﬁagﬁ .
(LT) -A g+ Y, & & 37, 3z, = Ricl8); = ~(logdet(g;)) 5.
s, t,k,I=1

By the assumption, the scalar curvature of exp; g 1is a uniformly bounded
3-Holder continuous function. Then from (i), (ii) above and the applications of
the standard Schauder estimate [GT] to (1.6) and (1.7), it follows that (M, g)
is of quasi-finite geometry of order 2 + % .

2. WEIGHTED SOBOLEV INEQUALITIES

In this section, we will prove some weighted Sobolev inequalities on a man-
ifold with polynomial growth. These inequalities are needed in the proof of
Theorem 1.1. They may not be optimal. We are satisfied by the fact that they
are sufficient for our later use.
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COMPLETE KAHLER MANIFOLDS WITH ZERO RICCI CURVATURE 583

Proposition 2.1. Let (X, dsz) be an n-dimensional complete Riemannian man-
ifold with (K, «, B)-polynomial growth, where K > 0 and o, p > 0. Let
p(x) = dist(x,, x) be the distance function from the fixed point x, given in the
definition of the manifold with polynomial growth. Let | = a+ 2+ 28. Then
Jor any Lipschitz function f on M with vanishing (1 + p)_l-average, Le.,

@.1) /M(l + () fx)dv =0,

we have
(2.2)

(fLa+peniswpeeay) T (f inlde>l/2 ,

where dV is the volume form of the metric ds* and C, is a constant depending
onlyon K, n, a, .

Remark. To make the integral in (2.1) meaningful, we assume that the func-
tion f in Proposition 2.1 is absolutely Ll-integrable with respect to the weight
1+p7".

The rest of this section is devoted to the proof of this proposition.

We start our proof with some notation. For each point x in X, every other
point in X can be joined to x by a minimal geodesic. The exponential map
exp, identifies a domain D(x) in the tangent space 7, X with an open set in
X which is within the cut-locus of x in X . Denote by S, the unit sphere in
T,.X . Then we can write the domain in a polar coordinate system as

(2.3) D(x)={(r,0)0€S,, 0<r<r(0)},

where r(6) is a function defined on §, .

For every y in D(x), we can write the volume element of X at y as
VE(x, y)rx(y)"—l drd@, where g is the determinant of the metric ds* and
r_ is the distance function on X from x. For every measurable subset E of

X
D(x), we define the cone of x over E to be

(2.4) C.(E)={(r, 0)| forsomeT, (7, 0)€ E},

where (r, 6) is the polar coordinate system at x. Note that these notations
are taken from [Y1].

Lemma 2.1 [Y1, Lemma 4]. Let f be a Lipschitz function defined on D(x).
Then for E = {y € Bg(x)|f(y) = 0}, where Bg(x) is the geodesic ball in X,
we have

2.5)  u(S, N C,(ENISW)
af

8ry

<

(2)(VEW, 2)r,(2)"" ) dV(2),

/C,(Emm,x(,,(y)

where u denotes the euclidean measure on S, and y € Bp(x).
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584 G. TIAN AND S. T. YAU

Lemma 2.2. Let Ry =n/2VK . Then forany R < 5R, and y in Bg(x)ND(x),

(2.6) CK,m)"' <|VEXx, »| < CK,n),

where C(K , n) > 0 is a constant depending only on K and n.

Proof. The distance r, is smooth in the open subset Bp(x) N D(x). Since
X\D(x) is the cut locus of (X, dsz) with respect to the point x, any geodesic
y connecting a point y in Bp(x)ND(x) to x lies entirely in By(x)ND(x). By
the assumption on the curvature of ds® and the Hessian comparison theorem
(cf. [SY, GW]),

n—-1 nkK
Agnren(r,(¥)) < Ar (¥) < 0 +57:0),
where y € Bp(x)ND(x), A stands for the laplacian of (X, dsz) ,and rg. and
Ag~ are the distance function from the north pole and the laplacian of S" with
the standard metric with constant curvature K .
Hence, an easy computation shows

n—1
@7 (A 0) - | SCK, mnG), v e Byx)n D),
X
where C'(K, n) is a constant depending only on K and n. But
n-1 7]
2.8 Ar =——+ —1o x,¥),
(2.8) =) oM gVE(x, )

and so the lemma follows from (2.7) and /g(x, x)=1.

Lemma 2.3. For dny R >0 andanypoint x in X, E C Bp(x) and y € Bp(x),
we have
(2.9) [u(S, N C(EnDE))]™
r(6)
< Vol,a(E)'sup [ V&, (r, )" dr,
¢eS, Jo

¥y

where u is the euclidean measure on S, and the function r(8) is defined by
(2.10)  r(0) = sup {r|the geodesic y,(t) is minimal in [0, r],

r<R+r,(y)and 7,00) =y, 7,(0)=0€S,}.
Proof. It is well known that the cut locus of y in X has volume measure zero.
Therefore,
2.11) Vol,2(E) = Vol ,.(E N D(y)) < Vol,2(C,(END(y)) N Bp(x)).
Note that any point in Cy(E N D(y)) N By(x) can be joined to y by a unique
minimal geodesic y, with D(y) N B,,, o) . It follows from (2.11) that

r(6)
Vol (E) < / de VEW, (r, 00" dr

SyOCy(EﬁD(y)) 0
r(6) —
< u(S,NCENDY sup [ VBY, (r, ) Ydr.

Then the lemma follows.
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Now for the given Lipschitz function f on X and a fixed R > 0, we define
a new function kp(f) as

(2.12)

kp(f)(x) = sup{k| Vol 2 ({y € Br(x)|f(¥) > k}) > 3 Vol 2(Bg(x))}
for x € X.

Then kg(f) is a measurable function on X . Actually, one can easily show that
kr(f) is upper semicontinuous.

Lemma2d4. Ler (X, dsz) be a complete Riemannian manifold with its sectional
curvature bounded by K and Vol,.(B,(x)) 2 C,/(1 + dist(x,, x))ﬁ for some
constant C, and fixed point x, in X. Put p(x) = dist(x,, x). Then for
any Lipschitz function f on X and R < min{R,, 1}, where R, is defined in
Lemma 2.3,

1/6
(2.14) ( [0+ 060150~ e NP dV)

<cr* [ vsiav,,
X

where YV denotes the gradient of (X, ds®), e=(n-8(n-2)/28, 1< <
n/(n—-2), and C is a constant depending only on K and n.
Proof. Define f, = max{f — kg(f), 0}, f. = max{—f + kg(f), 0}, and
E_(x) = {y € Bp(x)|fo(y) = 0} for any x in X. Then Vol,.(E.) >
3 Vol 2(Bg(x)) by the definitions of k.(f) and f, .

Applying Lemma 2.1 to f,_, f_, respectively, we have

(2.13) (S, N CUEN(X)]

</ 81,
T JCE)nByx) | 9T

(2.15) (S, N CE NS ()]

K}
< / f
C(E_)NBp(x)

or,
In the following, we will always use C to denote a constant depending only
on K and n.
By Lemmas 2.2 and 2.3, and the Schwartz inequality, we conclude from
(2.14) and (2.15) that for ¢ = (n —d(n — 2))/24,

WVEx, r,»" ) av ),

WWEx, »r.o ™ H 7 av ).

CRm+£

2
(2:16) 1/(0) = ke NEIN" £ G2

/ VRO ) av ().
Bp(x)
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586 G. TIAN AND S. T. YAU

Define a function x(x,y) on X x X by x(x,y) =1 for r (y) < R, and
x(x,y)=0 for r (y) > R. Then by (2.16),

1/6
(2.17) ( /X (14 p(0) 11 (x) = k(NP dV(x))

< R ([ (14 0 Vol Byl dV ()

: [ [ 26 VA0 7 dV(y)] 5 ) ”,

By the Volume Comparison Theorem [Bi], we obtain

n CR"
2.18 Vol ,:(B,(x)) > CR Vol ,.(B,(x)) > ————.
( ) ,152( R( )) dsz( 1( )) (l +p(x))'9
Hence, by (2.17), (2.18), Young’s inequality, and Lemma 2.2,
(2.19)

</X(1 + ()2 £ () — kR(f)(x)lz‘st)l/Z&
< CRe/?-(/X dv(x) (/X x(x, y)'vflz(y)rx(y)z“"~sdV(y))‘5 > 26

< CRE/Z(/X IV (»)dV (y) - sup (/B o ry(x)-("_pre)‘sa?V(x))W)l/2

yeX

1/2
< CE ( /X inlz(y)dV(y)) .
The lemma is proved.

Lemma 2.5. Let (X,dsz) and [ be as in Lemma 2.4, and let R <
min{l, R,}, where R is given in Lemma 2.2. Thenfor 1 <é <n/(n-2),

1/26
(2.20) ( / ( 1f<y>—kR<f><x)|2"dV<y))
1/2
£ B 2
< CR(1 + p(x)) ( / L (y)dV) ,

where ¢ = (n—(n—2)0)/26 and C is a constant depending only on K and n.

Proof. Define f, and E_ as in the proof of Lemma 2.4. Then for each y €
Bg(x), by Lemma 2.1,

221)  u(S,NC(EIL,0)
</ VA IDWED, D)) dv (),
C,(E,)NByp(x)
(222) WS, NCUENIL W)
VL I(2)(VEW, 2)r,(2)" ) aV(a).

<),
C,(E_)NBjg(x)
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As before, we can derive from (2.21), (2.22), Lemma 2.2, and Lemma 2.3
the estimate

CR2n+£ —ne2—e
(223) If(y)—kR(f)(x)lzsaW /B » VA1), (27 v (2)

for any y in Bg(x). Then this lemma follows from the same argument as that
in the proof of Lemma 2.4.

Next we need to estimate the growth of the function kp(f).

Lemma 2.6. Let (X, dsz) and f be as in Lemma 2.4. Then for 1 <6 <
n/(n—2),

(2.4)  |kg(N)(x) = kp(N) (X!
< CR—n(5+1)/25(1 +p(x))ﬂ(l+l/6)+l </ |Vf|2(z)dV>1/2
< . )

Proof. Given x in X ,let y be the minimal geodesic joining x, to x. Choose
a sequence of points {y j}os <N On the geodesic y such that y, = x,, yy = X,
and y; = y(t;), where ¢; = £p(x). Take N to be [p(x)/R]+ 1, where [-]
denotes the integer part. We will always use C to denote a constant depending
onlyon K and n.

By Lemma 2.5, for 0<j<N-1,

5 1/6
e ([ o DO = ke N00) av ()

1/2
<crR o0’ ( [ V@A)

3RV 0UB3 (Y 4)

Let z, = y((t; +1¢,,,)/2); then Bp,(z;) C Bg(y;) N Bg(y;,,). By the Volume
Comparison Theorem [Bi],

Vol,2(Bp(y;) N Bp(¥;,1)) 2 Volya(Bg 5(2,)) = CR" Vol,2(B,(z)))
> CR"/(1+ p(z,))’.
It follows from (2.5) that

(2.26)
kg(NY;) = kr (N0l < CRE""/‘s(l + p(yj))ﬂ(lﬂ/é)

1/2
- ( / IVfIZ(Z)dV(Z)) .
Byg(¥)UBsR(y; 1)

Note that by our choices of Y the number of the balls B, (y j) having
nonempty intersection is less than 5. Thus by summing (2.26) over j, we have
completed the proof of the lemma.
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588 G. TIAN AND 8. T. YAU

Now we can finish the proof of Proposition 2.1. Let / =a+2+28, and put
d=(n+1)/(n—1) and R=min{R,, 1} = min{z/2vK, 1} . By the equation
(2.1),

(2.27) | / (1+ p(x)) kg (f)(2)dV | < / (1+ p(x)) ™ 1£(x) — kg(NN(2) dV-
X X
Then it follows from Lemmas 2.4 and 2.6 that

228) NI ([ (14 o007~ )

gc(/xwﬂzdv)m (1+/X(1+p(x))"dV> ,

where C = C(K, n) depends onlyon K and n.
Since Vol,2(B,(x,)) < Cr® by assumption, by a standard argument using
Fubini’s theorem, we can show the last integral in (2.28) is bounded. Thus

(2.29) NG ([ 1+ o0~ av)

1/2
< C(1+ p(x))f2rlieis! ( / lVflde) .
X

Applying Lemma 2.4 again, we have
-1 2(n+1)/2(n—1) (n=1)/2(n+1) 2 12
(f @+ ptnT1sc0 av) < ([ wsrav) .

where C, = Co(K, n, a, B) is a constant depending only on K, n, a, and
B . Thus the proposition is proved.

Remark. The same proof shows that (2.2) still holds for the weight function
(1+ p(x))_[ with / =a+1+¢£+2p and ¢ > 0, except that the constant C,
may depend on ¢.

3. THE PROOF OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. We shall use the per-
turbation method. We start with an approximation lemma. We will adopt the
notation in Theorem 1.1.

Lemma 3.1. Let [ be the function in Theorem 1.1. Then there is a sequence
of smooth functions f, (m > 1) such that each f,, has compact support, the
sequence {f,.} converges to f uniformlyon M as m — oo, and

(3.1) /(efm—l)w;f=o,

M
<
(1+p(e)™”
where N > 4+ 2P as in Theorem 1.1 and C is some uniform constant.

(32 max{|V /), AP SC, IS0 <
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Proof. First we produce an exhaustive smooth function. By smoothing the
distance function p, one can construct a positive function ¥ on M\B,(x,)
satisfying
(i) p(x) < Cy{x) for p(x) sufficiently large (say, for instance, p(x) > C),

(ii) sup, {IV, ¥, l8,w} < C,
where C is some constant depending only on K and g (cf. [Wu]).

Choose a positive function n on R' such that n(t) 21, n(t) =1 for
t <2C, and lim,_,__ #n(f) = +oo. We can take our exhaustive function to be
n(w) . For simplicity, we denote it by .

Let ¥ > 0 be a small number such that p2 (x) is smooth in B, (x,). Let
{:[0, c0) — [0, 1] be a cut-off function with {(¢)=1 for t <1 and {{t)=0
for t>2, |{'], |£"| < 1. Define

0= ¢ (B9 (4,0 ((22))).

where ¢, is a constant determined by the integrability condition (3.1). Then
f,, has compact support and satisfies (3.2). By (1.2) and the decay assumption
of f, one can easily check that lim = 0. Therefore, f,, converges to
f uniformly. The lemma is proved.

Replacing f in equation (1.1) by f , we obtain a sequence of perturbed
complex Monge-Ampere equations,

v—=1 - \" £
(wg+%—68¢) =erw, on M,

o, + ———”_laégp >0, e C®(M,R".
& 2n
Our strategy to solving (1.1) is to show that (3.3), admits solutions and a
subsequence of those solutions converges to that of (1.1). First we prove that

(3.3),, is solvable.

m-——=o0 em

(3.3),,

Lemma 3.2. Let (M, g) be a complete Kdhler manifold of quasi-finite geometry
of order 2 + 3. Then the following equation for € > 0 has a unique solution:
n
(w + —;165¢) =em*y" on M,
4 2n 4
(34),, ,

(wo + —”2;16540) >0, @eC®M,RY.

Moreover, the (1, 1)-form w, + %85(0 defines a Kdhler metric equivalent to
g.

Proof. This is due to S. Y. Cheng and S. T. Yau [CY]. One can also find a
detailed proof of a slightly general version of it in [TY].

Denote by ¢, . the unique solution of (3.4),, .. We want to find a subse-

quence {¢ j} > such that lim oo € = 0 and the Pm.e, converge to a solution
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of (3.3),,. By standard elliptic theory, it suffices to prove the uniform c* 2.

estimate of the solutions ¢, ,. We will use the integral method to estimate the

C®-norms of 9 .- The next lemma guarantees that we can do integration by
parts on M for the equation (3.4), .. Recall that for a function ¥ on M,
v, (x) =max{0, y(x)} and y_(x) = max{O —w(x)}.

Lemma 3.3. For any constants ¢ >0, p>1, and g > 0, we have

65 [ @+oe) o, N

+1V,((1+ o) 0,, JIL+ p(x)) g, [77°

]a)g < 00.
Proof. Let n be a cut-off function n(f) =1 for t <1, n(z) =0 for t > 2,
and |7'(2)], |n"(2)] < 2. For simplicity, write v, = (1+ p(x))*(¢,, ), -

Define n(x) = n(p(x)/R) for R > 0. Multiplying (1 + p(x))?w;""'n3 by
both sides of (3.4), ., we obtain

(3.6) \/—/(I‘FP(X) NR(x)Wy 009, Ay +- oy )
= [ @+ p) mu T e~ e,
M
where @, , = o, + £36¢’m -

Integratmg (3. 6) by parts and using the fact that w,,
one can derive the following from (3.6):

e is equivalent to w ¢

3.7)

J R e S T A A AR L
M

<cC { /M (1+ p() na()w? o' — 1]

R n
+ [ ooy e+ [ ull e W;ng},

where C is a constant.
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Since f,, has compact support, the first integral on the right of (3.7) is finite.
Thus by the definition of 7, , we obtain

2 2 n
(3.8) | rwer+ [ n@Iv vl

<C {1 +/ nzzR(x)w;/’w;} ,
M

where C' isaconstantand § =4 — 1 /p.
The solution P e is bounded, so by the assumptions of Theorem 1.1, for

g = —N/2p, the integral [, W;” w; < +oo. Thus by using (3.8) inductively
and letting R — oo, we can easily see

/ {1+ p(x0) 0, )7 +1V,((1+ p(x)1p,, )5 o)y < co.
M

One can estimate the integral of ((1+ p(x))"(pm’s)_ similarly. The lemma then
follows.

Corollary. Let (M, g) and ¢, . be as above. Then

(3.9) - / (€™ *me — 1wl = 0.
M

Proof. We adopt the notations used in the proof of Lemma 3.3. By (3.4)
we may have

m,e?

VT [ - .- -
(3.10) —2;—/1‘48(/1,",5/\371R(x)/\(wm,l+---+wg hy

- / (/e — 1)t
M

The integral on the left-hand side of (3.10) is dominated by + J, vV 2Pm, @ -
Thus, in order to show (3.9), it suffices to prove that f,, [Vg¢m,€|w; < +00.
Let ¢ = a+ 1, where a is the rate of volume growth of (M, g). Then
Ju(1+ p(x)) "™ < +00. On the other hand, by Lemma 3.3,

2 2
/M(l +p(x))1|V 0, [ @) < +o0.

Thus by the Hélder inequality,
1/2
2 2
[ ¥0n o< ([ (1400010, fo])

([ aspea)”

< 4+ o0

n

Lemma 34. Let (M, g) be as in Theorem 1.1. Then there is a constant C
independent of m and ¢, such that

-~N 22n+1)/(2n—1
(3.11) /M(l + 0 V10, — Ave,(p,, IR G

"<,
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where Ave (¢, ) is the average of ¢, , with respect to the weight (1+p(x))"N,
Le.,

1+ p(x)™¥ "
(3.12) Ave,(p,, ) = Ju(l+p(x) "0, @

Ju(L+ p(x)

Proof. For simplicity, we put y = P . — AVE p(wm, ) - Multiplying Prm.e DY
both sides of (3.4) and integrating by parts, which is justified by Lemma
3.3, we obtain

m,e

V=1 - - _
(3.13) E—/Mav/Aay/A(w;,i+w;,§/\wg+---+w2)

fm n £¢M,¢ fm n
=/M¢m’e(l—e )wg+/M(pm,e(l—e Jerw,.

By integrability condition (3.1) of f and the fact ¢m’5(e8¢M-= -1)>0,it
follows from (3.13) that

3.14 /v zw"s/ e —1|o".
(3.19) [ wytal< [ lwien - 11a]

Applying Proposition 2.1 to (3.14) and using (3.2),

-~N 2(2 2n— —-N
[ oty M0 < ¢ [ i+ ey,
M M

where C is a constant independent of m and ¢.
Now the lemma follows from the Holder inequality and the assumption on
the volume growth of (M, g).

Lemma 3.5. There is a constant C independent of m and ¢, such that

(1) —infy, 9, . < C, supy(9p,, ,—Ave, (9, .)) < C whenever Ave (¢, ,)
>0.

(2) supy 90, . <C, —infM(;om’e—Avep((om’e)) < C whenever Ave (9, )
<0.

Proof. Since the proofs are the same for both cases, we just prove (1). We will
use Moser’s iteration.

Put v = (¢m’.s —Ave(g, .)),; then ¢, .(x) >0 whenever y(x) >0. It
follows that w(e®»-« — 1) >0 on M. By (3.4) we may have

m,e?

(@+1)/22 . n _g+1 a1 n
[ 9 e < L2 [ e - 11,

Using (3.2) and Proposition 2.1,
(3.15)

(/M(l 4 p(X))_NIl//(‘Hl)/Z _ Avep(z//(q+l)/2)|2(2"+I)/(Z"_l)w"

(2n—1)/(2n+1)
)

<c /M (1+ p(x) N yle”.
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Note that C always denotes a constant independent of m and ¢ in this proof.

Since f, (1 + p(x))"Nw; is bounded, it follows from (3.15) that

(3.16) (/ (1+ p(x))—N(l + |Wl)(q+l)(2n+l)/(2n—l)w;
M

<c [ (o) M +w) e,

Put g, =2(2n+1)/(2n—1) and 4ip = qj(2n+1)/(2n-— 1) for j > 0. We use

ll-1l, to denote the L?-norm with respect to the weight (1 + p(x))"N . Then
(3.16) implies

! 2n+1
11+ bl < T (20 (555
i=0

< CIE+ vl -

Note that the last constant C may be different from the previous one, but it is
still independent of m and &. Now by Lemma 3.4 and letting j go to infinity,
we obtain

)(Zn—l)/(2n+1)

i (@n=1)/@2n+1))J2
)) 11+ 1wl

—_ = 1li <
SUp(p,, o — AVE, (9, o)) = lim flyfl, < C

Since we assume that Ave (g, ,) 20 in case (1), it follows from Lemma 3.4
that (|(¢,, .)_| @S C . Then by the same argument as above, we can also prove
that —inf,, ¢, . <C.

m,& —
Lemma 3.6. Let (M, g) be as in Theorem 1.1. Then there are two constants
C, and C, independent of m and ¢, such that

(3'17) 0 <n +Ag¢m’s < C3eC4(¢m.z_infM ¢m.e)'
Proof. We refer readers to [Y2] for the proof of this. Note that we still have the
maximum principle for our manifold (M, g), since the curvature is bounded

(cf. [TY]).
Now we are ready to estimate the C % norms of the solutions P -
Lemma 3.7. For each m, there is a constant C(m) such that sup, ¢, .| <
C(m).
Proof. By (3.1) and (3.9),

(3.18) / elm(efme — e, =0.
M

Since ¢,, . is not identically zero, it follows from (3.18) that both sup, ¢, ,
and —inf,, P . arE strictly positive. Note that the maximum principle holds
on (M, g). Applying the maximum principle to (3.4), ., we conclude that
both the maximum and the minimum of ¢, are attained in the compact
support of f . Let x_. and x_, bein Supp(f,), satisfying

X

wm,e(xmax) = szpwm,c > O’ ¢m,e(xmin) = i}‘}fgom,e <0.
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Now we have two cases:

(1) Ave,(9,, ) 20.
(2) Avep((om,e) <0.

The proof for the second case is similar to that for the first one. Thus we
may assume that Avep((om’ .) = 0. By Lemma 3.5, there is a constant C
independent of m and & such that

(3.19) P e Xpin) 2 —C, S;l{p(wm,e - Ave, (¢, ) <C.

Put v = (¢, ,—infy 9, . —1)_. Then 0 <y <1 and y(x,,) = 1.
Choose r > 0 such that B,(x,; ) is a convex geodesic ball of M . Without loss
of generality, we may assume r = 1. Let G(x, y) be the Green’s function of
the Dirichlet problem on B,(x_. ) and let # be a cut-off function on B, (x

such that n(x)=1 for x € BI/Z( Xin) and n(x) =0 for x outside 33/4(Xmm) .
By Lemma 3.5 and (3.19), there are two constants C; and C,, such that

min)

(3.20) Ay@p o+ 1 < CreSeime,
Multiplying ryz(x)G(xmin , X)w(x) by both sides of (3.20), we obtain
2 n
- /M A () - W) G » )"
2 n
<c /M V()G (X » X)",

where C, = Cje“*. Integrating by parts and using the mequahty ab < ia” +
%bz , we deduce

1 n
(3.21) 3 V(1" ()9’ (X)) G (X - X)0
Bl(xrnin)
1 n
+ = |V V/l n (X)G(xmm’ x)@
2 B (Xpin) ¢
<C W (X)G(Xgyin » X)),
B(‘xmm

+3 f T 1O G, 2005

l mm

W (X)V 17 (X)V G X i » X0

2 B (x,

The functions G(x_, , x) and V gG(xmin , x) are bounded independently of
¢ on Supp(V gr]) C B,(x,;,)\B, /z(xmin). Therefore by Green’s formula and

(3.21),

622 1=V SC( [ WGl 20+ [ )wfw;),
X, X,

1Y min 1Y min

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPLETE KAHLER MANIFOLDS WITH ZERO RICCI CURVATURE 595

where C;' is a constant independent of ¢. By the Holder inequality,

" n—1 n 1/(2n~-1)
1<C, lw| a)
B, (x &
1

min)

@n-1)/(2n—=2) n (2n=2)/2n=1)
. (/ G(Xpin» X) wg) +/
B,(x, B,(x,

min) min)

|’
Ja 8
Thus for some constant C independent of ¢,

1 < Cymeas{Supp(¥) N B, (x;,)}-

It follows that

| @+ oo™, o
M

n

< (1+ p(x))—N(om’gwg + C,

/ M\ B, (X, )NSupp(v)
—N —N —
<kCorswpo,., ([ (14 )™ - 2+ sl ).

where C; is a constant depending only on (M, g). Then by (3.19) and (3.23),
SUpy, ¢, . < C(m) for some constant C(m). The proof for the second case
is similar except that we use A,¢,, . +n>0 instead of (3.20). The lemma is
proved.

The following high order estimate is essentially proved in [Y2].

3

Lemma 3.8. There is an a priori estimate of the derivatives V 2Pm.c

of the geometry of (M , g), and

2 3
supM{|¢m’g|’ |Ag¢m,g|} and SupBl(x){lfml’ Ivgfm" |ngm| ’ |mem|}'

Corollary. For each m, the complex Monge-Ampere equation (3.3), admits a
solution ¢,, satisfying

(x) in terms

(1) sup,,l¢p,,| < C(m) for some constant C(m).

(ii) [y IV, [ 0} < +oo.
Proof. 1t follows from Lemmas 3.7, 3.6, 3.8, and the elliptic theory {GT] that
there is a sequence {gam,ej} with lm jmoo € = 0 and the n,, CONVEIEE as
jmooPm.c - Then @ satisfies equation (3.3), and (i)

in the above. For (ii), we multiply ¢, . by both sides of (3.4) and integrate
the resulting equation:

Jj—oo. Let 9, =lim

m,e

v-1 —= - -1
(3.24) ——2-;—/M¢m,566(0m,£A(w" l+-..+w; )

m,e

Sn+€0, o\ 1
=/M(pm,e(l—e @,
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By Lemma 3.3, we can integrate (3.24) by parts and obtain

2 n-1 fm__ n
/M|Vg¢m,s| w, 54/M|e 1|lg,, Jw, <oo.

Then Coroliary (ii) follows from (i) and Fatou’s lemma.

Next we will prove that a subsequence {m j} s with lim oo M =00, the
functions ¢, — Ave p(¢m.) converge to a solution ¢ of (1.1). As before, it
J J

suffices to prove the C 2.1/ 2-estimate_ of ¢, — Ave p(q)m) . By Lemmas 3.6 and

3.8, it is equivalent to showing

where C is a constant independent of m.
Obviously, the function ¢, — Ave p(q;m) is still a solution of (3.3), . So we
may assume that Ave p(¢m) =0.

Lemma 3.9. For each m, we have

1 n
(3.26) lim — IVo_|o" = 0.
R=co R Jp (X \B(Xy) ¢

Proof. By the Holder inequality,

n

Vo,lo,

m

/;m(xo)\BR(Xo)

1/2
< (VOIg(sz(Xo)))I/Z (/E IV‘/’_mlzw;) :

Then the lemma follows from Corollary (ii) of Lemma 3.8 and the assumption
that Vol (B,x(X,)) < CR* for some constant C.

1r(XoN\Bg(Xp)

Remark. This is the only place we need the quadratic growth of the volume of
(M, g).

Note that Lemma 3.4 holds for ¢,, . Now Lemma 3.9 guarantees that we can
apply the same argument in the proof of Lemma 3.5 to the solution ¢, and the
equation (3.3),, . Thus (3.25) follows from Lemma 3.4 and the same proof as
that of Lemma 3.5. Then we obtain a solution ¢ of (1.1). It is easy to see from
the above proof that sup,, {|¢|, |V2¢|} can be bounded by a constant depending
only on K, B, and the datum in (1.3). Thus Theorem 1.1 is proved.

4. PRESCRIBED RiICCI CURVATURE PROBLEM
ON QUASI-PROJECTIVE MANIFOLDS

Let M = M\D be a quasi-projective manifold, where M is a projective
manifold and D c M is a smooth divisor with normal crossings. We pose the
following problem.
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Problem. Givena (1, 1)-form Q € C, (K;@[D]_l) , is there a complete Kihler
metric with its Ricci curvature equal to Q|, ?

In case M is compact, i.e., D = 0, the answer to the above problem is “yes”
by the second author [Y2). In this section, we will apply Theorem 1.1 to give a
partial solution to the problem in case M is noncompact. Precisely, we want
to prove the following

Theorem 4.1. Let M = M\D with M a projective manifold and D a smooth
divisor in M. Suppose that D is ample. Then for any (1, 1)-form Q in
C, (KX'{—l ® [D]"l) , there is a complete Kdhler metric g on M with its Ricci
curvature Ric(g) equal to Q|,,. Moreover, the Kéihler form w R of g is defined
by

(4.1) w, = %{ab‘(— log I1")"*""" + 63},

where n = dime M, S is the defining section of the divisor D, ||-|| is a norm of
[D] with positive definite curvature form, and ¢ is a bounded smooth function
on M such that the derivatives of ¢ are uniformly bounded with respect to the
metric induced by the form 83(— log ||S|I*)"+"/"

Note that the (1, 1)-form ¥=1a3(-log||SI)"*"/" in (4.1) is indeed posi-
tive definite. The assumptions in Theorem 4.1 can be weakened, especially for
complex surfaces, i.e., dims M = 2. This will be discussed in the next section.
For simplicity, we prefer to adopt this cleaner version (i.e., Theorem 4.1).

Theorem 4.1 has the following two important corollaries.

Theorem 4.2. Suppose that M = M\D, where M is a projective manifold and
D is a smooth anticanonical divisor. Also suppose that K%l is ample. Then M
admits a complete Ricci-flat Kdhler metric of form (4.1).

Proof. Now [D] = K—A}l , so we can take Q=0 in C, (K;_l—l ®[D]™"). Theorem
4.1 implies this theorem.

Example 1. Let A = CP", and D be a smooth hypersurface of degree n+ 1.
Then M = CP"\D admits a complete Ricci-flat Kihler metric.

Theorem 4.3. Let M = M\D be as in Theorem 4.1, and (K3 ® [D])™' be
ample. Then M admits a complete Kdhler metric with positive Ricci curvature.
Proof. We simply take Q in C, ((KM—@[D])”) to be a positive form and apply
Theorem 4.1.

Example 2. Let M = CP", and D be a smooth hypersurface of degree <
n. Then M = CP™\D admits a complete Kahler metric with positive Ricci
curvature.

In the rest of this section, we prove Theorem 4.1. We will first construct a
complete Kihler metric, the Ricci curvature of which is asymptotic to Q near
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D . Then we will verify that this metric has those properties stated in Theorem
1.1. Finally, Theorem 1.1 is used to complete the proof of Theorem 4.1.

By the ampleness of D, we can choose a hermitian metric || - || of the line
bundle [D] such that its curvature form w is positive definite and ||S| < 1
on M. We fix the (1, 1)-form Q in C,(K5 ®[D]™'). By the adjunction
formula, the anticanonical line bundle K 51 is just (K—;;' ® [D]'l)l p- Thus
Q|,, is in the cohomology class C,(D), where C,(D) means the first Chern
class of the submanifold D. By the solution of the Calabi conjecture [Y2],
there is a smooth function ¢ on D such that w|, + @a% defines a Kéhler
metric on D with Q| as its Ricci form. Note that such a ¢ is not unique,
but unique up to a constant, i.e., any such ¢ is equal to ¢, + C " where 9, 18
fixed and C’ is a constant. We will determine this constant C’ later. Extend
¢ to the whole manifold M, still denoted by ¢, and let || - || , be the norm

e”®|| -l of [D]. Put w,=w+ %85}0. Then o, is the curvature form of

-1, By adding a function of form C”S”2 to ¢, we may assume that w, is
equivalent to o in a neighborhood of D. Thus there is a 6¢ > 0 such that in
the open neighborhood {x € M|||S(x)|| < d,},

—1
(4.2) C¢ w<w,< C¢w,

where Cq, is some constant and may depend on ¢ . Note that since S =0 on
D, we may always choose the extension of ¢|, to M such that ||S|| » <1 on
M . Now for any positive number N > 0, we define

(4.3)
\/-_—1 {n1+l/n

Wy =

a(_ 2 (n+l)/n_ T7_ 2,\—N
o { = 99(-log|ISIl;) Cy99(~log(AyIISI™) }

where 4, and C, are two constants determined later. Put

N+l
Cy = %—7(_2'2 1og5¢)1/" (—210g5¢ - mﬁaxl(plloglN) Hy>

and 4, < 1, where Hy is a constant such that o, > —H,@ on M. Bya
straightforward computation, we have the following expression for w,,:

V=T 0 log ISIZ A B log|iSI3
2% (—nlog||S|2)"~"/"

2
wy = (-nlog|IS]2)" e, +
w
NC
¥ (— log(A, ISP )N

V=T 8log |IS||* A B log |S|’

2 (—log([IS|1%)"*?

Then from this expression, one can check that w,, is equivalent to the form
¥=153(~log||S|I*)"*"" when 4, is sufficiently small. Therefore, we have

(4.4)

~ N(N +1)Cy
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proved

Lemma 4.1. For some C,, and A, the (1, 1)-form w, defines a complete
Kdhler metric gy, on M such that its associated Kdhler form is w,, .

Remark. 1t is easy to prove that if the induced metric of the form

Y05~ logl 1) "

is complete, so is g, .

The following lemma follows from straightforward computations by using
(4.4).
Lemma 4.2. Fix a point x, in M . Let r(x) be the distance function of (M , gy)
from x,. Then the volume growth of (M, gy) is of order O(rz"/ ("“)) and
Vol, (B,(x)) = O(r(x)" """y for x in M, where B,(x) is the geodesic
ball of (M, g,) with center at x and radius one.
Remark. For the fixed points x, in M, the distance function r(x) is of order
O((-log HSU;)("“)/Z"(x)) for x closeto D.

Lemma 4.3. Let R(g,) be the bisectional curvature tensor of the metric g, .

Then
(4.5) IR(gy)ll,, (x) = O(r(x) ™"y,
where || - || e is the induced norm by the metric g, .

Proof. Note that it is not even obvious that R(g,) is bounded. So we will
sketch a proof of (4.5) here. It is based on some complicated computations.
Put

5 2, (n+1)/n
50 99 (—log||Sl|,) :
Then both @ and w, are positive definite in a neighborhood U of D, and
@ is equivalent to w, in U. Since the bisectional curvature is dominated by

holomorphic sectional curvature, estimate (4.5) is equivalent to

(4.6) IR(g¥)(E, &, &, 8)l(x) = &(, &) - O(r(x) /™)
for any point x in UNM and ¢ in T, M, where g is the induced hermitian
metric by @.
For any given point x in UNM , we may choose a local frame of [D] at x
and local coordinates (z,, ..., z,) of M, such that in such a local system,
(i) the holomorphic section S of [D] is locally represented by the holo-
morphic function z,+u, where x4 is a constant such that |u| = ||S(x)] .
(ii) The hermitian metric [|-]|, is locally represented by a positive function
a with a(x) =1, da(x) =0, and d(8a/0z,)(x)=0.
(ii1) If 8.7 = g¢(8/6;a, 9/8zp), where g, is the induced metric in U
by o,, then gag(x) = 605, (6ga—5/62y)(x) =0 for f < n, and
(agaﬁ/afy)(x) =0 for a<n.

1+1/n/(n+1)
—T1\"
o= (%)
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For simplicity, put F = —log||S Hi . At the point x, by (i), (ii), (iii) above,
we have

(4.7) F,=<—=6_F F_=—-—0" =6 6 F,

an” n? ay an“yn" n
dz, c’)zaazy

(4.8) 2, &)%) = (Dé"ﬁ)-<nF)”"+lF,,|2<nF>"”"”"ié”|2,

where £ =Y £°0/0z, € T M.
Note that r(x) = O(F"*"/ 2") Thus (4.6) is equivalent to

3 RENGFEEET |0 < CF) ™ 2E, O,

a,p,y,é=1

(4.9)

where C is a universal constant independent of x and
2

a a -1 ag g v
R(gN)ag5¥) = —55 g;; (x) + (g3 )™ e —2 (x), 4.10

where g, 7= =gy(0/0z,, 6/823)
Without loss of generality, we may assume A, = 1. Let (g;g) be the metric
tensor associated to w in (z,,..., z,). We will use O(F (x)_l/ ") to denote a

quantity bounded by CF™'/"
By computation, we have

with a constant independent of x.

(4:11)
agNaB 1/n 08,5 —(n=1)/n
———(x) = (nF) 6y(x)+(F) F,(X)9,,0,4
]F| Fgd,, ﬁn5YH+Fn5an5yﬁ

(nF)(" 1/n
B (4)3,,8,,0,0+ Ny = )" 00 222 o
. Y
~ N(N + 1)Cy(F = 9)"" 2 (x)8i5(x)  (F,6,, — ,,)

— 9 )(F0,, — 05)(F,0,, - 9,)

(Fn an
+ N(N+1)(N+2)Cy

(F ) e
a —1/n
e LR OGRS (x)+(—';(—,',§l'),—,,( )
By using (4.11) and (i), (ii), (iii) above, we can prove
20 “iny,
(4.13) 2 (e v) aagg g””"( ) = O(F(x)”""2(&, &' (x).
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It follows from (4.8) and the definitions of £ and g, that
det(g,)(x) = det(2)(x)(1 + O(F(x)" /"""
(419 = (B, + nF))(1+ O(F ()™ /"))
= (|F,|> + nF)(x)(1 + O(F (x)~'/""'=™y).

Therefore,
1A,y 1'*'11!“,,“:_1 —1=N—=1/n

(4.15) (&) (x)*o(—|p,,|2+nFF ).

—L\Fn, (nF)("_l)/" Fx)~1mN-1/n
(4.16) (gx) (x)—————an|2+nF (x)(1 + O(F (x) ).
Using (4.11) and (4.15), one can show
(4.17)

- m/6 v - lma g n )
(Z( D T g“( )+ Sey G ) -EeE
= 0(F "Mz, &’ (%),
(418) (g )”"ag’;'*" SR E T
—1/n - F
= O(F™"M (e, &(x) + (nF +IF,P) ‘('—Fl(,',—é,')—,n-

Combining (4.10), (4.12), (4.13), (4.17), and (4.18) we obtain the required
estimate (4.9). The lemma is proved.

Lemma 4.4. Let S(g,) be the scalar curvature of the metric g, . Then
(4.19) 10S(gn)llg, = O(1).

Proof. The proof follows from some computations similar to those in the proof
of Lemma 4.3. We omit it.

Remark. Actually, we can prove that max{|S(g,)[(x), [[0S(gy)ll e (x)} has fast
decay at infinity, i.e., near D . But since we do not need this strong property of
S(gy) > we will not prove it here.

In order to apply Theorem 1.1 to our case here, we need to find a function
fy such that

(4.20) Ric(gy) — \/_66fN Ql,,-

As in the proof of Lemma 4.3, let g’ be the Kahler metric associated to .
Then Ric(g’') — w is in the cohomology class C | (K%l ® [D]_l) . It implies that
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there is a function y on M such that

V=T

(4.21) Q =Ric(g) - w+ ‘2?35‘/"
Note that this y is unique up to a constant. Our function f,, will be defined
by
det(gy)
4.22 = —logliSI? =1 <__N)_ ,
(4.22) In og ||S]|” — log det(g))

where y is a function satisfying (4.21). We will first choose y properly such
that f, has fast decay along D.
Choose a finite covering {U Hi< <j<y of D such that
(1) Uiy U; € ix € TSIl < 8,} € {x € M|, (x) > 0}.
(2) For each Uj , there is a local coordmate system (zl 5 eens zn) such that
the section S is represented by the function Z,{ in U f and (z{ yeees
zf;_l) is a local system of u,nb.

Lemma 4.5. There is a y satisfying (4.21) such that the function f,, defined
in (4.22) is asymptotically of order O(r~@"N+2+D/t0y - Eurthermore, the
gradient V f,, and the laplacian Af,, with respect to g, are uniformly bounded.
Proof. The boundedness on Vf, and Af, can be proved by some direct com-

putations. So it suffices to check that f, = O(r~ (2nN=2n=-1)/(n+1)y in each open
subset U.. f For simplicity, we drop the subscripts j, N, etc., and put f = f,,
'z, = zi, gy = (G ﬂ)l<a p<n > and 8, = (gap)1<a p<n in local coordinates
(z2y5---52,)-

By definition, we compute

n—1
SIPw” =S ( —nlog|SIF)"w + NC —————63——)
IS g, = IS glSll,) "o, Y Clog S
(4.23) A B log|S]; ADlog S|,

( 1 _ N(N+'1)CN) ousi™.
(—nlog|IS|2)"P"  (~log|IS|HN*2

where 0(||S|['/ %) denotes a volume form bounded by C||Sl|l/ 2w" near D for
some constant.
Let ||-|| be represented by a positive function a; on U; such that ||S||2| v =
i

a jlzilz . Also let (g;aﬁ) be the metric tensor of g’ in (z{ s een s zf;). Then we
can define a volume form ¥, on D by

det(g’ +
(4.24) Vply = (g“’ﬁ)‘sa’”f", 1<i<J.

a;
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By the definition of V},, we have

V1 - V=1 —
(4.25) Ql, = —Tﬁ—aa log V), + —ZE—BGMD.
Thus by the choice of w .
(4.26) det(2,5)1<a. p<nlp = C¢ ¥ Vp

where C is a positive constant. We choose w such that C=1 and v satisfies

(4.21). Thenin U,,
2 2
N det(gN) = ajlz,,l det(Gaﬁ)lsa,,gs,,
2
(4.27) =4a; det(ga—ﬁ)ISa,Bgn—l + O((— log |S]")
- 2,~N—-1-1
= e det(805), <o pn + O((~log|ISI") .

—N—l—l/n)

It follows that f], =1+ O((—1log|lS|))™"~"~'/"). Using the fact that r(x) =
)
O((—log |S]|(x))"*"/*"), the lemma is proved.

Finally, we come to see whether or not f,, satisfies the integrability condition
(1.2). As we have already seen, g, depends not only on the extension of ¢|,
to M, but also on the choice of ¢| p» Which is unique only up to a constant.
We fix the function ¢ in the previous discussions. Note that W, =0, for
any constant A. Then the function ¥ in Lemma 4.5 remains unchanged when
¢ is replaced by ¢ + A in the definition of g, .

Lemma 4.6. There is a A such that if we use ¢ + A to replace ¢ in the above
definition of g, , then the resulting f, satisfies

(4.28) /M €™ - N}, =0,

where w,, is the Kdhler form of g, .
Proof. By using integration by parts, it is easy to check

n -1 an/" = 2 (n+1)/n § _
/M {wN - (—_VZn 03 (~log IS, = 0.

Note that now w,, is defined as

(4.29)
\/-:1- {nl+l/n

Y 2 (n+1)/n — 2 =N
wy =5 L 5B~ og|ISI,) " - €0~ log 2 ISI) }

On the other hand, ¢/ @?, = e ¥"/||S|°. It is independent of 1 by the remark
N

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



604 G. TIAN AND 8. T. YAU

before this lemma. An easy computation shows

1+1in n
n v=1_= _ 2 \(n+l)/n
(4.30) (n+1‘—‘2n 99 (—log|lS1l,, 1)
v—1 2 = 2 n—1
= n Y5~ 0{(0g||S; ~ )3 log||Slly A ™"}
1+1/n "

_[n V-l .+ 2\(n+l)/m ) n

= <n+1 590 (=log|ISIIy) niw,.
Therefore,

1+1/n n
In _ no_ 1 -y n v-1n -7 2\(n+1)/n
e = e = /M{usnze ’ ( Tt el

n
—ni /M_a)(p.

The first integral is finite and independent of A, while the second one is
n f3 @" . So we can choose 4 such that (4.28) holds.

Now we can finish the proof of Theorem 4.1. Choose a sufficiently large
N, say 100n. Then by Lemmas 4.1, 4.2, and 4.3, (M, g,) is a complete
Kihler manifold of (K, 2n/(n+1), (n—1)/(n+1))-polynomial growth for some
constant K. By Lemmas 4.4 and 4.5, we can apply Theorem 1.1 to equation
(1.1) with g = gy and f = f, . Then for the solution ¢, the induced metric
w, + %65¢ is the complete metric we want in Theorem 4.1. Theorem 4.1 is
proved.

5. GENERALIZATIONS OF THEOREM 4.1 AND THEIR APPLICATIONS

In the main theorem of the last section, the divisor D corresponding to
infinity is assumed to be ample. This is a rather restrictive assumption. In order
to produce more complete Ricci-flat Kihler manifolds and complete Kihler
manifolds with nonnegative Ricci curvature, we should weaken the assumption
on the ampleness of the divisor D. We will take up this task in this section.
Because the proofs of the theorems here are essentially the same as that of
Theorem 4.1, we will not give the details.

Definition 5.1. Let M be a projective manifold, D c M a divisor. Then

(i) D is called almost ample if there is an integer m such that the global
section in H°(M, @(mD)) gives a birational morphism from M into some
projective space CP" and this morphism is biholomorphic on a neighborhood
of D.

(ii) D is said to be neat if no curve C in M disjoint from D can be
written as a linear sum of the curves supported in D in HZ(H, R).

Remark. If M is a complex surface and D’>0 , then D is automatically neat.
It follows from the Hodge Index Theorem. In general, we do not know how to
characterize the neatness of a divisor D in higher dimensions.
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Theorem 5.1. Let M = M\D, where M is a projective manifold and D C M is
a neat, almost ample smooth divisor. Then given any (1, 1)-form S representing
the cohomology class C, (K%l ® [D]_l) , there is a complete Kdhler metric with
Q as its Ricci form. Moreover, this metric is asymptotically equivalent to the one
in (4.1).

Proof. By the Hahn-Banach theorem and the neatness of D, one can find a
cohomology class w, in H*(M,Z)nH"'(M, C) such that

(5.1) /w0>o
7

for any effective curve y with y-D =0, and wgy|, =0.

It follows that for a large integer k > 0, w, + kC,(D) is numerically effec-
tive and big, i.e., fy(wo + kC,(D)) > 0 for any effective curve y in M and
Fiflwy + kC, (D))" > 0, where n = dimC_A? . Then by Nakai’s criterion [Ha],
the class w, + kC,(D) gives an ample line bundle L on M.

Take a positive (1, 1)-form w, representing the Chern class ¢,(L). Let w
be the semipositive form obtained by pulling back the standard Fubini-Study
form on CP" under the morphism &, , where cPY and @, are given in
Definition 1.1. By the choice of our L, the class w,|, is cohomological to
®|p, , so there is a function ¥ on M such that

V=i —
(5.2) C()L|D=CO|D+7'861//‘D
and y vanishes outside a neighborhood of D . Define
vV—1 —
(5.3) wE=wL—w———Zz—66y/;

then w,|, =0.

As in the proof of Theorem 4.1, we let ¢ be a function on M such that
|, + %=103p|, defines a Kihler metric with Q| as its Ricci form. Let || - |
be the hermitian metric of [D] with curvature form w, and || - || 0= e l-.
Then the approximated metric is

v-1

L o5 toglZ) "
2n Bl

(5.4) Wy = vy

+Cu08(- g IS ™ | + iy

where S is the defining section of D, and A, u,, and C, are constants.
Note that we may assume that ¢ vanishes outside a neighborhood of D. Then
one can check that for properly chosen ¢, C,, 4., and u,, the form w,
induces a complete Kihler metric g, on M with the same properties as stated
in Lemmas 4.1-4.5. Now this theorem follows from Theorem 1.1 by the same
arguments as in the proof of Theorem 4.1.
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Next, we suppose that 7\7 s a fiber space over a smooth algebraic curve S
with connected fibers. Let # : M — S be the projection. We further assume
that D =n" (D§) with Dg c S consisting of finitely many smooth reduced
fibers.

Theorem 5.2. Let M = M\D with M, D described as above. Then given any
(1, 1)-form Q in the cohomology class C, (K%l ® [D]_l) , there is a complete
Kdhler metric with § as its Ricci form. Moreover, this metric has the volume
growth of linear order.

Proof. As before, we still denote by S the global section defining D. In this
special case, the section § is actually the pull-back of a section S, on S
defining Dg. Let L be an ample line bundle on M and w be a positive
(1, 1)-form representing C,(L). By [Y2], there is a smooth function ¢ on D
such that w|, + @63@ defines a Kéhler metric on D with Q|, as its Ricci
form. Note that such a ¢ is unique up to constants. We extend this ¢ to M,
still denoted by ¢ . Let n be a cut-off function, ie., 7 : R' - R, nH=1
for t <1, n(t) =0 for t > 2 and |n| £ 1. Choose a small number R > 0,
such that the function 7(||S || /R) vanishes outside a small neighborhood of D
and, in the support of 7(]|.S || /R), the form o+ £80¢ is positive along the
fiber directions. Now we define

2
(5.5) w, =0+ \/7:165 (n (E%Il—) (a) )

Then @ l -1 is always positive definite for any ¢ in S. Our approximated
metric g ', 1s defined by assigning its Kihler form w, as

(5.6) w,=iw,+ y—‘/z—n_—aa( log”Sll ) +vn g,

where A, u, and v are properly chosen constants and w, is a Kihler form on
S. Then this theorem follows from Theorem 1.1 by the same arguments as in
the proof of Theorem 4.1,

Remarks. (1) Theorem 5.2 can be generalized in the following situation. Let
7 : M — S be a fiber space over another projective manifold § with connected
fibers. We further assume that D =z~ (Ds) is biholomorphic to Dg x F with
Ds ¢ S smooth and F a smooth, reduce fiber in D of M over S. We also
assume that Dz C S is almost ample and neat. Let p,:D=DsxF — Ds and
D, : D = Dgx F — F be two natural projections. Then one can prove: given
any (1, 1)-form Q in C, (K5 ®[D]™") such that Q| = p{Q, +p;Q,, where
Q, e C(Ks '® [D§]—l) and Q, € C,(F), there is a complete Kdhler metric on
M = M|D with Q as its Ricci form and this metric has the volume growth of
order less than two.

(2) Let M be a fiber space over S and D ¢ M as in (1). Then if M
admits a complete Kihler metric with nonnegative Ricci curvature, there must
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be some constraints on the base .S. In fact, by the generalized Schwartz lemma
[Y3], one can prove the following statement: Let (M, g) be a complete Kihler
manifold with nonnegative Ricci curvature. Then there is no holomorphic map
from M into a Kihler manifold N such that its Ricci curvature is bounded
from above by a negative constant and this map is of full rank at least at one
point.

Corollary 5.1. Let M = M\D be either in Theorem 5.1, Theorem 5.2, or in
remark (1) above. Assume that D is in the anticanonical class. Then M admits
a complete Ricci flat Kdhler metric.

Corollary 5.2. Let M = M\D be cither in Theorem 5.1 or in Theorem 5.2.
Let C, (K%l ® [D]‘l) contain a nonnegative form. Then M admits a complete
Kdhler metric with nonnegative Ricci curvature.

We end this section with an application of Theorem 5.1, etc., to the upper
bound for the growth of finitely generated subgroups in 7, (/) for some quasi-
projective manifold M. We define the growth function y associated with a
finitely generated group and a specified choice of generators {g,, ..., gp} for
the group as follows. For each positive integer s let y(s) be the number of
distinct group elements which can be expressed as words of length < s in the
specified generators and their inverses [Mil].

Definition 5.2 [Mi]. Let X be a smooth manifold. We say that the fundamental
group 7(X) is of polynomial growth of order less than k if for any finitely
generated subgroup of z,(X) and a specified choice of generators, the associated
growth function y satisfies

y(s) < Cs* for some constant C.

Theorem 5.3. Let M = M\D be either in Theorem 5.1 or Theorem 5.2. Let
CI(K%1 ® [D]_l) contain a nonnegative form. Then the fundamental group
n, (M) is of polynomial growth of order less than the real dimension of M .

Proof. 1t follows from Corollary 5.2 and [Mi].

Note that in our case, the fundamental group 7,(A/) is indeed finitely gener-
ated since M can be compactified. In general, it is not vet known whether or not
the fundamental group of a complete Riemannian manifold with nonnegative
Ricci curvature is necessarily finitely generated.

6. A FINAL REMARK

In this last section, we summarize the previous results of §§4 and 5 on com-
plete Ricci-flat metrics in a simple and clean form for complex surfaces. We
start with an easy lemma.
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Lemma 6.1. Let M be a projective complex surface and D be a smooth anti-
canonical divisor. Then M is biholomorphic to one of the following:

(1) The surface obtained by blowing up CP’ at finitely many points along
a smooth cubic curve in CP*.

(2) cP'xcp'.

(3) CP' x Té, where Té is the complex torus of dimension 1.

Proof. First note that if M contains an exceptional curve E of type one, then
we can blow down this E to obtain a surface satisfying the assumptions of
the lemma. Thus we may assume that A is relatively minimal. On the other
hand, since Kﬁl = [D], the Kodaira dimension of M is —oo. It follows from
classification theory [BPV] that A is a ruled surface. If A is rational, then
M is either CP? or one of the Hirzebruch surfaces. So D* = Kzﬁ =9 or
8. It follows that C (M) is numerically positive. So M is either CP? or
CP' x CP'. If M is not rational, it is a ruled surface over a curve C of genus
> 1. By the adjunction formula, K, is trivial and D intersects with each fiber
at two points. It implies that the genus of C is one and D consists of two
disjoint tori. One easily checks that A must then be CP' x Té. The lemma
is proved.

Combining this lemma with Theorems 5.1 and 5.2, we have

Theorem 6.1. Let M = M\D be a quasi-projective surface with M smooth and
D a smooth anticanonical divisor in M . Then if D’ >0, M admits a complete
Ricci-flat Kdhler metric.

Remark. Let M = M\D as in Theorem 6.1. We do not know whether or not
the condition D> > 0 is necessary for the existence of a complete Ricci-flat
metric on M . For such a pair (M, D), by Lemma 6.1, D* <0 if and only if
M is a surface obtained by blowing up CP? at more than nine points along a
cubic curve in CP? and D is the quadratic transformation of that cubic curve.
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