
Complete Local Search with Memory

Diptesh Ghosh∗
Gerard Sierksma†

SOM-theme A Primary Processes within Firms

Abstract

Neighborhood search heuristics like local search and its variants are some of the most
popular approaches to solve discrete optimization problems of moderate to large size.
Apart from tabu search, most of these heuristics are memoryless. In this paper we intro-
duce a new neighborhood search heuristic that makes effective use of memory structures
in a way that is different from tabu search. We report computational experiments with
this heuristic on the traveling salesperson problem and the subset sum problem.

Keywords: Discrete Optimization, Neighborhood, Local Search, Tabu Search

∗ Corresponding Author. Faculty of Economic Sciences, University of Groningen, The Netherlands. Email:
D.Ghosh@eco.rug.nl

† Faculty of Economic Sciences, University of Groningen, The Netherlands. Email: G.Sierksma@eco.rug.nl

1

1. Introduction

Discrete optimization problems arise when a decision maker is constrained to make discrete
choices. i.e. choices of whether to include or exclude objects from a solutions, or decisions of
how many objects to include in the solution. A large number of such problems are NP-hard (for
example, the traveling salesperson problem, the knapsack problem, job scheduling problems,
etc.) which means that it is extremely unlikely that we will formulate exact algorithms that
solve all instances of these problems efficiently. Neighborhood search techniques are often
used to obtain good approximate solutions in such situations (refer to Aarts and Lenstra [2] for
a comprehensive introduction to these techniques).

Neighborhood search heuristics depend on the concept of a neighborhood defined on the set of
all solutions. Loosely described, aneighborhoodof a solution is a set of solutions that are close
to it in some sense. Consider, for example, the traveling salesperson problem (TSP). The 2-opt
neighborhood of a TSP tour is the set of all tours that can be obtained by removing two edges
from the original tour and re-connecting the two paths thus obtained into a tour different from
the original one. The process of reaching a neighbor from a solution is called amove. A move
is said to beimprovingif the neighbor reached on executing a move has a better objective value
than that of the current solution.

Neighborhood search techniques can be classified into those that store attributes of the solutions
they visit during their execution, and those that do not. The former type includes heuristics like
tabu search (see, for example, Glover [5]) while the latter type includes heuristics like simulated
annealing (see, for example, Aarts and Korst [1]). In a wide variety of applications, tabu search
and its hybrids have proved superior to memoryless heuristics like simulated annealing. In this
paper, we introduce a heuristic called “complete local search with memory”. It makes use of
memory structures to store solutions encountered by the heuristic during its execution, and
the results of searching their neighborhoods. Therefore, it uses memory structures, but uses
them in a way very different from tabu search. In addition, the heuristic described here has a
backtracking mechanism that allows it to search solution spaces more thoroughly.

The remainder of this paper is organized as follows. In Section 2, we present the ”complete
local search with memory” heuristic. We illustrate its working in Section 3 using an instance of
a symmetric non-Euclidean TSP. In Section 4, we report results of computational experiments
on two problem domains, the traveling salesperson problem and the subset sum problem. The
reason for choosing these two domains in particular is that local search variants are known to
be very effective in the former, while they perform poorly in the latter. We summarize the paper
in Section 5.

2. Description of the heuristic

An important feature of the adjacency graph imposed on the solution space by common neigh-
borhood structures is that there are, almost always, more than one directed paths from the initial

2

solution to a given solution. None of the existing neighborhood search methods utilize this fea-
ture in their design. Complete local search with memory (CLM) makes use of it by keeping track
of the solutions visited by the heuristic and preventing it from searching their neighborhoods
again at later stages during its execution. The termmemoryin CLM refers to storage space set
aside specifically for storing solutions generated by the heuristic. Thesizeof the memory refers
to the number of solutions that can be stored. This memory is used to maintain three lists of so-
lutions. The first one, calledLIVE, stores solutions that are available to the heuristic for future
consideration (called exploration). A second list, calledDEAD, contains solutions that were
in LIVE at some stage, and have already been explored. The third list, calledNEWGEN is a
temporary store for new solutions being generated by the heuristic during the current iteration.

CLM starts with a given solution as input and puts it inLIVE. DEAD andNEWGEN are
initially empty. It then performs iterations described below until an user-defined terminating
condition is reached or the heuristic runs out of memory. At the beginning of each iteration,
the heuristic picksk solutions fromLIVE. Each one of these is explored, i.e. it is transferred
from LIVE to DEAD, and all its neighbors with objectives better than a threshold valueτ

are generated. Each one of these neighbors is then checked for membership inLIVE, DEAD,
andNEWGEN. If it is a member ofLIVE, then the solution has already been obtained by the
heuristic and has not been explored yet (being less promising that the ones that are currently
under consideration). If it is a member ofDEAD, then the solution has already been gener-
ated and explored and we already know the solutions that are obtained by exploring it. If it
is in NEWGEN, then it has already been generated in the present iteration. However if the
solution is not yet in any of the lists, it is a new solution which merits exploration, and is put
in NEWGEN. When all the solutions that were picked have been explored, the solutions in
NEWGEN are transferred toLIVE and the iteration is complete. IfLIVE is not empty when
the stopping rule is reached or the heuristic runs out of memory, a post-processing operation is
carried out, in which generic local search is applied to the each of the members ofLIVE and
the locally optimal solutions thus obtained are added toDEAD. The best solution present in
DEAD at the end of the post-processing operation is returned by the heuristic. The pseudocode
of the heuristic is provided in Figure 2.1. Note that it is a template heuristic. Apart from the
choice of neighborhood structures, one has to decide on the memory size, the stopping rule, the
criteria for picking solutions fromLIVE, and the values ofk andτ.

The following are some plausible stopping rules.

1. Stop when theLIVE list is empty at the beginning of an iteration.
2. Stop when a predefined number of iterations are over.
3. Stop when there has been no improvement in the best solution for a predefined number

of iterations.
4. Stop when a local optimum has been reached.

The first condition is perhaps the most natural — it is not possible to continue CLM after this
condition is reached. When this condition is satisfied, the heuristic has explored all solutions
that can be reached from the initial solution. Consequently this stopping rule results in the
longest execution times, and returns the best solution possible. The last condition is one used in

3

Algorithm CLM
Input: Problem instanceI, initial solutions0, k, τ.
Output: A solution toI.
begin

LIVE ← s0;
DEAD ← ∅ ;
while stopping rule is not satisfied
begin/* Beginning of iteration */

NEWGEN ← ∅ ;
chosen ← 0;
whilechosen < k andLIVE 6= ∅
begin

choose a solutions fromLIVE;
chosen ← chosen + 1;
transfers fromLIVE to DEAD;
generate neighbors ofs with objectives better
than a thresholdτ;
for each neighborns of s
begin

if ns is not inLIVE, DEAD or NEWGEN

begin
if sufficient memory is available

addns to NEWGEN;
else
begin

transfer all nodes
fromNEWGEN to LIVE;
go topostproc;

end
end

end
end
for eachs in NEWGEN

transfers fromNEWGEN to LIVE;
end/* End of iteration */
postproc: for each solutions in LIVE

begin
removen fromLIVE;
obtain a locally optimal solutionnl fromn using local search;
addnl to DEAD;

end
return the best solution inDEAD;

end.

Figure 2.1: Pseudocode for CLM: Complete local search with memory4

generic local search. It is likely to be reached far more quickly than the others, and will generally
not return very good quality solutions. The second and third stopping rules are commonly used
in enhancements of local search, like simulated annealing and tabu search. These are likely
to take time intermediate between rules 1 and 4, and generate intermediate quality results. In
Figure 2.2 we present the length of the best TSP tour obtained by CLM on a randomly chosen
50-city TSP instance as a function of the number of iterations executed. Table 2.1 depicts the
effect of various stopping rules on the solution quality and execution time of CLM for this
instance. Note that stopping rule 1 does indeed take the longest time (111 iterations) and returns
the best solution (tour length 1198), while stopping rule 4 takes the least time 4 iterations) and
returns the worst solution (tour length 1425).

Figure 2.2: Solution quality as a function of iteration number for the CLM heuristic

Table 2.1: Effect of various stopping rules on CLM

Stopping rule Stops after Length of best
Iteration # tour found

1. Stop whenLIVE is empty at the beginning of
an iteration 111 1198

2. Stop when 15 iterations are over 16 1368
3. Stop when there has been no improvement in

15 iterations 24 1368
4. Stop when a local optimum is reached 4 1425

There are several ways of choosing solutions to explore. Some of these exploration rules are
the following.

1. Choose solutions having the best objective values.
2. Choose solutions that allow the best improvements on exploration.
3. Choose solutions at random.

The first condition allows the exploration of the search neighborhood in a manner that explores
a few neighbors completely before considering others. The second one takes the search along

5

a path which appears to bring about the best results at that stage. The third rule is perhaps the
fastest rule to apply in most circumstances. However the results obtained by applying such a
rule are unpredictable. Note that these rules (as well as the stopping criteria mentioned earlier)
are representative in nature, individual problem domains may have rules that function in a much
superior manner.

The parameterk determines the aggressiveness of the search. A small value ofk combined
with exploration rule 1 and any of the stopping rules 1, 2 or 3 causes the heuristic to track a
small number of neighbors of the initial solution to local optima reachable from them before
examining other neighbors. A large value ofk allows more neighbors of the initial solution
to be examined simultaneously. Therefore a large value ofk helps the heuristic to reach good
quality solutions in fewer iterations. However, the time taken per iteration, and the size of the
LIVE andDEAD lists also increase faster for large values ofk. Figure 2.3 illustrates the effect
of changing the value ofk on the execution of CLM. Notice that the memory is used twice as
fast fork = 2 than it is fork = 1.

Figure 2.3: Effect of changing the value ofk on CLM execution

The parameterτ controls the way in which CLM accepts non-improving moves. If, for example,
it is set to a very low value, then all the neighbors of all the solutions get accepted. If it is set
to the objective value of the solution being explored, only those solutions that are better than
the original solution are explored. In this case however, some promising solutions may not be
reached.τ may also be a function of the iteration number. It may initially allow worsening
moves (to help the search jump out of a locally optimal initial solution), and later restrict the
search to only those moves that lead to better solutions.

A judicious choice of parameters and rules reduces CLM to several common heuristics. For
example, in a minimization problem,

1. using stopping rule 1, and settingτ =∞ results in exhaustive search, assuming that the
adjacency graph is connected;

2. using stopping rule 4, exploration rule 1,k = 1, and settingτ as the objective value of
the solution being explored results in generic local search with steepest descent;

3. using stopping rule 4, exploration rule 3,k = 1, and settingτ as the objective value of
the solution being explored results in generic local search with random descent;

6

4. using stopping rules 2 or 3,k = 1, settingτ as a suitable function of the iteration number
and the objective value of the best solution at that stage, and using an exploration rule
that selects solutions randomly among ones generated in the last iteration, results in a
simulated annealing heuristic.

3. An example

In this section we illustrate the working of CLM using an instance of a symmetric non-Euclidean
TSP. The instance is small, with five cities and one local optimum. It has the following distance
matrix.

d(.) 0 1 2 3 4
0 – 34 45 88 92
1 34 – 99 97 5
2 45 99 – 61 90
3 88 97 61 – 52
4 92 5 90 52 –

A five-city symmetric TSP on a complete graph has 12 possible tours (solutions). In our exam-
ple we label them A through L. The details of these solutions are presented in Table 3.1.

Table 3.1: Feasible tours in the example

Solution Tour representing Tour Solution Tour representing Tour
Code Solution Length Code Solution Length

A 0-1-2-3-4-0 338 G 0-2-1-3-4-0 385
B 0-1-2-4-3-0 363 H 0-2-1-4-3-0 289
C 0-1-3-2-4-0 374 I 0-2-4-1-3-0 325
D 0-1-3-4-2-0 318 J 0-2-3-1-4-0 300
E 0-1-4-2-3-0 278 K 0-3-1-2-4-0 466
F 0-1-4-3-2-0 197 L 0-3-2-1-4-0 345

We consider an implementation of the CLM heuristic with the following properties:
Neighborhood A2-exchange neighborhood, i.e. one in which a neighbor is ob-

tained from a tour by changing the position of two cities on the
tour.

Exploration rule 1, i.e. choosek-best solutions fromLIVE.
Stopping rule 1, i.e. stop whenLIVE is empty at the beginning of an iteration.
Parameters k = 2 , τ is chosen to be the objective value of the solution being

explored currently.

7

The neighborhood andτ value induce the adjacency graph shown in Figure 3.1 on the set of
solutions. An arc in the digraph represents a feasible move.

?	� R j

jR?	�

? R j q	 ? R q� 	 R j) 	 ? R?	�)

K

L B C G I

A E H J D

F

Figure 3.1: Feasible moves between solutions in the example

Let us assume that the initial solution is K (i.e. the tour 0-3-1-2-4-0). This solution is added
to theLIVE list and we start Iteration 1. TheDEAD andNEWGEN lists are empty at this
stage. We choose to explore K in this iteration. It is transferred toDEAD and its neighbors,
i.e. solutions B, C, G, I, and L are generated. Since none of these solutions are members of
LIVE, DEAD or NEWGEN, they are all added toNEWGEN. At the end of Iteration 1, these
solutions are transferred toLIVE. Thus at the beginning of the second iteration,LIVE contains
B, C, G, I, and L, andDEAD contains K. In this iteration we explore two solutions fromLIVE

with the lowest tour lengths; i.e. I (with tour length 325) and L (with tour length 345). I, when
explored, adds solutions D, E, H and J toNEWGEN. When L is explored, it generates A, E,
H and J. However, since E, H and J are already inNEWGEN, only A is added to it. The other
three are ignored. This process continues, CLM generates the optimum solution F in Iteration
3, and finds out that it is locally optimum in Iteration 4. The other solution that is explored
in Iteration 4 is J. When J is explored, it generates the solution F. Now F, at this point is in
DEAD, i.e. CLM knows the outcome of exploring F. Hence it does not add F toNEWGEN.
Using similar arguments, no iteration after the fourth adds any nodes toLIVE. The heuristic
terminates at the beginning of iteration 8 when theLIVE list is empty. Table 3.2 shows the
various lists at each iteration of CLM.

4. Computational experiments

In this section we report the results of computational tests carried out to compare the solutions
returned by CLM with those returned by a more established neighborhood search technique,

8

Table 3.2: The contents of various lists during the execution of CLM on the example problem

Iteration Beginning of Iteration End of Iteration
({LIVE}{DEAD}) ({LIVE}{DEAD}{NEWGEN})

1 ({K}{}) ({}{K}{B, C, G, I, L})

2 ({B,C, G, I, L}{K}) ({B, C, G}{I, K, L}{A, D, E, H, J})

3 ({A,B, C,D, E,G, H, J}{I, K, L}) ({A, B, C, D,G, J}{E,H, I, K, L}{F})

4 ({A,B, C,D, F, G, J}{E, H, I, K, L}) ({A, B, C, D,G}{E, F, H, I, J, K, L}{})

5 ({A,B, C,D, G}{E, F, H, I, J, K, L}) ({B, C, G}{A,D, E, F, H, I, J, K, L}{})

6 ({B,C, G}{A, D, E, F, H, I, J, K, L}) ({G}{A,B, C,D, E, F, H, I, J, K, L}{})

7 ({G}{A,B, C, D, E, F, H, I, J, K, L}) ({}{A, B, C, D, E, F, G, H, I, J, K, L}{})

8 ({}{A,B, C, D, E, F, G, H, I, J, K, L})

tabu search. We used the 2-opt neighborhood structure for both heuristics. This neighborhood
structure does not lead to very good quality solutions for most problems, especially when the
problems are large, but it is fast and satisfies our aim to make a fair comparison between the
two heuristics. We chose problem instances of the traveling salesperson problem (TSP) and the
subset sum problem (SSP) for our experiments. For TSP, we used randomly generated problems
as well as benchmark problems from TSPLIB. For SSP, we only used randomly generated
problem instances. All experiments were carried out on a 450MHz Pentium machine running
Linux.

4.1 Computations with TSP instances

We consider a TSP instance of sizen as a complete graph onn vertices, in which each edge
has a cost associated with it, and the aim is to find a minimum cost Hamiltonian tour in the
graph. For our experiments we used 75 random instances as well as 21 benchmark instances of
symmetric TSP. The random instances were divided into five data sets containing 15 instances
each. These data sets were named T50, T75, T100, T125, and T150, where all instances in set
Tx were of sizex. The edge costs for all the randomly generated instances were drawn from
the interval[1, 1000]. We also chose 21 benchmark symmetric TSP instances. These instances
were chosen from the resource called TSPLIB [8]. We chose problems with size not more than
250 so that execution times were not too long.

In our tabu search implementation, following the guidelines of Knox [7], we set the tabu length
as3n wheren is the problem size. We allow the search to continue for30n iterations.

In our CLM implementation, we chose to stop the search whenLIVE is empty at the beginning
of an iteration. In order to determine the parameters to use in CLM, we carried out experiments
with 75 TSP instances of size ranging from 25 to 75. (Figure 4.1 presents the average of results
from 25 problems of size 50.) We observed that settingk = 1 resulted in slightly better solu-
tions in most cases. For all the instances considered, the solution quality improved rapidly with

9

increasing memory size when there was very little memory available, but this improvement
was much less marked when the memory size exceeded around 100 solutions. Therefore, in our
CLM implementation, we chose to have a 100 solution memory. We carried out experiments
with various threshold factors and found out that we achieved the best results with an iteration
dependent threshold. Therefore, we set the threshold parameterτ as

τ = (1 − α) × (current solution value), whereα =
(α0

1 + β

)iteration
.

Our experiments with various values ofα0 (ranging from 0.0 to -0.1) andβ (ranging from
0.001 to 0.1) showed that the solution quality improved when the value ofα0 was decreased,
but the execution time also increased. However, neither the solution quality, nor the execution
time, was sensitive to changes inβ. In our implementation, we therefore choseα0 = −0.1 and
β = 0.1.

Figure 4.1: Setting parameters for CLM on TSP instances

The results of our experiments with TSP instances are summarized in Table 4.1. For each heuris-
tic, “Tour cost” refers to the average of the costs of Hamiltonian tours returned, and “Time”
refers to the average of the time taken in CPU seconds. The averages are taken over all 15 prob-
lem instances in the data set. The results show that CLM returned better quality solutions than
tabu search and took less time.

Table 4.1: Results from computations on randomly generated TSP instances

Data Set Tabu Search CLM
Tour cost Time Tourcost Time

T50 1697.9333 23.1307 1342.0667 13.936
T75 1517.0667 122.6907 1313.1333 52.6427
T100 1816.2667 385.562 1394.3333 125.5553
T125 1796.3333 962.2113 1553.1333 262.8807
T150 1818.4 2009.0673 1597.1333 473.2187

10

Table 4.2: Results from computations on TSP instances from TSPLIB

Problem Optimal CLM Suboptimality
Tour cost Tourcost Time

berlin52 7542 7944 9.86 5.33%
bier127 118282 121230 275.02 2.49%
ch130 6110 6346 274.41 3.86%
ch150 6528 6619 685.15 1.39%
kroA100 21282 22201 155.86 4.32%
kroA150 26524 28360 761.65 6.92%
kroA200 29368 30102 2206.35 2.50%
kroB100 22141 22391 136.05 1.13%
kroB150 26130 27146 497.95 3.89%
kroB200 29437 31928 1650.85 8.46%
kroC100 20749 21315 117.49 2.73%
kroD100 21294 22088 142.53 3.73%
kroE100 22068 23347 122.19 5.80%
lin105 14379 14962 207.93 4.05%
pr76 108159 110806 57.44 2.45%
pr107 44303 45622 77.40 2.98%
pr124 59030 60602 198.34 2.66%
pr136 96772 105112 412.62 8.62%
pr144 58537 61161 152.93 4.48%
pr152 73682 75065 492.15 1.88%
pr226 80369 82573 1838.17 2.74%

Table 4.2 summarizes our results with the 21 instances from TSPLIB. We did not run tabu
search on these instances since the optimal solutions were already known. On an average, the
solutions returned by CLM for these instances were 4.2% suboptimal.

4.2 Computations with SSP instances

A SSP instance of sizen contains a set of integersW = {w1, . . . , wn}, and an integerC.
The objective is to find a subsetS of W such that

∑
wj∈Swj is the largest possible, without

exceedingC. Extensive computational experiments show that SSP instances are more difficult
to solve when the interval from which the problem data is chosen is wide compared to the size
of the problem andC is close to0.5 ×∑wj∈W wj (refer, for example, Ghosh [4]). We used
12 randomly generated data sets (S100-0.3, S100-0.5, S100-0.7, S150-0.3, S150-0.5, S150-0.7,
S200-0.3, S200-0.5, S200-0.7, S300-0.3, S300-0.5, and S300-0.7) to compare the performances
of CLM and tabu search. The names of the data sets are of the form Sx-y wherex refers to the
problem size, andy refers to the ratio ofC and

∑
wj∈W wj. Each of these data sets contained

25 problem instances. The numbers were chosen from the interval[100, 1000000]. The quality

11

of solution is measured in terms of unused capacity (UC) defined as

UC = C −
∑

wj∈S

wj,

and the execution time is measured in CPU seconds.

We implemented tabu search with a tabulength of
√

n and an aspiration criterion that allowed
aspiration if the result of a tabu move bettered the best solution thus far.

As for TSP, CLM was implemented with stopping rule 1, (i.e. “stop whenLIVE was empty
at the beginning of an iteration”) and an exploration rule that chose the best (i.e. with lowest
UC) solutions for exploration. The parameters of memory size available to the heuristic and
k, and the thresholdτ were determined experimentally. 100 problem instances were chosen,
25 each of sizes 20, 50, 75, and 100. CLM was implemented with memory sizes ranging from
10 to 1000 nodes, andk values of 1, 2, and 5. Our observations were similar for all problem
sizes. (Figure 4.2 graphically depicts the results forn = 50.) We observed that there were no
appreciable difference between thek values, and that the improvement to execution time ratio
dropped sharply at a memory size limit of approximately 100 nodes. We therefore decided to
fix k = 2 and a memory size of 100 nodes. The threshold parameterτ was identical in form to
that used for the TSP instances. After experimenting with various values ofα0 (ranging from
0.0 to -0.1) andβ (ranging from 0.001 to 0.1), we found out that here too,β had no effect on the
solution quality, but changingα0 from 0.0 to a slightly negative value dramatically improved
the solution quality. Henceα0 was set to -0.001 andβ to 0.1.

Figure 4.2: Setting parameters for CLM on SSP instances

Our computational experiences on SSP instances are presented in Table 4.3. For each heuristic
compared, we report the quality of solutions returned and the execution time. These values
are averages taken over all instances in the particular data set. The last two columns in the
table count the number of instances in the data set where tabu search and CLM (respectively)
provided a unique best result. We observed that for SSP, tabu search took slightly more time
than CLM but output marginally better results on the average. Notice that the average UC of

12

solutions decreased asn increased. Since both tabu search and CLM almost always returned
solutions with UC= 0, whenn = 300, we did not experiment on larger problems.

Table 4.3: Results from computations on SSP instances

Data Set Tabu Search CLM Tabu Search CLM
UC Time UC Time better in better in

S100-0.3 1.44 5.2964 3.6 4.5956 12 7
S100-0.5 1.48 6.7824 2.4 5.4716 15 5
S100-0.7 2.6 8.2572 3.32 4.6384 9 10
S150-0.3 0.32 43.3332 1.2 19.714 10 3
S150-0.5 0.2 56.2624 0.56 23.3772 7 3
S150-0.7 0.2 69.1936 0.52 19.2804 7 2
S200-0.3 0.04 42.4408 0.44 39.292 7 1
S200-0.5 0.24 55.52 0.2 44.79 3 4
S200-0.7 0.08 68.5748 0.2 38.8764 4 1
S300-0.3 0.00 137.1176 0.12 122.7964 2 0
S300-0.5 0.04 176.162 0.08 140.7128 2 1
S300-0.7 0.00 215.0836 0.04 122.5128 1 0

5. Conclusions

In this paper we presented a neighborhood search based heuristic called “complete local search
with memory” (CLM). We also presented extensive computational experiments on instances
from the traveling salesperson problem and the subset sum problem in which we compared the
solutions returned by our heuristic to those returned by a simple implementation of tabu search.
The comparison was carried out both in terms of the solution quality and the execution time.
For traveling salesperson problems, our heuristic out-performed tabu search, while for subset
sum problems the results it returned were comparable. In all the problems, our heuristic took
less execution time than tabu search.

The CLM heuristic differs from other neighborhood search heuristics in that it takes advantage
of the fact that for almost all neighborhood structures it is possible to reach a solution from
the initial solution in more than one way. It exploits this by maintaining lists of solutions vis-
ited by the heuristic. This use of memory makes CLM more efficient than memoryless search
procedures like multiple start local search or simulated annealing. The only other commonly
used class of neighborhood search heuristics that uses memory is tabu search. But there are
important differences between the way in which these two heuristics use memory. Unless spe-
cial long-term memory structures are used, tabu search only remembers the last few solutions it
visited. CLM is more intensive — it keeps track of all the solutions visited. In addition, the ag-
gressiveness with which it searches the search space can be controlled (by adjustingk), as also

13

the way of dealing with moves that lead to worse solutions (by manipulating the thresholdτ).
The heuristic is interesting from a theoretical point of view too. It provides a unifying approach
to many of the common neighborhood search heuristics used to solve discrete optimization
problems.

The memory structures used in CLM are amenable to common memory management schemes
that, in principle, should allow the heuristic to effectively solve much larger problems than
those attempted in this paper. Such schemes have often been used to produce excellent results in
graph search algorithms. This is a direction in which we will be concentrating our future efforts.
Other interesting areas of research would involve testing out different exploration strategies and
stopping rules that would enable CLM to reach very good solutions in the minimum possible
time.

References

[1] E.H.L. Aarts and J.H.M. Korst (1989). Simulated annealing and Boltzmann Machines.
Wiley, Chichester.

[2] E.H.L. Aarts and J.K. Lenstra (1997). Local search and combinatorial optimization. Wiley
Interscience Publications.

[3] M.R. Garey and D.S. Johnson (1979). Computers and intractability: A guide to the theory
of NP-completeness. W.H. Freeman & Co. San Francisco.

[4] D. Ghosh (1998). “Heuristics for knapsack problems: Comparative survey and sensitivity
analysis”. Fellowship Dissertation, IIM Calcutta.

[5] F. Glover (1990). “Tabu search—A tutorial”. Interfaces 20, 74-94.
[6] D. S. Johnson, C. S. Aragon, L. A. McGeoch and C. Schevon (1991). “Optimization by

simulated annealing: An experimental evaluation. Part II, graph coloring and number par-
titioning”. Operations Research 39, 378-406.

[7] J. Knox (1994).“Tabu search performance on the symmetric traveling salesman problem”.
Computers & Operations Research 21, 867-876.

[8] G. Reinelt (1995). “TSPLIB 95”http://www.iwr.uni-heidelberg.de/iwr/
comopt/soft/TSPLIB95/TSPLIB.html .

14

