Complete nucleotide sequence of the Pvu ll restriction enzyme gene from Proteus vulgaris

A.Athanasiadis, M.Gregoriu, D.Thanos, M.Kokkinidis and J.Papamatheakis
University of Crete, Department of Biology and Institute of Molecular Biology and Biotechnology (IMBB), PO Box 1527, GR-71110 Heraklion, Crete, Greece

The gene coding for the $P v u$ II restriction enzyme was isolated by screening pools of pBR322 for the presence of enzyme activity. We present its complete nucleotide sequence which contains an open reading frame of 157 amino acids. The approximate molecular weight of 18 kDa is in good agreement with SDS-PAGE determined molecular weight of the protein. The location of the open reading frame is consistent with deletion analysis data (1). Computer-predicted promoter sequences are underlined, the Shine-Dalgarno signal is doubly underlined. The presented sequence overlaps partially with the methylase gene recently published (2). The region upstream of the $P v u$ II-R gene contains also the promoter elements for the methylase gene which is transcribed in the opposite direction (1). No homology between the $P v u$ II-R gene sequence and other known restriction enzyme sequences was found.

ACKNOWLEDGEMENTS

We thank Prof. V. Bouriotis for his valuable suggestions and the Enzyme Technology Group of IMBB for their technical assistance.

REFERENCES

1. Tao,T., Walter,J., Brennan,K.J., Cotterman,M.M. and Blumenthal,R.M. (1989) Nucl. Acids Res. 17, 4161-4175.
2. Blumenthal,R.M., Gregory,S.A. and Cooperider,J.S. (1985) J. of Bact. 164, 501-509.
[^0]
[^0]: 1 ACTAGTTGTGTAGGCAGGTTTTTTTCCAAAATTCAACATATCATTGCTACTCATAGTCTGTAGATTCAAAGTCATCATAC
 81 CATCATTATCCCGTCTATGAGCAGAAATACAAATCCTTTATCAGCCCGAITAACCCTTGCAAAGAATGTAAAAAAAAIGC
 161 GAGGCGAGCTAGGTCTATCCCAAGAAAGCTTAGCTGATCTAGTGGGAATCCATAGAACCTACATTGGTTCAATTGAACGA
 241 GCGGAAAGGAATATATCGATAGACAACAITGAGCGAATAGCAAATGCCITAAAIGTTTCTATATCAATACTAATGATGGA

 321 ACACGAAAATGAGTCACCCAGATCTAAATAAATTATTAGAGCTTTGGCCGCATATACAGGAATATCAAGACTTAGCATTA
 401 AAACATGGAATAAATGATATTTTTCAAGATAATGGTGGAAAGTTGCTTCAAGTCCTTCTAATTACAGGATTAACAGTACT

 481 ACCAGGACGAGAAGGTAATGATGCTGTAGATAACGCAGGACAAGAATACGAGTTAAAATCAATAAACATAGACCTCACTA

 561 AAGGTTTTTCAACTCACCACCACATGAATCCTGTAATTATTGCAAAATATAGACAAGTACCTTGGATTTTTGCCATATAC

 641 CGTGGTATCGCAATAGAAGCTATATACAGATTAGAGCCAAAAGATCTAGAATTTTACTATGATAAATGGGAAAGGAAATG
 $Y \quad S \quad D \quad G \quad H \quad K \quad D \quad I \quad N \quad N \quad P \quad K \quad I \quad P \quad U \quad K \quad Y \quad U \quad M \quad E \quad H \quad G \quad T \quad K \quad I \quad Y$
 721 GTATtCAGATGGGCATAAAGATATTAACAACCCTAAAATACCTGTAAAATATGTAATGGAACATGGGACAAAGATTTACT *
 801 AAATTGGAGCTACATTCATGGTTCCGATAAGACCCAATTATGTTAAACGGGCGAGTTTACACCTTAAAACCGCCCGTCAG
 881 TCACCATCAGAACGCATCAGCACGATTTTAAGCACCAAACACCCCCCATAACACCCAAATCCATCCTGAAAGTTTATAAC
 961 GGTTTCTGTGACGTTTGAGGGCTGTTTACATCCGTTTTTCGTCCGACTTTGATCGCCTAAACCGATGAAAGTCGCAAACT
 1041 TGTTTGTGGCTTGAAGCGGTTTTATCCTGTTAAAAACCGATACTGAAACCCCCGACTACGACTCTGCTCCTGTCGCTGGA
 1121 TCTGCTGTGTCAGCCGTTCTGATACCTGTTCAGCAGTCCGGTTAAAGTCGCTACTGTTGACTGATTTCCCTGTATTGCAT
 1201 GGCTAACTGACTGTTCTGTGTCTCGAGTTCCCCCGACACGCTGAGATAAATTGCTGCATAACGGTCTCTTGCTGTTGTAA 1281 CAAGGTGTTCAAGGCGTTCTCTAAGAGTTGTTCTGTCTCGGTCA

