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Complete plastome sequencing of both
living species of Circaeasteraceae
(Ranunculales) reveals unusual
rearrangements and the loss of the ndh

gene family
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Abstract

Background: Among the 13 families of early-diverging eudicots, only Circaeasteraceae (Ranunculales), which consists

of the two monotypic genera Circaeaster and Kingdonia, lacks a published complete plastome sequence. In addition,

the phylogenetic position of Circaeasteraceae as sister to Lardizabalaceae has only been weakly or moderately supported

in previous studies using smaller data sets. Moreover, previous plastome studies have documented a number of novel

structural rearrangements among early-divergent eudicots. Hence it is important to sequence plastomes from

Circaeasteraceae to better understand plastome evolution in early-diverging eudicots and to further investigate the

phylogenetic position of Circaeasteraceae.

Results: Using an Illumina HiSeq 2000, complete plastomes were sequenced from both living members of Circaeasteraceae:

Circaeaster agrestis and Kingdonia uniflora. Plastome structure and gene content were compared between these two

plastomes, and with those of other early-diverging eudicot plastomes. Phylogenetic analysis of a 79-gene, 99-taxon

data set including exemplars of all families of early-diverging eudicots was conducted to resolve the phylogenetic

position of Circaeasteraceae.

Both plastomes possess the typical quadripartite structure of land plant plastomes. However, a large ~49 kb

inversion and a small ~3.5 kb inversion were found in the large single-copy regions of both plastomes, while

Circaeaster possesses a number of other rearrangements, particularly in the Inverted Repeat. In addition, infA

was found to be a pseudogene and accD was found to be absent within Circaeaster, whereas all ndh genes,

except for ndhE and ndhJ, were found to be either pseudogenized (ΨndhA, ΨndhB, ΨndhD, ΨndhH and ΨndhK) or absent

(ndhC, ndhF, ndhI and ndhG) in Kingdonia. Circaeasteraceae was strongly supported as sister to Lardizabalaceae in

phylogenetic analyses.

Conclusion: The first plastome sequencing of Circaeasteraceae resulted in the discovery of several unusual

rearrangements and the loss of ndh genes, and confirms the sister relationship between Circaeasteraceae and

Lardizabalaceae. This research provides new insight to characterize plastome structural evolution in early-diverging

eudicots and to better understand relationships within Ranunculales.
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Background
The early-diverging eudicot family Circaeasteraceae

(Ranunculales) sensu APG IV [1] contains only the two

monotypic genera Circaeaster Maxim. and Kingdonia

Balf.f. & W.W. Smith, which were historically treated as

separate families (Circaeasteraceae and Kingdoniaceae)

(e.g. [2–6]). Kingdonia has also been placed in Ranuncu-

laceae in the past (e.g. [7–10]). Circaeaster agrestis

Maxim. can be found in China and the Himalayas,

whereas Kingdonia uniflora Balf.f. & W.W. Smith is en-

demic to China. Fossil fruits somewhat similar to those

of Circaeaster have been reported from the mid-Albian

of Virginia, USA [11, 12], while no fossil record is

known for Kingdonia. Both species are herbs growing at

high elevations, and possess the same distinctive dichot-

omous venation, which is very rare among angiosperms.

The Ranunculales sensu APG IV [1] form a well-

supported clade comprised of seven families: Berberida-

ceae, Circaeasteraceae, Eupteleaceae, Lardizabalaceae,

Menispermaceae, Papaveraceae and Ranunculaceae. To

date, complete plastomes have been sequenced for rep-

resentatives from all of these families except Circaeaster-

aceae [13–24]. These and plastomes from other eudicot

families have helped to successfully resolve phylogenetic

relationships among early-diverging eudicots, including

among most families of Ranunculales (e.g.[17–19, 23, 24]).

This is highly promising given that the relationships among

many of these families had been poorly to moderately

resolved in previous studies utilizing only a few genes (e.g.

[25–38]). In previous phylogenetic studies of Ranunculales

based on only a few genes, Circaeasteraceae has been re-

solved as sister to Lardizabalaceae, but only with weak or

moderate support [25, 26, 29, 32, 36, 38, 39].

Over the past decade, knowledge of the organization

and evolution of angiosperm plastomes has rapidly ex-

panded [40, 41]. Plastomes of most flowering plants pos-

sess a typical quadripartite structure with two Inverted

Repeat regions (IRA and IRB) separating the Small and

Large Single-Copy regions (SSC and LSC) [42]. Neverthe-

less, deviations from this canonical structure have been

found with increasing frequency as the pace of plastome

sequencing has exploded in recent years. For example, the

length of the IR region has been found to vary significantly

in some plant groups (e.g. [43–45]), and Sun et al. [23]

documented six major “IR types” among 18 early-

diverging eudicot plastomes, representing 12 of the 13

early-diverging eudicot families. Reconstruction of the an-

cestral IR gene content suggests that 18 genes were likely

present in the IR region of the ancestor of eudicots [23],

although representatives from Circaeasteraceae were ab-

sent from this study. Likewise, large inversions have been

detected throughout the plastome in an increasing num-

ber of taxa (e.g. [46–50]). However, no obvious large in-

versions or rearrangements have been detected from

early-diverging eudicot plastomes. Finally, gene loss (in-

cluding pseudogenization) has also been found to be wide-

spread among angiosperm plastomes, especially in species

whose plastomes are highly rearranged [51].

To characterize plastome structural evolution in early-

diverging eudicots and to better understand relation-

ships within Ranunculales, we sequenced the complete

plastomes of both extant species of Circaeasteraceae and

included these two plastomes in a larger phylogenetic

analysis including representatives of all major lineages of

angiosperms. Consistent with previous work, we find

that these complete plastome sequences improve sup-

port for phylogenetic relationships among Ranunculales,

including the position of Circaeasteraceae. Moreover, we

report several significant plastome structural changes,

including a large inversion and several gene loss events.

Results

Plastome assemblies

Illumina paired-end sequencing produced 474,002 and

1,092,236 raw reads for Circaeaster and Kingdonia, respect-

ively. The mean coverage of the plastome was 392.3× for

Circaeaster, and 926.4× for Kingdonia. For both Circaeaster

and Kingdonia, assembly yielded a single scaffold compris-

ing the entire plastome sequence. Junction regions between

the IR and Single-Copy regions were confirmed by PCR and

Sanger sequencing (C8-C11 and K5-K8 in Additional file 1).

Assembly statistics are presented in Table 1.

Table 1 Comparison of the plastid genomes of Circaeaster

agrestis and Kingdonia uniflora

Circaeaster agrestis Kingdonia uniflora

Total plastome length (bp) 151,033 147,378

IR length (bp) 28,023 30,916

SSC length (bp) 16,857 4857

LSC length (bp) 78,130 80,689

Absent genes accD ndhC, ndhF, ndhI, ndhG

Pseudogenes ΨinfA ΨndhA, ΨndhB, ΨndhD,
ΨndhH, ΨndhK

Overall G/C content (%) 38.2 37.8

Average depth of
coverage

392.3× 926.4×

Number of plastid reads 474,002 1,092,236

Read length (bp) 125 125

Genes with one intron trnK-UUU, trnG-UCC,
trnL-UAA, trnV-UAC,
trnI-GAU, trnA-UGC,
petB, petD, atpF,
ndhA, ndhB, rpl16,
rpoC1, rps16

trnK-UUU, trnG-UCC,
trnL-UAA, trnV-UAC,
trnI-GAU, trnA-UGC,
petB, petD, atpF,
rpl16, rpoC1, rps16

Genes with two introns rps12, clpP, ycf3 rps12, clpP, ycf3

GenBank accession
number

KY908400 KY908401
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Structure and gene content of the Circaeaster and Kingdonia

plastomes

The plastome size of Circaeaster agrestis is 151,033 bp

and that of Kingdonia uniflora is 147,378 bp (Fig. 1).

Both plastomes possess the typical quadripartite struc-

ture of angiosperms, although both also contain several

remarkable structural rearrangements. Most notably, a

large ~49 kb inversion in the LSC region, including all

genes from trnQ-UUG to rbcL/accD (accD is absent

from Circaeaster) is present in both plastomes (Figs. 1, 2).

In addition, both plastomes also share a much smaller in-

version (~3.5 kb) involving all four genes from atpB to

trnV-UAC (Figs. 1, 2). Circaeaster also possesses a number

of other unique structural changes, including a ~ 3.5 kb

inversion involving all four genes from psaI to petA

(Figs. 1, 2) and a highly unusual IR structure. Specif-

ically, the following changes have occurred within the

IR of Circaeaster: (1) ndhB, rps7, and the 3′ end of

rps12 have shifted to a position between trnN-GUU

and ycf1 (compared to their typical positions between

trnL-CAA and trnV-GAC in nearly all other angio-

sperms); (2) rpl32 and trnL-UAG are within the IR

(rather than in the SSC region as in nearly all other

angiosperms), and (3) ycf1 is almost entirely outside

the IR (rather than having ~1000 bp of ycf1 within

the IR, as is more typical of angiosperms). Within

Kingdonia, the IR/SSC boundary has shifted to in-

clude all of ycf1, rps15, ΨndhH, and ΨndhA. In both

plastomes, there are unusual arrangements of rpl32

and trnL-UAG, which in almost all other angiosperms

are found adjacent to each other on the same strand

within the SSC. The endpoints of these inversions

were confirmed in both plastomes via PCR and

Sanger sequencing using custom-designed primers

(Additional files 1 and 2).

Overall, Circaeaster and Kingdonia were found to pos-

sess the typical gene and intron complement of angio-

sperms, with a few notable exceptions (Table 1). Both

plastomes contain 30 tRNA genes and four rRNA genes,

as is typical in angiosperms. The plastome of Circaeaster

agrestis has 77 protein-coding genes and one pseudo-

gene (ΨinfA, which is truncated to a length of 36 bp);

accD is absent. The plastome of Kingdonia uniflora only

has 70 protein-coding genes due to the loss or pseudo-

genization of nearly all ndh genes: four genes (ndhC,

ndhF, ndhI and ndhG) were absent and five (ΨndhA,

ΨndhB, ΨndhD, ΨndhH and ΨndhK) were identified as

pseudogenes. More specifically, the second exon is ab-

sent from ΨndhA and ΨndhB, ΨndhD is severely trun-

cated to 18 bp (vs. 1503 bp in Circaeaster), ΨndhH is

truncated to 618 bp (vs. 1182 bp in Circaeaster) in

length, and ΨndhK is only 237 bp (vs. 669 bp in

Circaeaster) in length. The Ks values of these pseudo-

genes were calculated between Circaeaster and Kingdonia

(Additional file 3). A total of 32 and 14 repeats ≥30 bp in

length were found in the plastome of Circaeaster and

Fig. 1 Plastome maps of Circaeaster agrestis and Kingdonia uniflora. IR, inverted repeat; LSC, large single-copy region; SSC, small single-copy region; Inv1,

large inversion 1; Inv2, large inversion 2; Inv3, large inversion 3. The IR rearrangement is also indicated
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Kingdonia, respectively (Additional files 4 and 5). For

comparison, the number of repeats ≥30 bp in seven other

Ranunculales species are as follows: (1) 17 in Akebia trifo-

liata (Thunb.) Koidz.; (2) 24 in Epimedium sagittatum

(Sieb. & Zucc.) Maxim.; (3) 17 in Euptelea pleiosperma

Hook.f. & Thomson; (4) 29 in Mahonia bealei (Fortune)

Pynaert; (5) nine in Nandina domestica Thunb.; (6) nine

in Papaver somniferum L.; and (7) eight in Stephania

japonica (Thunb.) Miers (Additional file 6).

Phylogenetic analyses

The final 79-gene, 99-taxon alignment used for ML ana-

lyses was 62,238 bp in length after character exclusion.

The best partitioning scheme identified under the Bayesian

information criteria (BIC) using relaxed clustering

analysis in PartitionFinder (ln L = −1,173,388.00241;

BIC 2353123.26941) contained 35 partitions. The tree

with the highest ML score (ln L = −1,178,285.119460)

produced by the 35-partition ML analysis (Fig. 3)

shared an identical topology with the best tree from

unpartitioned analysis (ln L = −1,200,753.541175)

(Additional file 7), except for the relationships among

Trochodendrales, Buxales and Gunneridae. The 35-

partition analysis supported the sister relationship

between Buxales and Gunneridae, but the support

value was low (52%); while the unpartitioned analysis

strongly supported the sister relationship between

Trochodendrales and Gunneridae. Within Ranunculales,

Eupteleaceae was found to be the earliest-diverging

lineage, and Papaveraceae was sister to the clade com-

prised of Berberidaceae, Ranunculaceae, Menispermaceae,

Lardizabalaceae and Circaeasteraceae. Lardizabalaceae

and Circaeasteraceae formed a strongly supported clade

that was sister to the clade of Berberidaceae, Ranuncula-

ceae and Menispermaceae.

Discussion
Plastome structure and gene content

The unusual structural rearrangements and gene losses

(especially the loss of the ndh genes) detected in the two

Circaeasteraceae plastomes represent the first reported

among early-diverging eudicot plastomes, and hence

shed important insight into the evolution of early eudi-

cot plastomes. The fact that two of the observed inver-

sions (the ~49 kb and ~3.5 kb inversions) are shared by

Circaeaster and Kingdonia suggests that they predate

the evolutionary split between these two genera.

Although uncommon, relatively large inversions have

Fig. 2 ProgressiveMauve alignment among Akebia, Circaeaster and Kingdonia showing the structural rearrangements in Circaeaster and Kingdonia.

Colored blocks represent locally collinear blocks (LCBs) and are connected by lines to similarly colored LCBs, indicating homology
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Fig. 3 Phylogram of the best tree determined by RAxML for the 79-gene, 99-taxon data set using the 35-partition scheme recovered as optimal by

PartitionFinder. Numbers associated with branches are ML bootstrap support values. Branches with no bootstrap values listed have 100% bootstrap support
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been detected in a number of other angiosperm lineages

and often serve as useful phylogenetic markers [50, 52–54].

Some of the best examples of relatively large inversions that

are synapomorphies for clades of flowering plants include

the 22.8 kb inversion shared by all Asteraceae except

Barnadesioideae [53, 55], the 78 kb inversion shared by all

Fabaceae subtribe Phaseolinae [56], and the 36 kb inversion

present in all core genistoid legumes [50, 57]. Highly rear-

ranged plastome structures also characterize a number of

other angiosperm lineages, such as Campanulaceae,

Geraniaceae, and the IR-lacking clade of Fabaceae, and

these are associated with greatly elevated rates of molecular

evolution and large numbers of short repeats [58]. In some

cases the endpoints of large plastome inversions have been

found to be associated with short inverted repeats (sIRs),

although we did not detect sIRs in association with the in-

version endpoints in Circaeaster or Kingdonia.

The IR regions of Circaeaster and Kingdonia are also

structurally unique among angiosperms, with several re-

arrangements. The most unusual of these involves the

transposition of the ndhB, rps7 and 3′ end of the rps12

gene to a point near the junction of the IRB and the SSC

region (Fig. 1). These three genes form a transcriptional

operon [59] and this operon is not disrupted in Circaeaster,

nor does its transposition interrupt adjacent operons. The

IR/SSC endpoints themselves are also rearranged in

Circaeaster, with rpl32 and trnL-UAG within the IR and

non-adjacent to ndhF, unlike almost all other angiosperms

[54]. The IR boundaries of Kingdonia are also unusual for

their expansion to include several genes that are normally

in the SSC (e.g. ycf1, rps15), resulting in a much smaller

and rearranged SSC (which is also influenced by the loss of

ndh genes; see below). The exact sequence of rearrange-

ments that could account for the unusual IR arrangements

of Circaeasteraceae is clearly complicated and hence diffi-

cult to reconstruct. IR expansion and contraction is well-

known in a number of other angiosperm lineages (e.g.

[45]), including within early-diverging eudicots, which have

been found to possess a number of expansions and contrac-

tions [23]. Given the expansions and rearrangements ob-

served in Circaeaster and Kingdonia, neither fit into any of

the six IR types for early-diverging eudicots delineated in

Sun et al. [23], and thus we designate two new early-

diverging eudicot IR types for Circaeaster (type G) and

Kingdonia (type H) (Fig. 1).

Usually, gene content is highly conserved among

photosynthetic angiosperm plastomes [50, 60], but in

Circaeasteraceae, a number of genes have been lost or

pseudogenized, each of which has been found to be lost

repeatedly across angiosperms. For example, the loss of

accD in Circaeaster is mirrored in a number of other

lineages where accD is pseudogenized or absent, e.g.,

grasses [61], Lobeliaceae [62], Campanulaceae [52, 63, 64],

Acorus [65], Oleaceae [66], Pelargonium [67], and Lolium

perenne [68]. Likewise, infA is also known to be a pseudo-

gene in numerous other angiosperms, including two

Ranunculales (Ranunculus macranthus and Epimedium

sagittatum) [23], tobacco [69], and numerous rosids [70].

Whether accD or infA have been transferred to the nu-

cleus in Circaeaster is unknown.

The loss or pseudogenization of nearly all ndh genes

from Kingdonia has also been observed in a number of

other land plants. The ndh genes encode subunits of the

plastid NDH (NADH dehydrogenase-like) complex,

which permits cyclic electron flow associated with

Photosystem I and hence facilitates chlororespiration

[71, 72]. Although the NDH complex is widely retained

across land plants, it has been found to be dispensable

under optimal growth conditions and the plastid ndh

genes have been lost in a number of autotrophic and

heterotrophic lineages [72, 73]. For example, the plastid

ndh loci have been lost or pseudogenized en masse from

parasitic plants such as Orobanchaceae and Cuscuta

(Convolvulaceae) [74–76], from mycoheterotrophs in-

cluding several orchids [77] and Petrosavia (Petrosaviaceae)

[78], and from autotrophs including Gnetales, conifers,

Najas (Hydrocharitaceae), Carnegiea (Cactaceae), and

Erodium (Geraniaceae) [79–84]. It is not clear whether the

ndh genes in Kingdonia have been transferred to the nu-

cleus or whether their loss represents the complete loss of

the NDH complex, but in any case Kingdonia is the only

known early-diverging eudicot that has experienced ndh

pseudogenization and loss.

Moreover, the loss of the ndh genes in Kingdonia ac-

counts for the smaller overall size of the Kingdonia plas-

tome and may have also played an indirect role in the

expansion of the IR of Kingdonia. The complete loss of

ndhF, which normally occupies a position immediately

adjacent to the IRB/SSC boundary, may have led to in-

stability of the IR/SSC boundaries, leading to rearrange-

ments of the SSC and IR. This hypothesis is supported

by other recent studies in orchids [77] and Najas flexilis

[82] where ndhF loss is associated with shifts in the IR/

SSC boundary.

Phylogeny of Ranunculales

The circumscription of Ranunculales was long controversial

(e.g. [3, 4, 9, 10, 85, 86]), but molecular phylogenetics has

clarified the delimitation of Ranunculales to Berberidaceae,

Circaeasteraceae, Eupteleaceae, Lardizabalaceae, Menisper-

maceae, Papaveraceae, and Ranunculaceae [1, 5, 6, 26, 29,

31, 32, 36, 38]. While the expansion of Circaeasteraceae to

include Kingdonia is accepted by a majority of taxonomists

[1], the rank and position of Kingdonia have long been in

dispute [38]. The complete plastome sequence data

strongly support the sister relationship between

Kingdonia and Circaeaster, in concordance with pre-

vious molecular results [25, 26, 31, 32, 36, 38, 87].
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The two inversions and the rare, open dichotomous

leaf venation shared by these taxa are good synapo-

morphies that additionally support the placement of

Circaeaster and Kingdonia in one family.

Conclusions

The plastomes of Circaeaster agrestis and Kingdonia

uniflora provide the first reference genome sequences

for Circaeasteraceae, which will enrich the sequence re-

sources of plastomes in early-diverging eudicots. The

unusual rearrangements including large inversions and

unusual IR structure detected in the Circaeasteraceae

plastomes will help us better characterize plastome

structural evolution in early-diverging eudicots. Phylo-

genetic analyses of the 79-gene, 99-taxon data set con-

firmed the position of Circaeasteraceae in Ranunculales,

with maximum support as sister to Lardizabalaceae.

The two Circaeasteraceae plastomes will also be of

benefit for further phylogenomic analyses within early-

diverging eudicots.

Methods
Taxon sampling, chloroplast DNA isolation, high-throughput

sequencing

Fresh leaves of Circaeaster agrestis were collected from

Shennongjia, Hubei Province, China, in 2015, and from

Kingdonia uniflora in Meixian, Shanxi Province, China,

in 2016. Voucher specimens (Circaeaster agrestis: Y.X.

Sun 1510; Kingdonia uniflora: Y.X. Sun 1606) were

deposited at the Herbarium of Wuhan Botanical

Garden, Chinese Academy of Sciences (HIB). For

both species, high-quality chloroplast DNA was ob-

tained following the plastid DNA extraction method

of Shi et al. [88]. The sequencing libraries were

constructed and quantified following the methods in-

troduced by Sun et al. [23]. For both plastomes, a

500-bp DNA TruSeq Illumina (Illumina Inc., San

Diego, CA, USA) sequencing library was constructed

using 2.5–5.0 ng sonicated chloroplast DNA as in-

put. Libraries were quantified using an Agilent 2100

Bioanalyzer (Agilent Technologies, Santa Clara, CA,

USA) and by real-time quantitative PCR. Libraries

were then multiplexed, and 2 × 125 bp sequencing

was performed on an Illumina HiSeq 2000 platform

at the Beijing Genomics Institute.

Plastome assembly, annotation, and structural analyses

Following Sun et al. [23], duplicate reads, adapter-

contaminated reads, and reads with more than five Ns

were filtered out. Remaining, high-quality reads were as-

sembled into contigs with a minimum length of 1000 bp

using CLC Genomics Workbench with default parame-

ters, except for a word size value of 60.

Plastomes were annotated using DOGMA [89] and

through comparison with the sequences of published

early-diverging eudicot plastomes. Physical maps were

drawn using GenomeVx [90], followed by subsequent

manual editing with Adobe Illustrator CS5. Boundaries

for tRNAs were identified with tRNAscan-SE 1.21 [91]

and confirmed by comparison with available early-

diverging eudicot plastome sequences. The finished ge-

nomes were deposited in GenBank (Table 1).

To investigate plastome structural evolution, whole

plastome alignment between Circaeasteraceae and repre-

sentatives of other early-diverging eudicot families was

performed with ProgressiveMauve v 2.4.0 [92], including

only one copy of the IR (IRB), and locally collinear

blocks (LCBs) were identified. Because the 18 reported

early-diverging eudicot plastomes in Sun et al. [23] share

the same gene order, and because Circaeasteraceae was

resolved as sister to Akebia in present research, the

Akebia plastome was used as the reference sequence

for ProgressiveMauve comparisons. mVISTA [93] was

employed to generate sequence identity plots. The

number and location of repeat elements in the plas-

tomes of Circaeaster and Kingdonia as well as seven

other Ranunculales species (Akebia trifoliata, Epi-

medium sagittatum, Euptelea pleiosperma, Berberis

bealei, Nandina domestica, Papaver somniferum and

Stephania japonica) were determined by REPuter [94],

with a minimum size of 30 bp and a Hamming dis-

tance of 1. Before performing the analysis, one copy

of the IR was removed.

Phylogenetic analyses

All protein-coding regions were extracted from the plas-

tomes of Circaeaster and Kingdonia. These sequences

were then added manually to the 97-taxon alignment of

Sun et al. [23], resulting in a data set with complete

coverage of early-diverging eudicot families sensu APG

IV [1]. GenBank information for all plastomes used

for present phylogenetic analyses can be found in

Additional file 8. Regions of ambiguous alignment

and sites with more than 80% missing data were ex-

cluded from the alignment.

Maximum likelihood (ML) analyses were conducted

using RAxML version 7.4.2 [95], under the general time-

reversible (GTR) substitution model and the Γ model of

rate heterogeneity. We conducted both unpartitioned

and partitioned analyses. PartitionFinder version 1.1.1

[96] was used to select the best-fit partitioning scheme,

considering all 237 possible gene-by-codon position par-

titions (79 genes × 3 codon positions). For both ML ana-

lyses, a single set of branch lengths for all partitions was

used. Ten independent ML searches were conducted

and bootstrap support was estimated with 1000 boot-

strap replicates.
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