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Abstract

We make a first attempt to axiomatically formulate the Montevideo interpretation of quantum

mechanics. In this interpretation environmental decoherence is supplemented with loss of coherence

due to the use of realistic clocks to measure time to solve the measurement problem. The resulting

formulation is framed entirely in terms of quantum objects without having to invoke the existence

of measurable classical quantities like the time in ordinary quantum mechanics. The formulation

eliminates any privileged role to the measurement process giving an objective definition of when an

event occurs in a system.
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I. INTRODUCTION

The usual textbook presentation of the axiomatic formulation of quantum mechanics

includes two apparently unconnected problematic issues. The first one is the privileged role

of the time variable that is assumed to be a classical variable not represented by a quantum

operator. The second is the also privileged role of certain processes called measurements

where quantum states suffer abrupt changes not described by a unitary evolution, and

probabilities are assigned to the values that one may obtain for a physical quantity.

The special role of measurement processes in quantum mechanics requires understanding

what distinguishes such processes from the rest of the quantum evolution. This is called the

measurement problem, which many physicists have alluded to and that ultimately refer to

the uniqueness of macroscopic phenomena within a quantum framework that only refers to

potentialities. Ghirardi calls this the problem of macro objectification.

The orthodox response of the Copenhagen interpretation argues that the objective of

quantum mechanics is not to describe what is but what we observe. The measuring de-

vices are classical objects through which we acquire knowledge of the quantum world. The

measurement therefore acquires an epistemological interpretation, referring to processes in

which observers acquire knowledge of phenomena. The question about how does quantum

mechanics account for events observed in the measurement and the multitude of events that

happen every moment in every place giving rise to the defined perception of our experience

is left out of the realm of the theory. Those processes belong to a world of objects that

our knowledge cannot have access to. As put by d’Espagnat [1], “the (orthodox) quantum

formalism is predictive rather than descriptive... [but also] ...the formalism in question is

not predictive (probability-wise) of events. It is predictive (probability-wise) of observa-

tions.” For him the statements of quantum mechanics are weakly objective since they refer

to certain human procedures —for instance, of observation—. They are objective because

they are true for everyone, “But their form (or context) makes it impossible to take them as

descriptions of how the things actually are”. Such descriptions were the usual ones in the

realm of classical physics, whose statements can be considered as strongly objective since one

can consider that they inform us about certain attributes of the objects it studies.

If the statements of quantum mechanics can only be weakly objective one must abandon

attempts to understand how the passage from quantum potentialities to observed phenom-
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ena, from micro to macro, from determinism to randomness, from quantum to classical,

takes place. The question of which systems should be treated as classical also becomes not

analyzable, an issue that acquires more relevance as more and more macro systems that

display quantum behaviors are being constructed by experimentalists.

If one adopts a realist point of view, that is if one assumes the existence of a reality

independent of observers, the orthodox description of quantum mechanics is incomplete

since it does not tell us which events may occur nor when may they occur. In our view

this is a rather extreme point of view that should be reserved only to the case in which one

has exhausted all other possibilities for analyzing physically the problem of the production

of events. There has been a recent renewed interest among specialists in foundations of

quantum mechanics in understanding how an objective description at a macroscopic level

compatible with quantum mechanics arises. Several avenues have been proposed to address

such a question (for a comprehensive review see [2]).

On the other hand the fact that time is treated unlike any other variable in quantum

theory has received much less attention. The usual point of view is that to associate time

with a quantum variable is impossible. This is due to the well known Pauli observation

that an observable associated with time would be canonically conjugate to the Hamiltonian

and it is impossible to have a bounded below operator like the Hamiltonian canonically

conjugate to a self adjoint operator. Even if one admits Leibniz’ point of view that time is

a relational notion and therefore in modern terms described by clocks subject to the laws of

quantum mechanics, it is usually thought that this would only complicate the description.

The absolute Newtonian view imposed itself not because it was the philosophically correct

one but because it was the simplest and yielded highly accurate predictions. A relational

treatment is only adopted if its use is inescapable, like in situations where there obviously is

no external parameter. An example of this could be quantum cosmology where there are no

external clocks nor external apparata to make measurements nor an external observer. As

Smolin [3] put it “Can a sensible dynamical theory [of quantum cosmology] be formulated

that does not depend on an absolute background space or time? Can quantum mechanics

be understood in a way that does not require the existence of a classical Observer outside

the system’?” Up to now there have not been formulations of theories of physics that are

completely relational without ideal external elements.

The Montevideo interpretation [4] of quantum mechanics shows that a relational treat-
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ment with quantum clocks allows to solve the measurement problem, therefore providing a

solution to both the problems we mentioned above. In this paper we present an axiomatic

formulation of the Montevideo interpretation of quantum mechanics where the evolution is

described in terms of real clocks. We call it Complete Quantum Mechanics because the for-

mulation does not require us to treat any variable as classical or external. In the axiomatic

formulation we establish precisely when and where events occur and what is their nature.

Since the formulation arises from an analysis of the problem of time in quantum gravity

[5], the proposed description —although presented here in the non-relativistic case only—

is formulated in a language that is ready to treat generally covariant theories like general

relativity. It can be said that it is a quantum mechanics formulated with an eye towards a

quantum theory of gravity.

The axiomatic formulation has several goals: a) to give a rigorous definition of what a real

clock is; b) to list explicitly the hypotheses of the Montevideo interpretation and to show

its internal consistency and c) to make explicit the mechanisms for macro objectification

and outline a realistic ontology based on this interpretation. The resulting description will

be strongly objective in the sense indicated above without referring any time to observers

or measurements. It does not attempt to substitute the usual axiomatics in most practical

applications, where the use of ideal clocks gives a very precise description. An axiomatic

relational formulation necessarily requires systems with enough degrees of freedom to include

the micro-systems1 one studies, the clocks, measuring devices and the environment that is

involved in the measurement process.

II. AXIOMS THAT ARE SHARED WITH ORDINARY QUANTUM MECHANICS

Axiom 1: States

The state of a complete physical system S is described by positive definite self-adjoint

operators ρ in a Hilbert space H

We adopt the idea that a state is well defined when it allows to assign correctly proba-

bilities to any property associated with a physical quantity. Particular cases of states are

projectors on one-dimensional vector subspaces, in which case the information contained in

1 the typical systems with few degrees of freedom one usually studies in quantum mechanics
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ρ is equivalent to that of a vector in the Hilbert space. The components of the operator ρ

in a basis are usually referred to as density matrix. The reason we are working with density

matrices is that as we will see, when one works with real clocks there is loss of quantum

coherence and this is more naturally discussed in terms of density matrices.

The axiomatic we are presenting makes reference to a set of primitive concepts like sys-

tem, state, events and the properties that constitute them, and physical quantities each of

them associated with certain mathematical objects of the formalism of ordinary quantum

mechanics. All these are defined implicitly in the axioms just like in ordinary axiomatic

quantum mechanics one defines system, state, measurement and physical quantities. The

first axiom associates certain operators to the states and a Hilbert space to the systems.

Axiom 2: Physical quantities

Any physical quantity A of S is described by a self-adjoint operator Â that acts in H.

We will call such operators observables

In most situations, as we will see later, quantities of interest are associated to subsystems

of S and therefore to subspaces of H.

Axiom 3: Properties

The only possible values of a physical quantityA are the eigenvalues of the corresponding

operator Â.

A physical quantity only takes values when an event occurs. If A has a value A we

will say that the event has a property Pa to which we will associate a projector P̂a on the

eigenspace associated with the corresponding eigenvalue A.

The events that constitute the physical phenomena are the most concrete thing that

attains us directly and we cannot ignore. They are what makes the world and what physics

has to account for. It is natural that physics, which is an empirical science would take

as starting point the events, which are the data from our experience of the world. The

word phenomenon comes from the Greek and means something sufficiently apparent to be

perceived by our senses. Events are elementary phenomena that we usually associate with a

set of properties that we characterize by the numerical values that certain physical quantities
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and their associated projectors take. An example of event would be the formation of a dot

of silver atoms on a photographic plate of an electron detector or the appearance of droplets

in a cloud chamber. In spite of the persistent tendency to think in terms of particles in

physics, we only observe events. The trace of a particle in a bubble chamber is just a

series of correlated events. Physical properties characterize events. For instance, if we are

interested in the position of the dot of silver on the photographic plate, the position will be

the physical quantity and the value that it takes in a given experiment will correspond to

a property that constitutes the event. Notice that we are not assuming that all events are

perceived by our senses.

Axiom 4: Evolution in Newtonian time

In non-relativistic theories there exists an ideal Newtonian time for which the principle

of inertia holds. That is, for which free classical particles have a uniform rectilinear motion.

Newtonian time imposes an absolute order of events and an absolute notion of simultaneity.

Such an absolute time is not an accessible physical quantity. It can only be approximately

monitored by physical clocks, which are subject to quantum fluctuations. This next axiom

will refer to the particularly simple form of the evolution of operators in Newtonian time,

which we will represent by a c-number t. We are here working in the Heisenberg picture in

which operators evolve.

The evolution in the ideal Newtonian time of a physical quantity with associated self-

adjoint operator Â is given by the equation

i~
dÂ(t)

dt
=
[

Â(t), Ĥ(t)
]

+
∂Â(t)

∂t
. (1)

For instance, in ordinary particle mechanics where one has classical position and mo-

mentum given by x and p, an observable associated with the classical quantity A(r, p, t) is

quantized by replacing x and p with x̂ and p̂ and appropriately symmetrizing so that the re-

sulting operator is self-adjoint. The partial derivative refers to the explicit dependence in the

parameter t. In ordinary quantum mechanics the Heisenberg and Schrödinger pictures are

equivalent and so are here if one is referring to the evolution in terms of the ideal Newtonian

time t. If one considers the evolution as described by real clocks there are modifications, as

we will subsequently discuss.
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III. RELATIONAL AXIOMS

The probability axiom and the reduction axiom radically change their form in the Monte-

video interpretation since they now include the observed system and the clock that registers

the event, both as quantum mechanical systems. We will consider almost ideal clocks. We

expect a generic degree of freedom to approximate an ideal clock when it is weakly inter-

acting, both with other degrees of freedom and with itself. We therefore say that a system

contains a decoupled clock when the Hamiltonian may be written in the form,

H = Hclock +Hsystem, (2)

where Hclock depends only on the coordinates and momentum of the clock and Hsystem

is independent of the canonical clock variables. While this situation is, strictly speaking,

unphysical, it approximates systems which differ from (2) only by terms that may be treated

adiabatically. In correspondence with this we will assume that the quantum state of the

complete system is a tensor product of a state for the clock and a state for the system under

study, i.e. ρ = ρcl ⊗ ρsys.

Let T̂ (t) be a self-adjoint operator (observable) in the Hilbert space H that describes the

physical quantity chosen to measure time by a clock ruled by quantum mechanics and Q̂i(t)

and P̂ i(t) observables associated to quantities Q and P that commute with T̂ (t) and to

whose values one wishes to assign probabilities. We assume all variables have continuous

spectrum, because clocks normally do, results are easily reworked for variables having dis-

crete spectrum. Let P̂Qi

0

(t) be the projector on the eigenspace of Q̂i with eigenvalues in the

interval of a given width 2∆i centered in Qi
0, that is, [Qi

0 − ∆i, Qi
0 − ∆i] and analogously

the clock variable T̂ with its projector P̂T0
(t). In terms of these quantities the probability

postulate states that:

Axiom 5: probabilities

The probability that the quantity Qi of a physical system in a state ρ take a value in a

prescribed range of values when the clock in such state takes a value in the interval [T0 −
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∆C , T0 +∆C ] is given by,

P
(

Qi ∈
[

Qi
0 −∆i, Qi

0 +∆i
]

|T ∈
[

T0 −∆C , T0 +∆C
])

=

∫ τ

0
dtTr

(

P̂Qi

0

(t)P̂T0
(t)ρP̂T0

(t)
)

∫ τ

0
dtTr

(

P̂T0
(t)ρ

) ,

(3)

where P̂Q0
(t) and P̂T0

(t) are the projectors associated to properties Q and T taking the

eigenvalues Q0 and T0.

These conditional probabilities are positive and add to one. They refer to the probability

of occurrence of events with properties associated with the eigenvalues of the operators

involved. Which specific events and when do they occur are issues not determined by this

axiom. Notice that a similar construction can be carried out for the P i quantities, we wrote

the expression for the Qi for concreteness only. The only condition is that the quantities

must have vanishing Poisson bracket with T (t).

Note that we are integrating in the ideal Newtonian time t which is taken to be unob-

servable. The integration interval goes from t = 0, instant in which the observable clock

T is started, to τ , the maximum Newtonian time for which the clock T operates with the

desired precision. The quality of the clock depends on the initial state of the system when

the clock is started, the admissible error ∆C and the total time the clock is used τ . If one

wishes to perform subsequent measurements care should be taken to choose the interval ∆C

large enough such that the measurement of the clock variable does not affect too much the

accuracy of it.

It is worthwhile expanding on the meaning of the probabilities (3) since there has been

some confusion in the literature [6]. Thinking in terms of ordinary quantum mechanics one

may interpret that the numerator of (3) is the sum of joint probabilities of O and T for

all values of t. This would be incorrect since the events in different t’s are not mutually

exclusive. The probability (3) corresponds to a physically measurable quantity, and such

quantity is actually the only thing one can expect to measure in systems where one does

not have direct access to the “ideal” time t. The experimental setup we have in mind is

to consider an ensemble of non-interacting systems with two quantum variables each to be

measured, O and T . Each system is equipped with a recording device that takes a single

snapshot of O and T at a random unknown value of the “ideal” time t. One takes a large

number of such systems, launches them all in the same quantum state, “waits for a long

time”, and concludes the experiment. The recordings taken by the devices are then collected
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and analyzed all together. One computes how many times n(Tj , Oj) each reading with a

given value T = Tj , O = Oj occurs (to simplify things, for the moment let us assume T,O

have discrete spectra; for continuous spectra one would have to consider values in a small

finite interval of the value of interest). If one takes each of those values n(Tj , Oj) and divides

them by the number of systems in the ensemble, one obtains, in the limit of infinite systems,

a joint probability P (Oj, Tj) that is proportional to the numerator of the above expression.

The denominator is obtained by counting n(Tj) ignoring the values of O. Notice that this

implies a change in the probability axiom with respect to ordinary quantum mechanics. This

is what is made explicit in axiom 5.

The previous expression can be straightforwardly extended to the case in which one

or both observables involved have discrete spectrum. Since the spectrum may be time

dependent it is also convenient to talk about quantities taking values in finite intervals in

the discrete case as well.

Although we spelled out the axiom explicitly for the measurement of a single quantity Qi it

is immediately generalizable to the measurement of several commuting operators (functions

of the Qi’s and P i’s). The next axiom allows to assign probabilities to histories of events

that occur at different instants of time.

Axiom 6: State reduction

When a set of physical quantities (that include the clock) with commuting self-adjoint

operators Â1 . . . Ân take values A1 . . . An in the intervals [A1
0−∆1, A1

0+∆1] . . . [An
0−∆n, An

0+

∆n] the state of the system can be represented by the normalized quasi-projection of the state

ρ associated with the values of the quantities in question,

ρred =

∫ τ

0
dtP̂A1

0
(t) . . . P̂An

0
(t)ρP̂An

0
(t) . . . P̂A1

0
(t)

Tr
(

∫ τ

0
dtP̂A1

0
(t) . . . P̂An

0
(t)ρP̂An

0
(t) . . . P̂A1

0
(t)
) . (4)

This is a quasi-projection since it is not an exact projector. If one were able to have

an ideal clock, that is if the total Hilbert space may be written as the tensor product of

the Hilbert space of the clock times the Hilbert space of the rest of the system, then the

probability density given by,

Pt(T ) =
Tr|cl

(

P̂T (t)ρcl

)

∫ τ

0
dtTr|cl(P̂T (t)ρcl)

(5)
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would be a Dirac delta Pt(T ) = δ(t−T ) and (4) would behave as an exact projector when the

reduction postulate is used to assign probabilities to histories [7]. Pt(T ) is the probability

density that the ideal time take the value t when the physical clock reads T , and is not a

directly observable quantity in our framework (since t is not observable) but a mathematical

object that appears in intermediate calculations.

This axiom only has epistemological character, it does not say that the state actually

undergoes the above mentioned reduction process. In the present theory if the state does

or does not undergo reduction is an undecidable proposition, as we will discuss in the next

section.

Using the same construction as in ordinary quantum mechanics combining the reduction

and the probability axioms one can assign probabilities to histories of events. In [5] we

showed in model systems that the resulting probabilities of histories can be used to construct

the ordinary particle propagator to leading order in the inaccuracy of the clock. This is true

even for generally covariant systems like general relativity, resolving a longstanding issue in

the definition of a notion of time for such systems.

Introducing a reduction postulate superficially seems to leave the measurement problem

intact. Up to this point, the relational description of evolution does not provide information

about when events occur. Notice that one cannot simply say that events happen randomly

since generically they lead to a ρred that is physically distinguishable from ρ and that would

completely destroy the predictive power of quantum mechanics. As Bell noted, this would

be the situation in ordinary quantum mechanics if we adopted the language of events instead

of that of measurements. The main difference in the current axiomatic system, as we will

show, is that it allows situations where the events can occur and gives a physical criterion

to establish when they occur. The next and final axiom will be crucial for this issue.

IV. AXIOM 7: THE ONTOLOGICAL AXIOM

A. Loss of unitarity due to the use of real clocks

In preparation to formulate the seventh axiom, we would like now to address a new

phenomenon: the loss of unitarity of quantum mechanics described with real clocks. Let us
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reconsider the conditional probability (3),

P
(

Qi ∈
[

Qi
0 −∆i, Qi

0 +∆i
]

|T ∈
[

T0 −∆C , T0 +∆C
])

=

∫ τ

0
dtTr

(

P̂Qi

0

(t)P̂T0
(t)ρP̂T0

(t)
)

∫ τ

0
dtTr

(

P̂T0
(t)ρ

) ,

(6)

and make some reasonable assumptions about the clock and the system as we discussed in

section III. Going to the Schrödinger picture we define a new density matrix for the system

excluding the clock labeled by the physical time T instead of the ideal Newtonian time t,

ρsys(T ) ≡
∫ τ

0

dtPt(T )ρsys(t) (7)

where Pt(T ) was defined in (5). In terms of these density matrices the conditional probability

can be rewritten as,

P
(

Qi ∈
[

Qi
0 −∆i, Qi +∆i

]

|T ∈
[

T0 −∆C , T +∆C
])

=
Tr|sys

(

P̂ S
Qi

0

ρsys(T )
)

Tr|sys (ρsys(T ))
, (8)

where P̂ S
Qi

0

is the projector in the Schrödinger picture. We therefore see that we have

recovered the ordinary definition of probability of measuring Qi at time T in usual quantum

mechanics. This shows the usefulness of the definition (7). Within such definition one

can immediately see the root of the loss of unitarity when one uses real clocks to describe

quantum mechanics. The density matrix in the right hand side of (7) evolves unitarily in the

ideal time t. However, due to the presence of the probability Pt(T ) the left hand side does

not evolve unitarily. If one starts with a pure state, in the right hand side it will remain pure,

but in the left hand side after some time has evolved one will end up with a superposition of

pure states due to the integral. Only if the probability Pt(T ) were a Dirac delta one would

have a unitary evolution. That would mean that one has a clock that correlates perfectly

with t, which is not possible with a real clock.

We therefore see that the result of Axiom 5 is to have a theory that looks like ordinary

quantum mechanics but in terms of the physical time T . The only difference is that the

evolution in terms of the physical time is only approximately unitary. If one assumes that

the clock is very good the probability Pt(T ) will be a Dirac delta with small corrections,

Pt(T ) = δ(T − t) + a(T )δ′(T − t) + b(T )δ′′(T − t) + . . . (9)

and one can show that in such a case the density matrix evolves according to the equation,

i~
∂ρ

∂T
= [H, ρ] +

∂b(T )

∂T
[H, [H, ρ]] (10)
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so we see that to leading order we get the ordinary Schrödinger evolution and the first

corrective term has to do with the rate of spread of the width of the probability Pt(T ) plus

higher order corrections. Another way of putting it is that it is determined by how inaccurate

the physical clock becomes over time. The effect can therefore be reduced by choosing clocks

that remain as accurate as possible over time. However, there exist fundamental physical

limitations as to how accurate one can keep a clock over time. There are several arguments

in the literature [8] that suggest that the best accuracy one can achieve with a clock is

given by δT ∼ T aT 1−a
Planck and TPlanck = 10−44s is Planck’s time. The estimates for a vary

but several authors claim it is 1/3. From the point of view of the purposes of this paper, it

suffices to say that δT is a growing function of T . Then unitarity is inevitably lost.

The loss of coherence due to imperfect clocks makes the off diagonal elements of the

density matrix of a quantum system in the energy eigen-basis to decrease exponentially.

For a = 1/3, the exponent for the mn-th matrix element is given by ω2
mnT

4/3
PlanckT

2/3, where

ωmn = Emn/~ is the difference of energy between levels m and n divided by ~ (the Bohr

frequency between n and m). One could see this effect in the lab in reasonable times (hours)

only if one were handling “macroscopic” quantum states corresponding to about 1013 atoms in

coherence. The direct observation of this effect is therefore beyond our current experimental

capabilities. However, it has profound implications at a foundational level, as this new

formulation of quantum mechanics we are presenting attests to.

B. Undecidability

The loss of unitarity due to the inaccuracies of real clocks has implications for the usual

explanation of the measurement process through environmental decoherence. The results

of such program can be summarized as follows: consider a system S interacting with an

environment E with a total Hamiltonian H = HSA+HE +Hint with HSA the Hamiltonian

of the micro-system, which may include a measuring apparatus, HE that of the environment

and Hint the interaction Hamiltonian between the system and the environment. The effect of

such interaction is an attenuation of the interference terms in the reduced density matrix of

the system S , obtained by partially tracing of the degrees of freedom of the environment.

This effect happens in the so-called “pointer basis”, determined by the Hamiltonian, as has

been discussed in some detail in [9]. The interpretation of this attenuation is as follows:
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when one carries out local measurements on the system S it will behave classically, any

expectation value will be equal to the case in which the system has suffered a state reduction

and we cannot see the typical interference terms of quantum superpositions. Since inter-

actions with the environment are almost inevitable, this is the reason the everyday world

we experience behaves classically and quantum effects can only be seen in very controlled

circumstances in the lab. This is therefore portrayed as a solution to the measurement

problem.

There exist three limitations that have been pointed out in the literature that may pre-

clude everyone from accepting that environmental decoherence is a solution to the measure-

ment problem. The first two limitations are related to the fact that the evolution for the

total system S plus E is unitary. The first limitation is the possibility of revivals. That

is, for a closed total system one could wait for a long time and see the quantum coherence

in the system S plus the measuring apparatus reappear. The use of real clocks prevents

this from happening, since waiting for very long actually increases the loss of coherence

due to the clocks. The second limitation, suggested in [10], argues that one could perhaps

construct global observables that depend on variables in the system and the environment

that would suffer different changes in their expectation values if a reduction takes place or

not. A detailed analysis [11] in model systems shows that one is prevented from measuring

such observables when one takes into account the loss of coherence due to real clocks. The

third limitation to viewing the use of environmental decoherence as a solution to the mea-

surement problem is that “nothing happens”, that is, there is no criterion given for telling

when a measurement takes place. The fact that the reduced matrix of the open subsystem

composed by the micro-system and the measurement device takes a diagonal form does not

change the interpretation for the state as a superpositions of options. This is what Bell

has called “the and/or problem” alluding to the lack of justification for assuming that a

transition from superposed options to alternative options takes place. We will resolve this

in our approach by providing a criterion for when an event takes place.

Returning to the first objection, one may ask how many degrees of freedom does one

need to consider for the exponential decrease to kill the possibility of revivals? A criterion

would be that the magnitude of the off diagonal term in the revivals be smaller than the

magnitude of the off diagonal terms in the intermediate region between revivals. If that

were the case the revival would be less than the “background noise” in regions where there is
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no revival. The magnitude of the interference terms in the density matrix were studied by

Zurek [12] in a simple model with two levels where the environment is characterized as N

particles, and goes as ρ+− ∼ 1/2N/2 with N the number of particles. The time for revivals to

occur goes as T ∼ N !. This implies, at least in this particular example, that if one has more

than hundreds of particles in the environment the loss of coherence will make impossible

the observation of revivals. In realistic environments the number of degrees of freedom is of

course vastly higher.

At this point it is worthwhile emphasizing the robustness of this result in practical terms.

One could, for instance, question how reliable the fundamental limits for the inaccuracy of

clocks we are considering are. Some authors have characterized the fundamental limit as too

optimistically large, arguing that the real fundamental limit should be larger of the order of

Planck time itself. In view of this it is interesting to notice that if one posits a much more

conservative estimate of the error of a clock, for instance δT ∼ T ǫT 1−ǫ
Planck, for any small value

of ǫ the only modification would be to change the number of particles N0 ∼ 100 to at least

N ∼ N0/(3ǫ). So the only real requirement is that the inaccuracy of the clock increase with

the time measured, a very reasonable property for any realistic clock.

Using a real clock introduces a fundamental difference. Whereas in the usual formalism

the state of the complete system will evolve unitarily, here it will lose coherence without

the possibility of recovering it in another part of the system. This brings us to the idea of

undecidability. If a system suffers an interaction such that one cannot distinguish by any

empirical means if a unitary evolution or a reduction took place we will claim that an event

took place. This provides a criterion for the production of events, as we had anticipated. A

detailed implementation for the criterion can be carried out by looking at the off diagonal

elements of the density matrix as we did when we discussed the revivals. Notice that for a

quantum micro-system in isolation, events would not occur. However for a quantum system

interacting with an environment, events will be plentiful. The same goes for a system being

measured by a macroscopic measuring device.

C. Axiom 7: The ontological axiom

The analysis of the previous section shows that contrary to what happens in quantum

mechanics with an ideal clock, in the relational pictures the possibility to determine (not just
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in practice but in principle) if a system has suffered a state reduction or evolved unitarily

decreases exponentially with the number of degrees of freedom of the system. That is, it

requires of ensembles with a number of identical macroscopic systems exponential in the

number of degrees of freedom of the total system including environment and measuring

apparatus. One cannot therefore argue —as is done in the case of ordinary environmental

decoherence— that the problem moves on to the complete system that retains the complete

initial quantum information. The existence of this phenomenon in systems that interact

with an environment implies, as follows from the above analysis, that in processes where

there does not exist an unlimited capability of preparing the initial state of the system it

will be empirically undecidable if there has been or has not been a reduction of the state.

By empirically undecidable we mean that no experimental setup will give different results

for both situations. In particular, the expectation values of any observable of S will be

identical in both cases.

This leads to the following ontological axiom that gives sufficient physical conditions for

the production of an event. We lay it out for variables with continuous spectrum but it is

readily generalizable to other cases. The axiom reads:

Given a closed system S with its associated Hilbert space H and a physical quantity A
represented by an observable Â in H with a decomposition of the identity allowing to write

Â(t) =
∑

n anP̂an(t), an event occurs when it becomes impossible to distinguish empirically

in a certain instant in which the clock reads in an interval 2∆C centered in T0 between the

initial state2 of S modified by the clock reading,

ρmod =

∫ τ

0
dtP̂T0

(t)ρP̂T0
(t)

∫ τ

0
Tr
(

P̂T0
(t)ρ

) (11)

and,

ρe =

∫ τ

0
dt
∑

n P̂an(t)P̂T0
(t)ρP̂T0

(t)P̂an(t)
∫ τ

0
dtTr

(

P̂T0
(t)ρ

) (12)

The event associated with the physical quantityA taking the value an occurs with a proba-

bility given by axiom 5. Such event will have a property associated with the projector P̂an(t)

with relative probability Pt(T0). Notice that ρe is the density matrix that one would have

2 Notice that we are in the Heisenberg representation. In the Schrödinger representation it would be the

density matrix at time t modified.
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after a traditional wavefunction collapse.

We are assuming that we have a good clock that works with certain degree of accuracy

for a period of Newtonian time τ ≫ T0. With this hypothesis the above construction is

independent of tau. It is not possible to assign a single property to the observation of an

since the clock does not allow to identify a single projector due to the ambiguity in the

value of the ideal time t in which the property occurs. In realistic situations, with good

clocks, such ambiguity does not have practical consequences since the variation of P̂an(t) in

the interval
[

T0 −∆C , T0 +∆C
]

will be negligible.

As explained above, an event occurs when one cannot experimentally3 distinguish between

the modified density matrix ρmod and the one given by ρe. This situation arises typically

in systems that interact with an environment with a large number of degrees of freedom.

When this happens the physical quantity characterized by A will take a definite value. As

we have emphasized, S includes the micro-system and the environment with which it has

interacted.

In general many observables will satisfy the above condition, and therefore many prop-

erties of the system will actualize. To illustrate this point we will consider a simplified

situation. Let us assume that after the process of decoherence has been completed, the only

Hamiltonian present is that of the clock and that the system does not evolve, so that we

have time independent projectors,

ρe =
∑

n

Pan





∫ τ

0
dtPT0

(t)ρPT0
(t)

∫ τ

0
dtTr

(

P̂T0
(t)ρ

)



Pan ≡
∑

n

Panρ(T0)Pan , (13)

and it should be noted that ρ(T0) is the density matrix of the complete system, in the

Schrödinger picture labeled by the real clock time T0. We will show that the condition for

an observable B to also actualize is that its projectors’ eigen-spaces include the eigen-spaces

of A′s projectors. That is,

PbnPan |ψ〉 = Pan |ψ〉 (14)

and

PbmPan |ψ〉 = 0; m 6= n. (15)

3 To be mathematically precise, given the states ρmod and ρe and any property of S given by a projector

P̂ one has that |Tr (P (ρmod − ρe)) | < ǫ with ǫ = exp(−αN). α is a positive constant and N the number

of particles in the system.
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When the above conditions are satisfied we will say that the projector Pan includes Pbn , and

that the property corresponding to the first includes the second, Pbn ⊂P an .

Let us assume that we have undecidability,

ρe =
∑

n

Panρ(T0)Pan , (16)

then we will see that for observable B the undecidability condition is also satisfied.

Using the closure relationship we have that,

∑

n

Pbnρ(T0)Pbn =
∑

n

Pbn

(

∑

k

Pak

)

ρ(T0)

(

∑

l

Pal

)

Pbn , (17)

and together with (15) imply,

∑

n

Pbnρ(T0)Pbn =
∑

n

PbnPanρ(T0)PanPbn . (18)

Now using (14) we have that,

∑

n

Pbnρ(T0)Pbn =
∑

n

Panρ(T0)Pan = ρe, (19)

and therefore B is also undecidable.

We will call “essential property” the one that includes all properties that actualize, that is,

all properties whose projectors satisfy the undecidability condition. This “essential property”

contains the information of every physical quantity that the system acquires.

Let us see how this works more explicitly in a simple example. We will consider a system

composed of only three spins, and the clock. Let us assume that the initial state for the

spins is

ρ(0) =
|c1|2
2

(|++−〉+ |+−+〉) (〈++−| + 〈+−+|) + |c2|2 (| −++〉) (〈−++|) (20)

+
c1c

∗

2√
2
(|++−〉 + |+−+〉) (〈−++|) + c∗1c2√

2
(〈−++|) (〈++−|+ 〈+−+|) . (21)

Suppose that the evolution is such that an event occurs4, with essential properties char-

acterized by,

Pa1 = (|++−〉 + |+−+〉) (〈++−|+ 〈+−+|) , (22)

4 for small systems like the one we are considering events will not occur in general, since there is no

undecidability.
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and

Pa2 = (| −++〉) (〈−++|) . (23)

As we noticed before, if for instance the property given by Pa1 is attained, it gives all

the information about the physical quantities the system has. We can now consider the

compatible property associated with the projector,

Pup = |+〉〈+| ⊗ I2 ⊗ I3, (24)

which corresponds to “spin 1 is up”. And we could also consider the compatible property

associated to

P2opposite3 = I1 ⊗ (|+−〉+ | −+〉) (〈+− |+ 〈−+ |) (25)

which corresponds to “spins 2 and 3 are opposite”. Both Pup and P2opposite3 satisfy condition

(14), so these properties will actualize.

The projectors compatible with the essential properties determine the properties that can

be associated to different subsystems. So, in the case of the property corresponding to Pa1

being acquired by the system, we can ask whether spin 1 is up or not, we can ask whether

spins 2 and 3 are opposite or not, but we cannot ask whether spin 2 is up or not, because

this last property is incompatible and is therefore not acquired by the subsystem.

Usually the essential property acquired by the system is complicated and not experimen-

tally accessible, but we are interested in properties acquired by the subsystems when events

occur.

The ontological axiom completes the formulation of the complete quantum mechanics. It

eliminates the need to give special treatment to measurements and observers and gives rise

to an objective description completely independent of cognizant beings.

The reader may question what is the situation in an actual measurement in the lab. There

we have the possibility of forcing the occurrence of events by designing a measuring appa-

ratus/environment combination that interacts with the system under study in such a way

that the pointer basis corresponds to eigenstates of the observable one desires to measure.

The effects discussed above occur and an event takes place. The measurements discussed in

quantum mechanics textbooks therefore reduce to finding the correct Hamiltonians so that

the properties that actualize their values correspond to the observables that one wishes to

measure in each case.
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V. THE ROLE OF STATES: DO THEY DESCRIBE SYSTEMS OR ENSEMBLES?

What happens with the states? As we observed, it is not empirically decidable what

happens with the states when an event occurs. Although the interpretation is compatible

with a state of the universe given once and for all, for practical purposes we will not have

predictive power if we do not know all the actualizations of events prior to the moment of

interest. Due to this it will be convenient and possible from the epistemological point of

view to postulate that a reduction takes place after the observation of an event. As Omnès

points out: “reduction is not in itself a physical effect but a convenient way of speaking” [13].

More precisely, in the construction presented in this paper it is not physically decidable if

the reduction of the state takes place or not. This is precisely the condition, as established

in axiom 7, for events to occur.

If it were the case that the state undergoes an effective reduction process every time

an event occurs, then the state can be associated at all times to an individual system and

knowledge of the state represents the maximum information available to make predictions

about future behaviors.

If one adopts the opposite point of view and assumes that the state remains unchanged

during the processes in which events occur, the state —which would be none other than the

initial state of the universe— would describe ensembles of systems in which in every member

of the ensemble events of different nature would occur. In this case in order to have complete

information about the future behavior of the universe would require not only knowledge of

the state but all the events that have occurred previously to the instant in which one wishes

to have the information. It is important to notice here that the proposed formulation would

be complete without axiom number 6. It only has the purpose of resolving the ambiguity

noted above in order to use the information added by the occurrence of the event in future

predictions. Axiom 6 is therefore, as we have mentioned, of epistemological character. It

allows to actualize the information available after each measurement.

We have limited ourselves to closed systems. The systems have to be general enough to

include the various subsystems involved in the occurrence of the events of interest. Some

subsystems are agents that initiate the process, like the electron in the double-slit experi-

ment. Others are recipients of the action, like the photographic plate in that experiment.

The total systems will only allow a complete description of some processes that lead to events
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in S . We are able to describe events in which the system S contains as subsystems. the

quantum micro-system, the environment and perhaps a measuring device. There might be

situations in which subsystems of S act or are acted upon by subsystems not included inS . Events and states have a primary ontological status whereas the systems considered

here have circumstantial character and are considered as long as they support the events

and states of interest.

VI. CONCLUSIONS

We have presented an axiomatic formulation of the Montevideo interpretation of quan-

tum mechanics. In this interpretation environmental decoherence is supplemented with a

fundamental mechanism of loss of coherence due to the inaccuracy in tracking time that real

clocks introduce to produce a resolution to the measurement problem and a characterization

of when events occur. The resulting construction is completely formulated in terms of quan-

tum mechanical objects, without having to refer to any classical preferred quantity. That

is the reason we dubbed it complete quantum mechanics. More work is needed in order to

fill some gaps related with proofs of undecidability in more general contexts and including

adiabatic couplings between the system and the clock.

The formulation is naturally geared towards dealing with generally covariant theories like

quantum general relativity. It may also have implications for how the quantum to classical

transition in cosmological perturbations in the inflationary period take place.
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