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COMPLETE RETRACT MAPPINGS 

OF A COMPLETE LATTICE ORDERED GROUP 

JAN JAKUBIK,* Kosice 

(Received November 18, 1991) 

Retracts of partially ordered sets were studied in [2]-[5]. Retracts of abelian lattice 

ordered groups were dealt with in [6]. In [7], retract varieties of abelian lattice ordered 

groups were investigated. 

An endomorphism / of a lattice ordered group H is said to be a complete retract 

(cf. [6]) if it satisfies the following conditions: 

(i) / ( / ( A ) ) = A for each A G H; 

(ii) if { A . } , 6 / C / / , A G H, A = V A, holds in H, then /(A) = V / (A, ) , and dually. 

The following results concern the relations between complete retract mappings 

and direct decompositions of a lattice ordered group H. 

(A) Let H be an internal direct product of its l-subgroups A\, A2 and A3. For 

h € H let hi (i G {1 ,2 ,3 } ) be the component of h in A{. Assume that <p is a complete 

isomorphism of Ao into A3. For each A G H put 

(1) /(!•) = / « , + h 2 + V?(l»2). 

Then f is a complete retract mapping of H. 

(B) Let H be a complete lattice ordered group and let f be a complete retract 

mapping of H. Then there are convex l-subgroups A\, j-2 owrf -4a in H and a 

complete isomorphism <p of A\ into A? such that 

(i) H is an internal direct product of Us l-subgroups Ai (i = 1,2,3); 

(ii) for each A G H the relation (1) is valid (where h\ and A2 are the components 

of It in A\ and in Ai, respectively). 

The assertion (A) is easy to verify; (B) will be proved below. Next, (B) will be 

applied to obtain a sharpening of a result established in [6]. Let us remark that if H 
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fails to be complete, then the assertions of (B) need not be valid for H (cf. Example 
1.3 below). Further, the notion of a complete retract variety will be introduced and 
the lattice of all complete retract varieties will be investigated. 

1. PRELIMINARIES 

An endomorphism / of a lattice ordered group H will be said to be a retract 
mapping of H, if f(f(x)) = f(x) for each x G H. If / is a retract mapping of H, 
then the /-subgroup f(H) of II is called a retract of H (cf. [6]). 

If / is a retract mapping of H and if, moreover, / is a complete endomorphism 
(i.e., if the above condition (ii) is satisfied), then / is said to be a complete retract 
of I7. 

The following example shows that a retract mapping need not be complete. 

E x a m p l e 1.1. Let R be the set of all reals and H+ = {/ G R: t ^ 0}. Let H 

be the set of all real functions which are defined and continuous on /?+. The lattice 
operations and the operation -f in II are defined point-wise; hence H is an abelian 
lattice ordered group. For each x G H let f(x) G H be such that f(x)(t) = x(0) for 
each / G R*. Then / is a retract mapping of H. 

Let N be the set of all positive integers. For each n G N let xn be an element of 
H such that xn(0) = 0, xn(t) = 1 for each / G R* with * ^ £-, and xn is linear on 
the interval [0, £•] of H+. Next, let x G H be such that x(t) = 1 for each * G H+, 
and let 0 be the neutral element of H. Then we have f(xn) = 0 for each n G N and 

V *n = *, 
n€/V 

hence 

V f(xn) = 0^x = f(x). 
r»€/V 

Thus / fails to be a complete retract mapping. 

The question whether each retract mapping of a complete lattice ordered group 
must be complete remains open. 

An isomorphism <p of a lattice ordered group Hi into a lattice ordered group H2 
is said to be complete if, whenever {/ij}ie/ Q Hi, h G Hi and V h = h in Hi, then 

t € / 
<p(h) = V <p(hi)y and dually. 

« € / 
The following example shows that an isomorphism need not be complete. 
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E x a m p l e 1.2. Let R be the additive group of all reals with the natural linear 

order. Put Hi = H, H2 = R o H, where o denotes the operation of lexicographic 

product . For each x G Hi we put <p(x) = (x ,0 ) . Then <p is an isomorphism of Hi 

into H2. Let xn = £ for each positive integer n. We have f\ xn = 0, but f\ <p(xn) 

does not exist in H2. Hence the isomorphism <p fails to be complete . 

If H is not complete, then the assertion of (B) need not hold. 

E x a m p l e 1.3. Put H = Ro R and for each (x,y) E H let f((x,y)) = (* ,0 ) . 

Then / is a complete retract mapping and there exist no direct factors Ai, Ai and 

A3 of / / with the properties as in (B). 

The notion of an internal direct decomposition of a lattice ordered group will be 

applied in the same sense as in [6] or [7]. 

2. D I R E C T D E C O M P O S I T I O N 

C O R R E S P O N D I N G T O A C O M P L E T E R E T R A C T M A P P I N G 

In this section we assume that H is a complete lattice ordered group and that / 

is a complete retract mapping of H. 

Denote / ~ l ( 0 ) = Ht. 

L e m m a 2 .1 . Hi is a closed i-ideal of H. 

P r o o f . Because / is an endomorphism of H, we obtain that Hi is an /-ideal of 

H. Next, since / is complete, Hi is closed in H. 

For each X C / / we put 

XL = {h£H: \h\ A \x\ = 0 for each x £ X}\ 

XL is a polar of H. D 

L e m m a 2 .2 . Hi is a po/ar of H. 

P r o o f . This is a consequence of 2.1 and of the completeness of H (cf., e.g., 

Birkhoff [1], Chap. XIII, Theorem 27). D 

Put I\ = Hr1. Since each complete lattice ordered group is strongly projectable, 

we have 

(I) / / = (i)K x H\. 
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In view of (1), each h G // can be written as 

h = t + /ii (k e A, h\ G Hi) 

and then f(h) = f(k). Hence for determining / , it suffices to know all the values 
f(k) for k running over A'. 

Put Ai = {ke K: f(k)€K}. 

Lemma 2.3. Let k G A". The following conditions are equivalent: 
(i) k€l<x; 
(ii) / (*) = k. 

P r o o f . Clearly (ii) =-> (i). Let (i) hold. Since K is an /-subgroup of H, we 

have f(k) — k G 7v. On the other hand, 

/ ( / ( * ) - k) = / ( / (* ) ) - f(k) = 0. 

whence f(k) - k G Hi- Therefore f(k) - k = 0. D 

Lemma 2.4. A'i is a closed 1-idea.l of H. 

P r o o f . From the definition of A'I it follows immediately that A'i is an /-

subgroup of H. Let h G / / , fci G Ki, 0 ^ /i ^ kx. Then 0 = /(0) ^ /(/i) -$ /(ibi) = 
ky. Since A' is convex in H, we obtain f(h) G A' and thus h G A'i- Therefore A'i is 
a convex /-subgroup of H. Let ki (i G /) be elements of A'i and let \/ k{ = h. In 

• €/ 
view of 2.1 we have h G A'. Next, according to 2.3, f(k{) = ki for each i G /, whence 

/(VM = \jM) = \Jki. 
t € / t € / t € / 

Therefore /* G A't. The dual condition can be verified analogously. Hence A'i is 
closed in H. D 

In view of 2.4, A'i is an internal direct factor of H. Moreover, since A'i C A', 
(1) implies that A'i is an internal direct factor of K. Thus there is an /-ideal A'2 in 
K such that 

(2) K = (i)K\ x K^ 

Each k G K can be written as k — k\ + &2 w ' th k\ € A'i, &2 € A'2. Then 

/(*) = /(*i) + /(*-) = i i + /(*2). 
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Hence for determining / it suffices to know the values f(k2), where k2 runs over K2. 

For each k G K2 we put 

lp(k) = f(k)(H1). 

L e m m a 2 .5 . <p is a complete isomorphism of K2 into H\. 

P r o o f . Since / is an endomorphisin of H and since the mapping ip: h —• h(H\) 

is a homomorphism of H onto Hi we infer that <p is a homomorphism of K2 into Hi. 

Next, both / and tp are complete and thus <p is complete as well. 

Let k G K2 and assume that <p(k) = 0. Thus f(k)(H\) = 0 and so in view of (1), 

f(k) G A'. Hence k G A'i. Therefore according to (2) we have k = 0. We have 

obtained tha t <p~l(0) = {0}, hence <p is an isomorphism of K2 into Hi. D 

L e m m a 2.6 . Let k G K2. Then f(k)(K\) = 0. 

P r o o f . By way of contradiction, suppose that f(k)(K\) = k\ -j-- 0. Then 

/ ( | jk | ) ( / \ i ) = |Jbi| > 0. According to 2.3, f(\k\\) = | i i | . In view of (2) we have 

|*iI A \k\ = 0, hence f(\k\\) A /(|fc|) = 0. Thus 

0 - ( / ( | f c i | ) A / ( | f c | ) ) ( A i ) = / ( | k 1 | ) ( A 1 ) A / ( | t | ) ( A i ) 

= | k i | ( A i ) A / ( | k | ) ( A i ) = | k i | A / ( | k | ) ( A i ) = | k i | , 

which is a contradiction . • 

L e m m a 2.7 . Let k G K2. Then f(k)(K2) = k. 

P r o o f . Denote f(k) - k = x. Then f(x) = 0, whence x G Hi. From f(k) = 

k + x and from ( I ) we obtain f(k)(K) = (k + x)(K) = k(K) -f x(K) = k(K) = k. 

Next, in view of (2), 

f(k)(K?) = f(k)(K)(K2) = *(/v2) = k. 

L e m m a 2 .8 . For each k G A'2 we have f(k) = k -f <p(k). 

P r o o f . In view of (1) and (2) the relation 

f(k) = f(k)(Kt) + f(k)(K2) + f(k)(Ht) 

is valid. Hence in view of 2.6 and 2.7 we have f(k) = k + <p(k). D 
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P r o o f o f T h e o r e m ( B ) . 

Denote A\ = K\, A2 = K2, A3 = H\. For h G / / let /it be the component of 

h in Ai (i = 1,2,3). In view of (1) and (2) we have h = h\ + h2 + h3, whence 

f(h) = f(h\) + f(h2) + / ( / i 3 ) . According to 2.3, /(/*i) = h\. Next, <p is a complete 

isomorphism of A2 into A\ and in view of 2.8, f(h2) = h2 + <p(h2). Therefore 

f(h) = h\+h2+<p(h2). 

D 

The following result sharpens Theorem 4.13 of [6]. 

P r o p o s i t i o n 2.9. Let H be a complete lattice ordered group, H = (i)A x B, and 

let f be a complete retract mapping of H. Then there exist internal decompositions 

A = (i)A\ x A2, B = (i)B\ x B2, 

A\ = (i)A\\ x A12 x A13, B\ = (i)B\\ x Hi2 x Bi3 

anci complete isomorphisms p\o: A\2 —* Ai3, <p2o: B\2 —• Hi3, <p\: A2 —+ B\, <p2: 

A2 —* A\, tp\ : B2 —> A i, \\>2 : B2—*B\ such that 

(i) for each a2 £ A2 and each b2 G B2 the relations 

/ 2 ( ^ i ( a 2 ) ) = 0 = / i ( ^ 2 ( a 2 ) ) , / i ( 0 i ( 6 2 ) ) = 0 = /2(V;2(/-2)) 

are valid; 

(ii) for each h £ H the relation 

f(h) = f\(h(A\))+p2(h(A2))+h(A2) + <p\(h(A\)) 

+ f2(h(B\)) + V>2(Mfl2)) + Wh) + ^!(/i(/?2)) 

holds, where f\(h\) = h{(A\\) + f\(A{2) + <p\o(h\(Al2)) and f2(h2) = h2(B\\) + 

' l
2 ( -9 i 2 ) + ^>2o(/*2(-9i2)) for each h\ G Ai and each h2 G B\. 

P r o o f . The assertion follows from Theorem 4.13 in [6] and from (B). • 

P r o p o s i t i o n 2 .10 . Let H be a lattice ordered group, H = (i) ]\ Hi. Let f be a 
iei 

complete retract mapping of H. Then 

WP) = wnPi); 
(ii) for each i G / , the mapping <pi(hi) = / ( / i t ) ( / / , ) is a complete retract mapping 

of Hi and the lattice ordered group / ( / / » ) is isomorphic to /(/ / ,-)(// ,-) . 

P r o o f . The assertion (i) was proved in [7], Theorem 2.4. Let i G /• Since / is 

a complete endomorphism of / / and since the mapping tp(h) = / i ( / / t ) is a complete 

eiulomorphism of H as well, we infer that <pi is a complete endomorphism of Ht. The 

remaining part of (ii) was proved in [G] (Lemmas 2.6 and 2.7). • 
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Corollary 2.11. Let H be as in 2.10. Then each complete retracts of H is 
isomorphic to a direct product of complete retract of the factors Hi (i G / ) . 

Next, 2.10 and (B) yield: 

Theorem 2.12. Let H be a complete lattice ordered group and let f be a com-
plete retract mapping of H. Let A\, A2 and A3 be as in (B). Then the complete 
retract / ( / / ) of H is isomorphic to the direct product A\ x A2 x A2. 

3. COMPLETE RETRACT VARIETIES 

A retract variety of abelian lattice ordered groups is defined to be a nonempty class 
of abelian lattice ordered groups which is closed under direct product and retracts. 

(Cf. [7].) 

Definition 3.1. A nonempty class of abelian lattice ordered groups is said to be 
a complete retract variety if it is closed under direct products and complete retracts. 

Let 0 be the class of all one-element lattice ordered groups. Further, let C be the 
class of all complete lattice ordered groups. 

Lemma 3.2. Let H G C and let / ( / / ) be a complete retract of H. Then 

f(H) € C. 

P r o o f . Let us apply the notation from (B). Since H is complete, each direct 
factor of H is complete; hence A\ and A2 are complete. Thus in view of 2.12, / ( / / ) 
is complete as well. D 

Corollary 3.3. C is a complete retract variety. 

Let us denote by Rc the collection of all complete retract varieties; next, let R% 
be the collection of all elements A' of Rc with A' C C. Both the collections Rc and 
R® will be considered to be partially ordered by inclusion. Let # be the class of all 
abelian lattice ordered groups. Hence 0 and & is the least element or the greatest 
element of RC1 respectively. 

When considering a class X of lattice ordered groups we always assume that X is 
closed with respect to isomorphisms. 

Theorem 3.4. Let 0 ^ A' C C. Then the following conditions are equivalent: 
(i) X is a complete retract variety. 
(ii) A' is closed under direct products and direct factors. 
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P r o o f . Since each direct factor of a lattice ordered group is a complete retract, 
we infer that (i) => (ii) holds. Let (ii) be valid and let H G X. Let f(H) be a 
complete retract of H. We apply the notation from (B); then A\ and A2 are direct 
factors of H. Thus in view of 2.12, f(H) G X. Hence (i) holds. D 

E x a in p 1 e s 3.5. For each infinite cardinal a let X(a) be the class of all complete 
lattice ordered groups which are a-distributive. In view of 3.4, X(a) is a complete 
retract variety. 

Next, for each infinite cardinal a let Y(a) be the class of all complete lattice 
ordered groups H which have the following property: if {ht}t€/ ls a disjoint subset 
of H with card / ^ a, then V /i, does exist in H. Again, in view of 3.4, the class Y(a) 

» € / 

is a retract variety; if a and /? are infinite cardinals with a < /?, then Y(a) C Y(f3). 

Hence the mapping a —• Y(a) is an order-preserving injection of the class of all 
infinite cardinals into the collection R®. 

Let J / X C # ; we denote by 
rcX—the class of all complete retracts of elements of Ar; 
4>A'—the class of all internal direct factors of elements of K; 
wX—the class of all direct product of elements of X. 

Lemma 3.6. Let J / X C ^ . Then 

(i) irrcX is a complete retract variety; 

(ii) ifY G Rc and X C Y, then *reX C Y; 

(iii) if X C C, then 7r4>K = 7rrcA'. 

P r o o f . The assertion (i) is a consequence of 2.10; (ii) is obvious. Finally, (iii) 
follows from 3.4. D 

In view of 3.6 (i) and (ii), the complete retract variety irrcX will be said to be 

generated by the class A'. 
Let I be a nonempty class and for each i G I let A',- be an element of Rc. Put 

Y = (]Xi mdZ = x\JXi. 
* € / «€ / 

Lemma 3.7. Let A',, Y and Z he as ahove. Then 

(x)YyZ£Rc; 

(ii) Y = A *i '» Rc; 
« € / 

(iii) Z = V xi >n Rc-
*€/ 

P r o o f . The relation Y G Rc is obvious. Hence (ii) is valid. Since rcXi = A, 
for each i G I, we have Z € Rc. Then clearly (iii) holds. • 
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In view of 3.7, the terminology of the lattice theory will be applied for Rc. 

Theorem 3.8. Rc is a Brouwer lattice. 

P r o o f . In view of 3.7, Rc is a complete lattice. The remaining part of the 
proof can be done analogously as in [7], Lemma 3.5 (where the lattice of all retract 
varieties was dealt with). • 

Since R® is the interval [0, C] of Rc, we obtain 

Corollary 3.9. R°c is a Brouwer lattice. 

The notion of a large lexicographic factor of a linearly ordered group was intro­
duced in [6]. It is obvious that if G is a large lexicographic factor of a linearly ordered 
group H, then G is a complete retract of H. Hence from 3.4 in [7] and from 3.6 we 
infer: 

Proposition 3.10. Let 0 -̂  X be a class of linearly ordered groups. Then the 
complete retract variety generated by X coincides with the retract variety generated 
by X. 

Corollary 3.11. Let 0 ^ A' be a class of linearly ordered groups and let T(X) 

be the retract variety generated by X. IfT(X) is an atom in R, then T(X) is an 

atom in Rc. 

Thus 5.3 in [7] yields 

Proposition 3.12. There is an injective mapping of the class of all infinite car­
dinals into the collection of all atoms of the lattice Rc. 

By the same method as in [7], 5.6-5.8 we can verify that Rc has no dual atom; 
similarly, R® has no dual atom. 
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