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Introduction and theorems. In this paper we shall always deal with connected
Riemannian manifolds with positive definite metric, and suppose that manifolds
and quantities are differentiable of class C°°. Let M be an »-dimensional Rieman-
nian manifold with metric tensor field (0 g^. We call a nonconstant scalar
field p in M a concircular scalar field, or simply a concircular field, if it
satisfies the equation

(°-!) V^p = <bgßX,

where v indicates covariant differentiation with respect to gßX and <¡> is a scalar
field, called the characteristic function of p. The term "concircular" comes
from the concircular transformation introduced first by K. Yano [17]. Aeon-
circular transformation is by definition a conformai transformation preserving
geodesic circles.

Concircular scalar fields and transformations appear often in the theory of
transformations in Riemannian manifolds, see for instance [3], [14], [15], [17],
[18], [20]. Therefore it might be interesting and important to study properties
of a concircular scalar field and in particular to determine the structure of mani-
folds admitting such a field. We shall treat this problem in the first five paragraphs
and apply the results to the determination of structure of product Riemannian
manifolds admitting a conformai or projective infinitesimal transformation in
the last three paragraphs.

We denote the number of isolated stationary points of a concircular scalar
field p in M by N. After preliminaries are stated in §1, we shall prove in §2 the
following

Theorem 1. If a complete Riemannian manifold M of dimension n_2
admits a concircular scalar field p, then N _ 2 and M is conformai to one of the
following manifolds:

Received by the editors July 26, 1961 and, in revised form, February 4,1963.
(') As to notations we follow generally S. Ishihara and Y. Tashiro [4], J. A. Schouten [12]

andK. Yano [19]. Someofourterminologies are different from Schouten's, in which a gradient
vector px satisfying (0.1 ) is called a special concircular vector. We shall use the term "concircular
vector field" for an infinitesimal concircular transformation. Greek indices K,A,p, v, a> run from
lion.
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(A) if N = 0, a direct product VxJ of an (n-l)-dimensional complete
Riemannian manifold Vwith an open interval J of a straight line,

(B) if N = 1, an n-dimensional euclidean domain interior to an (n—1)-
dimensional sphere, and consequently an n-dimensional hyperbolic space, and

(C) if N = 2, an n-dimensional spherical space.

By a spherical or hyperbolic space of curvature k we mean a simply connected
complete Riemannian manifold of positive or negative constant sectional cur-
vature k respectively.

If its characteristic function ch is of the form(2) cb= —kp+ A with constant
coefficients fc and A, a concircular scalar field pis called a special one and k the
characteristic constant of p. §3 is devoted to studies of special concircular fields,
and we shall give the following

Theorem 2(3). Let M be a complete Riemannian manifold of dimension
n ^ 2 and suppose it admits a special concircular field p satisfy ing the equation

(0.2) V^VAp = (-fep + b)g^.

TAen M is one of the following manifolds:
(I, A) if k= b = 0, the direct product Vx I of an (n-l)-dimensional com-

plete Riemannian manifold Vwith a straight line I(4),
(I, B)    if k = 0 but A # 0, a euclidean space(5),
(II,A) if k=—c2<0 and N = 0, a pseudo-hyperbolic space of zero or

negative typei6),
(II, B) if k= — c2 < 0 and N = 1, a hyperbolic space of curvature — c ,and
(III)   if k = c2 > 0, a spherical space of curvature c2,

where c is a positive constant.

For brevity, we say a vector field tobe isometric, homothetic, concircular and
so on according as the generated one-parameter group is isometric, homothetic,
concircular and so on, respectively. Moreover, a vector field in Mis said to be
complete if it generates a global one-parameter group of transformations in M.
In §§3 and 4, we shall concern ourselves with concircular vector fields and es-
tablish the following

(2) The minus sign in the right-hand side is put only for convenience.
(3) From this theorem follow Theorem 3 of [4] and Theorem 2 of [15]. However, in the

discussions of [4], we missed case (II, A), which should be added as one of manifolds in the
theorems. Fortunately, Theorem 4 of [4] and Theorem 3 of [15] are still true.

(4) This is a special case of de Rham's decomposition theorem [1].
(5) This case is discussed in S. Sasaki and M. Goto [11].
(6) The definition of a pseudo-hyperbolic space will be given in §3. A hyperbolic space is

a special one of pseudo-hyperbolic spaces.
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Theorem 3. // a complete Riemannian manifold M of dimension «^3
admits a nonisometric concircular vector field v, then M is one of the following
manifolds: (I) a locally euclidean manifold, (II,A)a pseudo-hyperbolic space,
(II,B) a hyperbolic space, (III) a spherical space, and (IV) a pseudo-euclidean
spacei1).

As a consequence, we shall also have

Theorem 4(8). If a complete Riemannian manifold M of dimension n ^ 3
admits a complete nonisometric concircular vector field, then M is a spherical
space or a locally euclidean manifold. In the latter case, the vector field is
homothetic.

In §6, we shall consider a conformai vector field in a product Riemannian
manifold and obtain the following theorem, the establishment of which is the
main purpose of this paper.

Theorem 5. Let M be a complete product Riemannian manifold but not a
locally euclidean one. If M admits a nonisometric conformai vectorfield v,
then M consists of two irreducible parts, M = Mx x M2. Moreover, if the di-
mension of one of the parts is = 3, theni9)

(i) one of the parts is a spherical space and the other a pseudo-hyperbolic
space, or

(ii) one is a spherical or pseudo-hyperbolic space and the other a straight
line or a circle.

If the pseudo-hyperbolic space is, in particular, hyperbolic in case (i), the
scalar curvatures of the parts are equal to each other to within reversed sign.

In §7 we shall consider a decomposition of a conformai vector field in a product
Riemannian manifold. In §8 we shall investigate a projective vector in a product
Riemannian manifold, and prove

Theorem 6(10). // a complete, simply connected product Riemannian mani-
fold M of dimension n = 2 admits a nonaffine projective vector field, then M is
a euclidean space.

1. Preliminaries. We shall assume that manifolds treated in this paper
are of dimension n = 3, unless otherwise stated. Consider a concircular field p
with characteristic function <j>:

(7) A pseudo-euclidean space is a complete, conformally euclidean manifold whose definition
will be given in §5.

(8) This theorem covers the case of a compact manifold discussed by S. Ishihara [5].
(9) Provided n _^ 5, this assumption is satisfied. Moreover, if the scalar curvature k of M

is constant, the theorem is valid without the assumption.
(10) Cf. Y. Tashiro [14] and S. Tachibana [13].
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(i»i) v„vAp = 4>gfl.

If 4> vanishes identically, the gradient vector field px of p is parallel and we call p
a parallel scalar field. If rp is a constant, then px is a concurrent vector field
and we call p a concurrent scalar field.

Applying the Ricci formula to (1.1), it follows that we may put <3;</> = \j/px,
\¡i being a proportional factor, and hence we have

(1.2) K-wSPk = - HPvgpx - P»gvx) ■

By virtue of a theorem due to A. Nijenhuis [9], we obtain

Theorem 1.1( ,). If there exists a nonconcurrent concircular scalar field
in a Riemannian manifold M, then the restricted homogeneous holonomy
group of M is the special orthogonal group SO(n).

The trajectories of the vector field p"= pxgiK are geodesic arcs except at sta-
tionary points of p, and a geodesic curve in M containing such an arc is called
a p-curve. We can define a family of hypersurfaces by p = constant except at
stationary points. A connected component of such a hypersurface is called
a p-hy per surf ace. Passing through an ordinary point P, there exist one p-curve
and one p-hypersurface, which are denoted by l(P) and V(P) respectively. In a
neighborhood of an ordinary point, the family of p-curves forms the normal
congruence of p-hypersurfaces. By the same arguments as those in the proof
of Theorem 1 in [4], we have

Lemma 1.2. Given a concircular field p in a Riemannian manifold M, we
can choose a local coordinate system (uK) in a neighborhood of any ordinary
point as follows. The first n—1 coordinates m1,»",«""1 belong to p-hypersur-
faces, and the last coordinate u" is equal to the arc length of p-curves. The
concircular field p depends only on u". The metric form of M is given Ay(12)

(1.3) ds2 - ip'ffjfu^d^du1 + idu")2 ,

where the functions /¿¡(w*) depend only on n1,—••*" • and prime indicates
ordinary derivative of p with respect to u".

Such a coordinate system (uK) = (u*, u") is called an adapted one. The p-hyper-
surfaces in a neighborhood are homothetic to each other and to an (n — l)-di-
mensional manifold F with ds2 =fJiduidul as metric form. With respect to the
system (uK), the Christoffel symbols

(u) Theorems 2 and 3 of S. I. Goldberg [3] follow immediately from this theorem.
(!2) Latin indices h, i,j, k run from 1 to n -1.
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of M are given by
U)

<>•<>   („M - ft) - v/rt*. (;} - (,;) - »■
nn /in

= 0,

where

tt)

is the Christoffel symbol of the metric tensor fJt in V. The curvature tensor
KVftX" of M is given by

Kyj* =   Kkji * - (P")2(àhkfji - àjfki),

(1.5) KnJ¡" =   -Kjni- =   -p'pmfy„

Knjnh=   -KJnnh  = (p'"/p')è),

the other components being trivially zero, and the scalar curvature k is given by

(1.6) «-[(«- 2)k -in- 2)(p")2 - 2p'p'"]/n(p')2,

where Rk}lh and ic are the curvature tensor and the scalar curvature of F respec-
tively. The gradient vector field px has components p'ö", and its length ||p|| is
given by |p'|.

Let O be an isolated stationary point of p, if there is any, and W a spherical
neighborhood of 0, which contains no stationary point except O and any point
of which can be joined to O by a unique geodesic arc. The characteristic function
(f> is a function of p in Wand differentiable in pin the open domain W— 0. Along
any geodesic curve in W, the equation (1.1) is reduced to the ordinary differential
equation

(1.7) % = m,
s being the arc length of the geodesic. Every geodesic issuing from O is a p-curve,
and every Riemannian hypersphere with center O in IF is a p-hypersurface and
an (n— l)-dimensional spherical space (13). Hence the metric ds2=fjiduidu1 of V
is of positive constant scalar curvature k and we put ic = c2. If the arc length s
of the p-curves issuing from O is measured from O and s tends to zero, then

(13) See Lemmas 1 and 5 of [4]. The proof of Lemma 1 in [4] was not exact in some point,
which can be modified by the same reasoning as in the proof of Lemma 2.1 in this paper.
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p'is)/s tends to a nonzero finite value equal to cb(O), in other words, p'(s) is of
the same order as s and differentiable at s = 0. Moreover it follows from (1.6)
that

(1.8) | »p(0)| = |p"(0)| = c.

2. Complete manifolds admitting a concircular field. A p-hypersurface V is
connected and closed in M. For any point P of V, we denote by P(s) the point
lying on the p-curve l(P) at distance s from P. Since p and the derivative p'(s)
along p-curves are constant on V, the field p takes same value p(s) at the points
P(s) corresponding to all points P of V, by the uniqueness of solution of (1.7).
If one of the p-curves has no stationary point, then all of them have no stationary
point. Since M is complete and the p-curves are geodesic, any p-curve / is defined
for all s belonging to the whole interval ( — oo, + co). In this case we put
/ = ( — oo, + co). If one of the p-curves meets a stationary point at distance st
from V at first and no stationary point in the opposite direction, then so do all
of them. In this case we put I = (st, + oo). In the case where one of the p-curves,
and consequently all of them, meet at first two stationary points at distances
Sy and s2 in the opposite directions, we put / = (sy,s2). The derivative p'(s) does
not vanish on the arc corresponding to 7 of a p-curve, and p is a monotone function
of s. Therefore the arc is diffeomorphic to the interval I in either case. The points
Pis) with same value s e / all lie in a connected p-hypersurface, and hence we have
a diffeomorphism v of the product V x I into M. In the first case where the p-curves
from points of V have no stationary point, the image v(F x 7) is obviously open
and closed in M and therefore v is an onto-diffeomorphism. By means of Lemma
1.2, the metric form of M is expressed in the form

(2.1) ds2 = ip'iu"))2dl2 + idu")2, u" el,

in viVx I), where ds2 is the metric form of V.

Lemma 2.1. // M is complete, then a stationary point of a concircular
field p is isolated.

Proof. If one of the p-curves issuing from points of V meets at
first a stationary point 0 at distance s y, then so do all of them. Since lims_sip'(s) = 0,
all the p-curves meet each other at the stationary point 0. Describe the Rie-
mannian hypersphere V with center 0 and radius sx. It is easily seen that the
intersection Vr\ V is open in V, and I7coincides with V and hence 0 is isolated.

Q.E.D.
By means of the above discussions and by use of normal coordinate systems

in spherical neighborhoods of stationary points, if there are any, we can state
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Lemma 2.2(14). 2/ a complete Riemannian manifold M admits a concircular
field p, then the number N of stationary points ofp is ^ 2 and M is diffeomorphic
to one of the following manifolds:

(A) the direct product Fx / of an in—l)-dimensional complete Riemannian
manifold V with a straight line I, if N = 0,

(B) a euclidean space, if N = 1, and
(C) a sphere, if N = 2.

The metric form of M is globally given by (2.1) except at stationary points,
and the interval of u can be taken as (0, + oo) in case (B) and (0,s2) in case
(C), s2 being the distance between two stationary points.

Proof of Theorem 1. Case (A). Along the p-curves, we define a parameter r by

r   ds
(2.2) ris) = JoTp-77J)]> sei = (-co,+ co),

which is a monotonely increasing function of s. Put rx = lims_ _ œr(s) and
r2 = lims_ + .„/"(s), which may be the minus or plus infinities, and let J be the inter-
val (rx,r2). Since we have dr = ds/\p'(s)\, the metric form of Mis equal to

(2.3) ds2 = p'(uf(Ts2 +dr2), red,

in the whole manifold M. Thus M is conformai to the direct product V x J.
Case (B). Taking a value sx e(0, + co)and using the positive constant c = ¿c1/2,

we define along the p-curve a parameter r by

(2.4) r(s) = expcJ j-^jt, 0<s< + oo,

which is a monotonely increasing function of s. By the fact that p\s) is of the
same order as s and by (1.8), we can verify that ris) is of the same order as s when
s tends to zero, and hence lims_0r(s) = 0. Putting r2 = lims_00/-(s) ^ + oo, the
parameter r varies in the interval [0, r2) as s varies in [0, + oo). Since
dr/r = cds/|p'(s)|, the metric form of M is equal to

(2'5) d$2 = (l£$-)2[C"V5? + dr2] ' °<r<r2,

in M — O. Since cds is the metric of an (n — l)-dimensional unit sphere, the ex-
pression in the brackets of (2.5) is the polar form of an n-dimensional euclidean
metric. On the other hand, taking account of the order of p'(s) and ris), we can
see that the coefficient p'is)/ris) is not equal to zero but it is difierentiable
atO.

0«) Cf. T. Maebashi [8].
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Thus M is conformai to the euclidean domain interior to an (n — l)-sphere with
radius r2.

Case(C). By (1.8), we have |c6(0)| = \cb(0')\ = c at the stationary points O
and 0'. Putting s2 = 2sy for the distance between O and O', along the p-curves,
we define a parameter 0 by

fs     ds
(2.6) Ois) = 2arctanexpc        .   ., . ■ , 0<s<s,,

JS1 |p(s)|

which is a monotonely increasing function of s and has values lims_o0(s) = 0,
B(sy)=n/2, lims^,2ö(s) = n. Hence 0 varies in the closed interval [0,7i] as s
varies in [0,s2]. Since d0/sino = cds/|p'(s)|, the metric form of M is given by

(2.7) ds2 = (t P. \J,A [(sin0)2c2Ts2 + dö2],        0 < 0 < n,
\c sin Q'u")/ L J

in M — O — O'. The expression in the brackets is the polar form of the metric
of an n-dimensional unit sphere. Noticing the order of p\s) and Ois), we can
verify that the factor p'(s)/sin0(s) is not equal to zero but differentiable at both
the stationary points O and 0'. Therefore M is conformai toan n-dimensional
spherical space. Q.E.D.

In the case of a two-dimensional Riemannian manifold M, we can develop
arguments in just the same way as in the theory of surfaces in an ordinary euclid-
ean space. By means of Gauss' theorem(15), the metric form of M is given by

(2.8) ds2 = ip'iu2))2 (du1)2 + (du2)2 .

Therefore the results in this paragraph and Theorem 1 are also valid for two-
dimensional manifolds. In particular, we notice that the Gaussian curvature of
M is given by

(2.9) K    =    Ky22y/gyy   =    ~P'"/p'.

3. Special concircular scalar field. Now we consider a special concircular sca-
lar field p satisfying the equation

(3.1) V/xVAp = (-kp + A)gJnx-

Along any geodesic curve / with arc length s, this equation is reduced to the or-
dinary differential equation

(3.2) g + kp = A.

According to the signature of the characteristic constant k, we put

(3.3) k = 0   (I), -c2   (II),   c2   (III),

(15) See, for instance, [2, p. 174].
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c being a positive constant. Choosing suitably the arc length s, the solution of
(3.2) is given by

f(I,A)      as (6 = 0),
(I,B) ibs2 + a (6#0),

(II, A0) a exp cs — b/c2,

(II,A _) a sinh cs — b/c2,

(II, B) a cosh cs — b/c2,

. (Ill) a cos cs + £>/c2 »

a being an arbitrary constant. If / is in particular a p-curve, then the length
I p I of the gradient vector field px is given by

(I,A) |a|,

(I,B) \bs\,
(II, A0) |acexpcs|,

(II,A_) |accoshcs|,

(II, B) | ac sinh es |,

(III) | ac sin csj

along /, in the respective cases. If M is complete, then there is no stationary point
in cases (I,A), (II,A0) or (II,A_), one corresponding to s = 0 in cases (I,B) or
(II, B), and two corresponding to s = 0 and s = n/c in case (III), respectively.

Proof of Theorem 2. In the cases belonging to case (A), N = 0, we choose
the arc length s of p-curves suchthat the points corresponding to s = 0 lie on the
same p-hypersurface, and then the coefficient a is same for all p-curves. Taking
s as the nth coordinate u", it follows from (2.1) that the metric form of M is given
by _

(-(I, A) a2ds2 +idun)2,

(II, A0)      (ac exp cu")2Ts2 + idu")2, u"el,

. (II,A_)     (accosh cu")2ds2 + (dunf .

A complete Riemannian manifold, which is topologically a product Vxl and
has the metric form (II,A0) or (II,A_) of (3.6), is called a pseudo-hyperbolic
space of zero or negative type respectively.

In the cases belonging to (B), N = 1, we have

'(I,B)    \b\,
(II, B)   laic2

(3.6) ds2 =

(3.7) c = |<p(0)| =
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by (1.8). The parameter r defined by (2.4) is equal to

f(I.B)     s/B, n^(3.8) tis) = \ 0^s<co,
[(II,B)   (2/B)tanh(cs/2),

where B is a positive constant and the factor 2 in (II, B) is put only for convenience.
The interval of ris) is [0, + oo) in case (I,B) or [0,2/B) in case (II, B). By (3.4)
and (3.8), we have

i(LB)    BAr,
(3.9) p'is) =

[(II.B)   Bacr/(l-Br2/4).

By (2.5), (3.7) and (3.9), the metric form of M is given by

f(I,B)      B2ir2c2Ts2 + dr2),
(3.10) ds2 -\ B2 y _

^(II'B)     ^H-B2r2/4)2^ë2ds2 + dr^

Since the expressions in parentheses are the polar forms of a euclidean metric,
the first metric form itself is also euclidean. The second expression without the
constant factor B2/c2 is a hyperbolic metric of curvature — B2 and consequently
the second itself is a hyperbolic one of curvature — c2.

In case (III) belonging to (C), we have c= | cb(0) \ = \ a \ c2 by (1.8). The param-
eter 0 defined by (2.6) with st = 7i/2c is equal to 0 = cs, and we have
p'(s) = — acsin 0. Therefore the metric form of M is given by

(3.11) ds2 = (1/c2) [(sin 0)2c2Ts2 + dO2},

which is a spherical metric of curvature c2. Q.E.D.
It is to be noticed that the arbitrary constant a in (3.4) has no effect on the

structure of the manifolds and the constant A has also no effect in case (I,B).
In the case of a two-dimensional manifold M, the equation (3.1) is also reduced

to (3.2) in an adapted coordinate system. Hence, by (2.9), the Gaussian curvature
K is equal to the characteristic constant k and the manifold M is of constant
curvature 0 in case (I), — c2 in case (II) or c2 in case (III). Since a complete one-
dimensional manifold is a straight line or a circle, M is diffeomorphic to a eu-
clidean plane or a cylinder in the cases belonging to (A). Theorem 2 is therefore
sharpened in such a way that M is a plane or a cylinder with euclidean metric
in case (I,A) or with a hyperbolic metric in case (II,A).

From the equations (1.5), we can easily prove the following.

Lemma 3.1. In order that a pseudo-hyperbolic space M is locally hyper-
bolic, i.e., of negative constant sectional curvature, it is necessary and suf-
ficient that the p-hy per surf aces are locally euclidean if M is of zero type in case
(II,A0), or locally hyperbolic if M is of negative type in case (II,A_).
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(3.13)

The gradient vector field p" of a special concircular field p is parallel in
case (I,A) or concurrent in case (I, B), that is, it is a special homothetic vector
field. If M is complete, then the vector field is complete [10], [21]. It is complete
in case (III), too, because M is compact. Conversely we can prove the following.

Lemma 3.2. If M is complete and the gradient vector field pK of a special
concircular field p in M is complete, then the characteristic constant k should
not be negative and M is one of the manifolds of(I,A),(I,B)a/id(IH) ofTheorem2.

Proof. The canonical parameter t of the vector field pK is defined by the
equation

(3.12) ds/dt = p'is)

along a trajectory of pK, which is a p-curve. We may suppose a = 1 in case
(I,A), b = 1 in case (I, B) and a = 1/c in cases (II) and (III). By integrating (3.12)
substituted from (3.5) and expressing p as function of t, we have

(I,A)       í-í0,

(I,B)      (l/2)exp2(i-r0) + a,

(II,A0)    -l/[c2(í-í0)]-fc/c2,

(II,A_)  (l/c)cotC(t-t0)-t»/c2,

(II, B)      - (1/c) tan c(r - r0) - b/c2,

(III)        -(l/c)tanhc-(i-fo) + &/c2,

i0 being an arbitrary constant. Hence p has a singularity corresponding to t= t0
incase(H,A0)or(II,A_)orto t = r0 + n/2c in case (II, B) on any p-curve. Q.E.D.

4. Concircular vector field having non-euclidean p-hypersurfaces. We denote
by £„ Lie differentiation with respect to a vector field v. A conformai vector field,
or an infinitesimal conformai transformation, v = {vK) is characterized by the
equation

(4-1) £„gßX = V„^+ V^ = 2pgßX,

p being a scalar field, called the associated scalar field with v. A conformai vector
field v is homothetic if p is a constant, and concircular if it is concircular [18], [5],

(4-2) V^V^p = <?£„*.

In an Einstein manifold M with Ricci tensor KpX = in — V)KgpX, a conformai
vector field v is concircular and its associated scalar field p is a special concir-
cular one having k as characteristic constant [20],

(4-3) Vppx = -Kpg^.
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In particular, if M is locally euclidean, p is parallel. We know a theorem due to
S. Kobayashi [6] and K. Yano and T. Nagano [21], which will play an important
role in our discussions.

Theorem 4.1. // a complete Riemannian manifold M of dimension n S: 2
admits a nonisometric homothetic vector field, then M is locally euclidean.

Now we consider a concircular vector field v in a manifold M of dimension
n ^ 3. If the associated scalar field p is not constant, then there is an adapted
coordinate system (uK) where the metric form of M is given by (1.3). By use
of (1.4), the equation (4.1) is written separately as

•?/», + ViVj = 2(pp'2 - p'p'vjfj,,

(4.4) ônvi + diVn = 2(p"/p')vi,

S„v„ = P,

V denoting covariant differentiation with respect to

K)
belonging to p-hypersurfaces and prime indicating ordinary derivatives with
respect to the nth coordinate u". The components vh restricted on eachp-hyper-
surface F together define a vector field on V, which will be called the restriction
oft; on Fand denoted by v. The covariant components, denoted by cj;, of v with
respect to/,» are related to v¡ by v¡ = p'2C¡, and we have from (4.4) equations

(45) Vjtt+VtSj = 2[p-(p"/p')vn]fß,

d¿t + (l/p')%pm = 0.

The first equation shows that the restriction v on each p-hypersurface F is con-
formal with respect to the metric ds.

Lemma 4.2. Let M be a complete Riemannian manifold. If v is a concir-
cular vector field with parallel scalar field p, then v is isometric unless M is
locally euclidean.

Proof. By virtue of Theorem 2 (I, A), the manifold M is the direct product
of a complete Riemannian manifold V with a straight line I. It follows from
(4.5)! (16) that we have

(4.6) Vjtt+Vitj - 2pffi

(i«) Parentheses suffixed with numbers such as ( )i, (    •    )2 and so on indicate to
refer the first, second and so on of the equations ( ).
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on each p-hypersurface. Since p is independent of uh belonging to V, the restric-
tion v is a homothetic vector field in each p-hypersurface. However, by means
of Theorem 4.1 and completeness of V, v is isometric and p vanishes in each
p-hypersurface unless Fis locally euclidean. Hence p vanishes identically unless
M = V x I is locally euclidean. Q.E.D.

Lemma 4.3. If a complete Riemannian manifold M admits a nonhomothetic
concircular vector field v with associated scalar field p and the p-hy persurfaces
are not locally euclidean, then p is a special concircular field with nonzero
characteristic constant.

Proof. Differentiating (4.5)t in u", taking account of 4.4)3 and eliminating
v„, we obtain

(4-7) V^-I-VP,,- = 2ipp'"-p'p")fji,
where we have put

m = (p'pr -pr*)W-prdje,.
The n—1 functions n¡ on each p-hypersurface V together define a vector field
in V, which is isometric unless Fis locally euclidean by the same argument as
that in the proof of Lemma 4.2. Thus we have pp" — p''p"= 0, or p" = — fep,
k being a constant. Since the stationary point of a concircular field in a complete
manifold is isolated by Lemma 2.1, the equation holds along the whole of any
p-curve and it is also rewritten as the tensor equation

(4-8) V„VAp= -kpg)lX

in a general coordinate system. Thus p is a special concircular field with b =0
in (3.1). If k = 0, then p is parallel and the vector field v is reduced to an isometric
one by virtue of Lemma 4.2. Q.E.D.

We notice that manifolds of constant scalar curvature k belong to the above
case even if the p-hypersurfaces are locally euclidean, because we can easily
obtain (4.3) for such manifolds, too, from formulas of Lie derivatives.

Lemma 4.4(17). If its associated^ scalar field p is a special one with fe^O,
the concircular vector field v is decomposed into

(4.9) vK=wK-pK/k,

where wk is an isometric vector field and pk is the gradient vector field of p. If
M is complete and v is complete, then so is pK.

Proof.   Putting   wK= vK + pK/k,   it   follows   from   (4.1)   and   (4.8)   that

(n) Since a conformai vector field in an Einstein manifold is concircular, this is a generali-
zation of A. Lichnerowicz' theorem [7].
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£«.£,.;. = Vßwx + Vxwu = 0 and hence w is isometric. The last part is clear because
an isometric vector field in a complete manifold is complete [10]. Q.E.D.

5. Concircular vector field having locally euclidean p-hypersurfaces. The
p-hypersurfaces may be locally euclidean only in the cases where the associated
scalar field p is constant in M or it has no stationary point. In the former case
the vector field is homothetic and M itself is locally euclidean.

In the latter case, the manifold M is diffeomorphic to the product V x I of
a locally euclidean manifold V with a straight line /, and its metric form is glob-
ally given by (2.1) in which ds2 = /'j¡duJdu' is the locally euclidean metric of V.
By the change of parameters defined by (2.2), the metric form is also expressed as

(5.1) ds2 = p'(r)(ds2 + dr2),

and M is therefore conformai to the direct product M = V x J of V with an
interval J = (ry,r2). The product M is locally euclidean.

In the following, prime indicates the derivatives of p with respect to the param-
eter enclosed in parentheses. Along p-curves with arc length s, we have
P'(r) = P'(s)2. In a local coordinate system iuh,r), the Christoffel symbol of M
has components

(5.2)

where

Ci)   = [/*}'    {ni}  = 12pW)Ô>'      [nn]  " °'
in)   =_lp_lr) (»J (n\
\jif 2p'(rr     M M

1 P\r)
2 p'ir) '

h
fi

is the Christoffel symbol composed from the euclidean metric of V. The co-
variant components, denoted by £x, of the vector field v with respect to the euclid-
ean metric of M are f, =fihvh and ¿j, = v", which are related with vx by the
equation

(5-3) vx = p'ir)ix.

In the system iuh,r) the equation (4.1) is decomposed into

VjVi+ViVj   =  VjVi+ViVj+^~fJivn= 2pp'ir)fj¡,

(5.4) v„»i + V¡f„   = dnv¡ + d¡vn - y^ v¡ = 0,

1 P"(r)
V„f„   = d„v„- 2 ytyfn  ■ ppW-

Substituting (5.3) into these equations, we have
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vtf, + V¿j   = 2 [p - ip'ir)/2p'irM-]fjt,
(5.5) a# + a& = o,

Un   = P-ÍP'ir)/2p'ir))tr
These equations mean that the vector field v is conformai as a vector field in
the locally euclidean manifold M, and hence its associated scalar field is parallel:

(5.6) %Vx[p(r) - ÍP*ir)¡2p'ir))Q = 0,
where v indicates covariant differentiation in M and its part belonging to V
coincides with that of V. Putting A = i, p=j in (5.6), we have VjV¡¿;n = 0 unless

(5.7) p'ir) = 0.

Differentiating covariantly (5.5)2 in M, we have ¿„v,-?,- = 0 and, from the deriv-
ative of (5.5), in r,

p'(r)[2p'(r)2 - pp'Yr)] = \_p'ir)p'"ir) - (3/2)p"(r)2]i„.

This equation means that c;n depends only on r, unless

(5.8) p'ir)p'"ir) - (3/2)p"(r)2 = 2p'(r)2 - pp'Yr) = 0.

Using again (5.5)2, c;,- are independent of r, and we see from (5.5)j that the co-
efficient of the right-hand side is equal to a constant, say

(5.9) p-ip"ir)/2p'ir)K„ = A.

Thus the vector field i; is homothetic as a vector field in M.
We say here a point P e J to be of the first or second kind according as (5.7)

or (5.8) holds at P, and other point to be of the third kind. The sets of points
of the first or the second kind are closed and the set of points of the third kind
is open in J. Since p'ir) does not vanish anywhere in J, the set of points of the
first kind does not intersect with that of points of the second kind.

If the set of points of the first kind contains an interval, then we have there
p'ir) = a2, or

(5.10) pir) = a2r + b,

a being a positive constant and b an arbitrary constant. Similarly, if the set of
points of the second kind contains an interval, then we have there p'ir) = c2p2, or

(5.11) pir) = - l/(c2r + d),

c being a positive constant and d an arbitrary constant. In an interval of points
of the third kind, we have from (5.5)3 and (5.9)

(5.12) Çu»Ar + B,
and, substituting (5.12) again into (5.9),
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(5.13) (Ar + B)p"(r) =   2pp'(r) - 2,4p'(r)
or
(5.14) (Ar+B)p'(r) = p2-Ap + C,

B and C being constants.
When an interval of points of the first or the second kind is in contact with an

interval of points of the third kind, we may suppose that the contact point is
corresponding to r = 0. By substituting successive derivatives of (5.10) or (5.11)
at   r = 0 into (5.13) and (5.14), we can easily prove the following

Lemma 5.1. TAe set of points of the first or the second kind coincides with
the whole interval J or has no interior point. The case of C = 0 in (5.14) is
reduced to the second kind.

Therefore the equation (5.10) holds in the whole interval J in the case of the
first kind, and (5.11) in the case of the second kind. Also, in the case of the third
kind, c;n depends only on r in the whole manifold and we have (5.14) everywhere.

For the first kind, we have p'(s) = a, that is, p is parallel and M itself is locally
euclidean. For the second kind, we have p'(s) = cp, or p = expcs by choosing
suitably the parameter s. This is a special one of case (II, A0) in Theorem 2, where
p-hypersurfaces are locally euclidean. By virtue of Lemma 3.1, M is locally hyper-
bolic of curvature — c2.

For the third kind, we have C ¥= 0. If A = 0 in (5.9), then we have £„ = B and
Bp'(s)2 = p2 + C. Since p has no stationary point, p is a special concircular
one given by (II, A_) of (3.4), and we have p = asinhcs, where B = 1/c2 and
C = a2. Therefore M is a pseudo-hyperbolic space of negative type with locally
euclidean p-hypersurfaces.

If A =£ 0, then we may choose the parameter r such as ¿;B = Ar. The equation
(5.14) is reduced to

(5.15) Arp'(r) = (p - A/2)2 + D,
where D — C — A2. Since vh =fh'^i are independent of r, the orthogonal pro-
jection of the trajectories of v of M into the interval J is given by the differential
equation

(5.16) dr/dt = v" = Ar
with respect to the canonical parameter t of the vector field v. Hence we have

(5.17) logr = At
with initial condition / = 0 for r = 1. Putting t, = (logrx)/A and t2 = (logr2)/A,
the interval L = (ty,t2) corresponds to J = (rt,r2). Substituting(5.16) into (5.15),
we have the equation

(5.18) p'(t) = (p-A/2)2 + D,

whose solution is given by .
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(5.19) p - A/2 =

f -l/(r-r0)     ifD = 0,
ctanc(i- i0)  if D = c2,
ccoth c(i — t0)if D = - c2 and | p > c,
ctanhc(i-f0) ifD = -c2 and |p| < c,

c being a positive constant and t0 an arbitrary constant. From these expressions,
we can obtain four kinds of expressions of pYO and see that the manifold M is
conformai to the locally euclidean manifold M = Fx J and the metric form is
given by (5.1) with one of the expressions of p'(r). We call such conformally
euclidean and complete manifolds pseudo-euclidean spaces.

Theorem 3 follows from Theorem 2, Lemma 4.3 and the above discussions.
Proof of Theorem 4. In the first four cases of Theorem 3, the theorem follows

from Theorem 4.1, Lemmas 3.2, 4.2, 4.4, and the above discussions. Hence we
have only to prove that a concircular vector field inducing a pseudo-euclidean
structure in a complete manifold cannot be complete. If a concircular vector
field v is complete in M, then so is it in M because M has the same underlying
manifold as M. In order that the equation (5.17) is valid for the whole interval
L = (— oo, + oo) of the canonical parameter t, the interval J of r must be the
open half interval (0, + oo). Then t may be regarded as an ordinate of M, and
p is given by (5.19). In the first three cases, p has a singular point at t = i0,
t0 + 7t/2c or t0 respectively. In the fourth case, we proceed as follows: From
(5.15M5.19), we have

ids/dt)2 = - A (exp At) c2 sech2 c(i - r0).

Since p'{r) = pYs)2 1S positive, A should be negative and exp At/2 < 1 for r_ 0.
Thus we have

s — s0 < ci — A)i/2       sechcit — t0)dt
Jo

= ( —/4)1/2arctansinhc(/- t0),

s0 being a constant. Hence, as / tends to the infinity, s — s0 tends to a finite value
less than ( — A)l'2n/2. This contradicts to the existence of the homeomorphisms
I = (- oo, + oo)<-> J = (0, + oo)«->-L - (- oo, + oo). Q.E.D.

6. Conformai vector field in a product Riemannian manifold. We consider a
product Riemannian manifold M = M, x M2 x ••• x Mp of a number of Rie-
mannian manifolds M, it = l,---,p). We call each manifold M, or its isometric
diffeomorphe in M a part of M. The part diffeomorphic to M„ passing through
a point P, is denoted by M,iP). The orthogonal projection onto each part M,(P)
of a vector field v restricted on M,iP) is a vector field in M,iP), which will be
called the restriction of v on M,(P) and denoted by v(t).

By the use of a separate coordinate system, we proved in [16] that, if a product
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Riemannian manifold M has at least three parts, then a conformai vector field
y in M is a concircular one with parallel associated scalar field. Therefore it fol-
lows from Lemma 4.2 that

Theorem 6.1. If a complete product Riemannian manifold M has at least
three parts, then a conformai vector field in M is isometric, unless M is locally
euclidean.

Proof of Theorem 5. By virtue of the above theorem, our consideration may
be confined with a product Riemannian manifold M of two complete parts My
and M2, where occur the following two cases :

(i) Both My and M, are irreducible, or
(ii)  My is irreducible and M, is a straight line or a circle.
Let the dimension of M ! be m. We denote a separate coordinate system in M by

ix',x"), ix") belonging to My and (x*) to M2(18). The metric tensor of M is
given in the form

gynix")        0
(g„x) =

I     0        gnix") J
In such a system, we have the equations

(6.1) VytV + Vßv7 = 2pgyß,   vzv„ + vavT = 2pgt„

and

(6.2) \7yS7ßp = <f>gyß,   VtV„p = - cbgw,
see [16]. These equations mean that the restrictions o(1) = (ua)and v{2) =*iv")
define concircular vector fields in MyiP) and M2(P) for any point P, respectively.
For the proof of Theorem 5, it is sufficient to show that we have

(6.3) 4> = -kp
in the whole manifold M, fc being a nonzero constant, and to apply Theorem 2.

If <f> vanishes identically, then the restriction py of p on My(P) through any
point P is constant, because My is irreducible. Hence pß = dßp vanish in MX(P)
for any point P and we have xjzpß = dzpß = 0 in M. Hence p is parallel in M
and the vector field v is reduced to an isometric one. By the same reason, the case
where either px is constant on MX(P) or p2 is constant on M2(P) for any point P
can be excluded from our consideration. Hence cb does not identically vanish,
and if (6.3) holds then k is not equal to zero. Therefore there exists a point P
such that the restrictions px and p2 of p on My(P) and M2(P) are properly con-
circular scalar fields and v(l) and v(2) are concircular vector fields in My(P)and
M2(P) respectively. By the assumptions of the theorem, we may suppose m ^ 3.

(18) Greek indices a, ß, y run from 1 to m, and p, a, x from m + 1 to n. The first Latin
indices a, b, c belong to pi-hypersurfaces Vx in MX(P) and run from 1 to m — 1.
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The case where px-h y persurfdees Vx in Mx are not locally euclidean. By
Lemma 4.3, px is a special concircular field in MxiP), and we have

(6.4) VyVpPi = -kpxg7ß,

k being a nonzero constant. By Lemma 1.2, there exists an adapted coordinate
system (»fl,y) in MxiP) except stationary points of px, and the metric form of
MxiP) is given by

ds2x = ip[)2fcbducdub + dy2

in which we denote the /nth coordinate by y in place of um and prime indi-
cates ordinary derivatives in y. The coordinate system iu",y;x°) is a separate
one of M in a neighborhood containing M2iP). Then the Christoffel symbol

belonging to M, is given by (1.4) in which the indices are replaced by those be-
longing to Mx and p by the restriction px on MxiP). By the same method as we
have derived (4.4) from (4.1), the equation (6.1)! is decomposed into

Veu* + vbvc = 2(p/2p - plp'ivm)fch,

(6.5) dyvb + dbvm = 2ipl/p'0vb,

¿V,„ = p,
and (6.2)i into

VCV„P = [p'i24>-p'ip"i(dyp)]fcb,

(6.6) dydbp = ipx"/p[)dbp,

dydyP = CO,

where v indicates covariant differentiation with respect to fcb in Vx. The equa-
tion (6.4) is now reduced to

(6.7) p'i = - kPx
and we have
(6.8) p'2=-kp2-A,

A being a constant. From (6.6)2 we obtain

(6.9) p[dsp = -kpxp-ct,

where ais a function independent of u". From (6.5)t and its derivative in y, we
eliminate vm by the use of (6.5)-(6.9) and obtain

(6.10) VcPi, + V„pc = 2pi2 iAp - pia)fcb,

where we have put
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Pb = (kp? - P'i>b + PlP'lÔyVf

Moreover, from (6.10) and its derivative in y, we eliminate p and obtain

(6.11) ycq„ + V¡,gc = - 2pxp{3(dya)fcb,

where we have put

qh = lkpypb + p'ydypb.

Since the coefficient of the right hand side of (6.11) is independent of the variables
u" belonging to Vy, the equation (6.11) means thatg,, defines a homothetic vector
field in p,-hypersurfaces in My(P) and their homeomorphes in the part through
any point of M. However, since p,-hypersurfaces are complete and not locally
euclidean, the vector field qb is isometric by means of Theorem 4.1, and thus
we have dy<x = 0, that is, a is independent of u" and y belonging to My.
Differentiating (6.9) in y and substituting (6.7), we have

(6.12) BydyP=-kp.

Comparing (6.12) with (6.6)3, we obtain the equation (6.3). Since a stationary
point O of py in Mx is isolated if there is any, and the set of points corresponding
to O in M = M. x M2 is the submanifold M2(0), the equation (6.3) holds in the
whole manifold M.

The case where the px-hy persurf aces in My are locally euclidean. In this case
it follows from the discussions in §5 that the part My is conformai to the direct
product My = Vy x J of a locally euclidean complete manifold F. with an open
interval J = (r1,r2).

If Pi is of the first kind in the sense of §5, then the part My is locally euclidean
and p itself is parallel. Hence, by means of Lemma 4.2, the vector field v is iso-
metric unless M itself is locally euclidean. if pY is of the second kind, then the
part My is locally hyperbolic of curvature Kj = — c2. By (4.3), the restriction
of p on the part M, through any point of M is a special concircular field with
characteristic constant fc = kx , and we have hence the equation (6.3) in the whole
manifold M.

If py is of the third kind, then px is a solution of (6.15) rewritten now in the
form

(6.13) {Ar + B)p'y = p2y-APy + C,       C * 0,

with respect to the parameter r. In the remainder of this paragraph, prime in-
dicates ordinary derivatives in r. The restriction px satisfies the relations

(614) PÏ/2PÎ = ipy-A)/{Ar + B),

(PÍ/2PÍ)' - (pW?) = C/iAr + B)2.
Using the solution pL, the metric form of M is given by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1965] COMPLETE RIEMANNIAN MANIFOLDS 271

ds2 = p'xifcbducdu" + dr2) + ids2)2

in a separate coordinate system iu",r;x"), ds2 being the metric of M2. The
Christoffel symbol belonging to M, is there given by (5.2) with indices suitably
replaced and p replaced by p,.

Since Mx has the same underlying manifold as M„ we may consider the co-
variant components of the restriction v(X) on the part Mx through any point
and denote them by £x = iÇb,Çm)- We denote also by \,x the covariant differ-
entiation with respect to the euclidean metric of Mx, whose part vc defines
that with respect to the euclidean metric of Vx. Now, by the same method as we
have derived (5.5) from (4.1), we can obtain from (6.1)j the equations

vA + VbSc = 2[p - OJ/ViKj/«*
(6.15) drZb + d¿m =  0,

d¿m = p-(p'í/2p'iKm.
Putting

(6.16) a = p-(pï/2p'1)^m,

the equations (6.15) imply that the restriction v(X) of v is a conformai vector
field with a as associated scalar field in the part Mx through any point. Since
Mx is locally euclidean and of dimension m ^ 3, we have the equation
yyyßa = 0, which is decomposed into

(6.17) VcV/,a = 0,   drdba. = 0,   ordra = 0.

On the other hand, the equation (6.2)t is separated into

vcv„p = ip[4>-(p'U2p'x)drPycb,

(6.18) drd„P = (p"J2p'x)dbP,

drdrp = P\4> + (PÍV2pi)c\p.

Substituting (6.16) into (6.17)2 and taking account of (6.15)2>3, (6.18)2, (6.14),
we have ôrôba = [C/L4r + B)2]56^m = 0. Since C # 0, c;m is independent of u",
and it follows from (6.15)2 that Çb are independent of r. From (6.15)3 and (6.16),
we see that p is independent of u" and so is a. Since the left-hand side of (6.15)x
is independent of r, a is also independent of r. Hence a is constant in the part
M j through any point, and the restriction i>(1) is homothetic with respect to the
locally euclidean metric of Mx.

Since p is independent of u", we have, from (6.18)i>3,

(6.19) <p = (p'[/2p?)ôrP
and
(6.20) drdrP - (p'i/pi)c\p.
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From (6.15)3, we can put

(6.21) Cm = ar + ß,

ß being a function dependent only of x" belonging to M2, and obtain the equa-
tion

(6.22) p - {p"y/2p'y){otr + ß) + a.

Substituting (6.22) into (6.20), we have the relation

(6.23) Aß = aß.

If A # 0, then we may assume B = 0 by a suitable choice of r and we have ß = 0.
From (6.21), (6.22) and (6.14)l5 we have c;m = txr and

(6.24) p = pyix/A.
Substituting (6.24) into (6.19), we have

(6.25) 4, - (a/A)(p"y/2p\) = <x(Pl - A)/A2r.

Substituting (6.24) and (6.25) into (6.2)2, we have the equation

PiVrV„a = - [(py - A)/Ar~\xg„.

Since py is a function of r and a is independent of r, (pt — A)/Arpy should be
a constant, say k, and hence pt is given by pj = .4/(1 — kAr). However, in order
that this expression is consistent with (6.13), C should vanish and it leads to a
contradiction. If A = 0, then we see that a = 0, c;m = ß, p = Pi/?/B and tf> =p/B.
Putting k = — 1/B, we obtain the equation (6.3). Q.E.D.

7. Decomposition of a conformai vector field.

Theorem 7.1.   Let M be a complete product Riemannian manifold My x M2.
A conformai vector field v with associated scalar field p in M is decomposed into

(7.1) v = {l/k)p* + wy + w2,

where p* is a conformai vector field in M defined by

(7.2) p*' = - p' = - g'%,   p*' = p' = g"pr,

in a separate coordinate system, Wy an isometric vector field along M. and w2
an isometric one along M2. In case (ii), vv2 is in particular a parallel vector field.

Proof.   For a conformai vector field v, we know the equation

(7.3) V„ VxvK + KvltXy = glulpx + gtePp - gvXpK.

Putting k = ß, X = y, p = t, we have vtVyi>/( = pxgyf and, by (6.2)t with (6.3),

Vyldtvß + {l/k)dzPß} = 0.
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Since the expressions in brackets give a parallel vector field in Mx for each value
of t and Mx is irreducible, the expressions should vanish, and hence the com-
ponents vß are expressed as

(7.4) v$ = -(l/k)Pß + wß,

where wß are dependent only on x" belonging to Mx. Substituting (7.4) into (6.1),,
we see that wß satisfy vywß + vßwy= 0. Therefore the vector field w, defined by
(w"0) in the separate coordinate system is an isometric one along M, through
any point.

In case (i), by the same argument, we can put

(7.5) v. = (l/k)pa + wa

and the vector field w2 defined by (0,w")is an isometric one along M2. In case
(ii), putting X = ß and p = n in (4.1) and substituting (7.4), we have
dßv„ = (l/fc)¿V„ and hence may put

(7.6) vn = (l/k)Pn + w„,

where w„ is a function of the nth coordinate x". Moreover, from (4.1) for X = p = n,
it follows that w„ is a constant and the vector field w2 defined by (0,w„) in the
separate coordinate system is a parallel vector field along M2. It is easily seen
that the vector field p* defined by (7.2) satisfies

£p*^A = V„p?+ S7xp* = 2kpgl¡x,

and hence it is conformai. Q.E.D.
Since an isometric vector field in a complete Riemannian manifold is com-

plete, we can state

Lemma 7.2. // a conformai vector field v is complete in M = M, x M2,
then so is the conformai vector field p*.

Theorem 7.3(19). Let M be a complete, reducible Riemannian manifold
and v a complete conformai vector field with associated scalar field p. If the
gradient vector field px has bounded length in M, then v is isometric, unless M
is locally euclidean.

Proof. In the case where M is not simply connected, the universal covering
space M of M is a complete product Riemannian manifold [1] and the natural
extensions of v and p into M satisfy the assumptions of the theorem. So we may
suppose that M is a product Riemannian manifold. The length || p || of px is equal
to the length ||p*|| of p*. A trajectory of p* is an integral curve of the equation
dxK/dt = p*K with respect to the canonical parameter t. The length || p* || satisfies

.   (i») Theorem 5 of S. Tachibana [13] can be obtained from this theorem.
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the equation d || p* || \dt = k and it is given by || p* || = Cexpk/ along any tra-
jectory of p*, C being a constant. Therefore, if v or p* is complete, then || p* ||
is unbounded in M, unless C = 0. If C = 0, p is constant and should be equal
to zero, unless M is locally euclidean. Q.E.D.

8. Projective vector field in a product Riemannian manifold. A projective
vector field, or an infinitesimal projective transformation, v is characterized by

(8.1) t^)   =  vW+K^v* = p.ol + pJl,

where px is a vector field, called the associated vector field with v. As is known,
px is locally the gradient vector field of a scalar field, say p. If px vanishes iden-
tically, the vector field v is affine. For a projective vector field v, we know the
equation

(8.2) £„*:,„/ = d'V.Kj' + Kaßl'^vm+ KKy<oX v,vm+ Kvlt<0Kvxv<°- Kv^œv"

= -ô"v^ltpx + ô"ltvvpx.

Lemma 8.1. Let M be a locally reducible Riemannian manifold of dimension
n ^ 2. If v is a projective vector field in M, then the associated vector field
px is parallel:

(8.3) V„p, = 0.
Proof. If M is locally euclidean, then (8.3) follows immediately from (8.2).

A two-dimensional reducible Riemannian manifold is locally euclidean. We
may therefore assume that M = My x M2 and M, is irreducible, locally. Using
the conventions in §6, and putting k = a, k = ß, p = y, v = t in (8.2), we have
Vypp = 0 and similarly yzpa = 0. Since Mx is irreducible, we have pß = 0 and
hence yzpß = 0. Q.E.D.

Proof of Theorem 6. Since M is supposed to be simply connected, there
exists globally a scalar field p whose gradient vector field is px. By virtue of Lem-
ma 8.1 and Theorem 2 (I, A), M is globally the product V x I of a complete mani-
fold F with a straight line I. In an adapted coordinate system (uh,un), pis given
by p = au"+ b, a and A being constant, and û#0, otherwise v would be affine.
Putting k = h, X = n, p=j in (8.1), we have vJVr,u'= ao¡, which means that
the vector field consisting of components ¿L^'in V(P)is concurrent.Hence, by
virtue of Theorem 2 (I,B), Fis a euclidean space and consequently so is M itself.

Q.E.D.
Theorem 8.2. A complete projective vector field in a complete, reducible

Riemannian manifold is always affine.

Proof. A euclidean space cannot admit a complete nonaffine projective vector
field. Q.E.D.
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