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Abstract

We have characterized the VH and VL genes of three low-affinity polyreactive and two high-
affinlty monoreactive IgM and lgA1 rheumatoid factor (RF) mAb generated using circulating 
CD5+ B cells from a single rheumatoid arthritis patient. We found that four and one RF mAb 
utilized genes of the VHIV and VHIII families, respectively. The VHIV gene usage by these RF 
mAb differs from the preferential VHIII, VHI, and, to a lesser extent, VHII gene usage by the IgM 
with RF activity found In patients with mixed cryoglobulinemia, Waldenstrom's 
macroglobulinemia, and other monoclonal gammopathies. In addition, in contrast to the 
preponderant χL chain usage by the RF In these patients, a λL chain was utilized by all RF mAb 
from our rheumatoid arthritis patient. Two RF mAbs utilized VλI, two VλIV, and one VλIII L 
chains. The VH genes of the two low-affinity polyreactive IgM RF mAb were in germline 
configuration. When compared with the deduced amino acid sequence of the putatively 
corresponding genomic segment, the VH gene of the high-affinity monoreactive IgM RF mAb 
displayed five amino acid differences, all of which are in the complementarity determining regions 
(CDR), possibly the result of a process of somatic point mutation and clonal selection driven by 
Ag. The unavailability of the corresponding genomic VH segment sequences made it impossible to 
infer whether the VH genes utilized by the two lgA1 RF were in a germline or somatically mutated 
configuration. Sequencing of the genes encoding the H chain CDR3 (D segments) revealed that all 
three low-affinity polyreactive RF mAb displayed a much longer D segment (36–45 bases) than 
their high-affinity monoreactive counterparts (15–24 bases), raising the possibility that a long D 
segment may be one of the factors involved in antibody polyreactivity.
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Introduction

The ability of sera from patients with rheumatoid arthritis to enhance the agglutination of 
sheep red cells by specific rabbit antibodies was first recognized more than 40 years ago 
(1,2). Such a biological activity was later determined to be the property of an unusual serum 
component termed rheumatoid factor (RF) )reviewed in 3,4). RF are autoantibodies reacting 
with antigenic determinants localized to the Cγ2 and Cγ3 domains (Fc fragment) of IgG 
molecules. They are mostly IgM, but they can also be IgG and IgA (3,4). Although RF are 
abundant in the circulation and in the synovial fluids of rheumatoid arthritis patients, they 
are also commonly found in other autoimmune diseases, as well as in viral and parasitic 
infections, chronic inflammatory diseases, some neoplasms, and various hyperglobulinemic 
states (4–10). Moreover, in humans, rabbits, and mice, circulating RF appear at high titer at 
various stages of the antibody response to foreign Ag (11–13).

In healthy humans, the precursors of RF-producing cells are mostly surface CD5+ B 
lymphocytes and account for 10–30% of the normal B cell repertoire (14–19). In rheumatoid 
arthritis patients, CD5+ B lymphocytes can constitute up to 60% of the circulating B cells, 
and are spontaneously proliferating and secreting large amounts of RF (17–20). By 
generating mAb-secreting cell clones using CD5+ B cells from such patients, we showed 
that these RF are of two functionally discrete types (17,20). The first type displays a low 
affinity (Kd ~ 10−4–10−5 M) for the human IgG Fc fragment and also binds other self and 
exogenous Ag. These polyreactive RF are the most numerous, and are similar to those 
inducible in CD5+ B cells from healthy subjects (14,16,19) and to the circulating RF 
occurring in patients with a variety of paraproteinemic disorders (4,19,21–24). The second 
type of RF displays a much higher affinity (Kd ~ 10−7 M) for the IgG Fc fragment and is 
monoreactive. To our knowledge, these RF have been isolated so far only from patients with 
rheumatoid arthritis (17,20).

To define the nature of low- and high-affinity RF, we determined the complete sequence of 
the genes encoding the variable heavy (VH) and light chain (VL regions of three polyreactive 
low-affinity (two IgM and one lgA1) and two monoreactive high-affinity (one IgM and one 
lgA1) RF mAb generated using CD5+ B cells from a single patient with rheumatoid arthritis. 
We found that all but one of these RF mAb utilized gene members of the VHIV family and 
all of them utilized a λL chain. The VH genes of the two low-affinity polyreactive IgM RF 
mAb were encoded in the germline. The VH genes of the high-affinity monoreactive IgM 
RF mAb possibly displayed several somatic point mutations distributed in a way consistent 
with a process of clonal selection driven by Ag. The analysis of the junctional VH -diversity 
(D) -joining (J)H sequences suggested that the nature and length of the D segments may 
contribute to determine the RF poly- or mono-reactivity.
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Methods

Generation of mAb-secreting cell lines from human CD5+ B cells

Peripheral blood mononuclear cells (PBMC) were obtained at two different times from a 
Caucasian 58 yr old female patient with clinically active, seropositive rheumatoid arthritis 
(20). B lymphocytes were enriched from PBMC and CD5+ B cells were purified using a 
FACS (FacStar Plus, Becton Dickinson & Co., Mountain View, CA) and specific mouse 
mAb to CD20 and CD5 (Becton Dickinson & Co.), as previously described 
(14,17,20,25,26). Purified CD5+ B cells were infected with Epstein–Barr virus (EBV) and 
then immediately distributed in separate microcultures (1000 cells/well) in the presence of 
irradiated (2000 rad) PBMC as feeders (25–27) EBV transformed B cells from different 
microcultures were selected, by sequential subculturing, for the production of IgM or IgA 
binding to the IgG Fc fragment. These cell lines were then stabilized by fusion with F3B6 
cells, a human–mouse heterohybnd, as described (16,27,28). The resulting EBV-transformed 
B cell hybrids were expanded in selection medium and then sequentially cloned at 0.5 cell/
well Clones were amplified and the secreted mAb were prepared as described (16,27,28). 
IgM and IgA RF were detected using a sensitive and specific ELISA involving purified 
polyclonal human IgG Fc fragment, as previously described (17,20). Competitive inhibition 
studies involving binding of the human mAb to the solid-phase IgG Fc fragment by the 
homologous soluble ligand were used to calculate Kd values (16,26,27).

Analysis of RF mAb VH and Vλ segments

The cDNA VH segment probes used in these studies were: 51P1 (370 bp, VHI) (29), VCE-1 
(310 bp, VHII) (30), 56P1 (460 bp, VHIII) (29), 58P2 (405 bp, VHIV) (29), 83P2 (245 bp, 
VHV) (29), identical with VH251, 15P1 (350 bp, VHVI) (31), and 20P1 (222 bp, VHIII) (29). 
The Cµ, probe was a ~0.6 kb cDNA encompassing part of the Cµ3 and Cµ4 domains. These 
probes were labeled with deoxycytidine [5′-α32]triphosphate (sp. act 3000 Ci/mmol, 
Amersham, Arlington Heights, IL) by random primer digolabeling (32). The Cα1 probe 
consisted of an 18 base 32P-end-labeled oligonucleotide (5′-
TCACACTGAGTGGCTCCT-3′). The Cλ probe consisted of an 18 base 32P-end-labeled 
oligonucleotide (5′-TGTGTCCTTGTTGGCTTG-3′). The Cχ DNA probe consisted of a 
genomic 6.5 kb BamHI fragment. Cellular mRNA was isolated from EBV-transformed cell 
hybrids using the Fast Track kit (Invitrogen, La Jolla, CA). mRNA (2 µg) was slot blotted on 
Gene Screen Plus membranes (Biotechnology Systems NEN Research Products, Boston, 
MA) in 50% (v/v) deionized formamide and 6% (v/v) formaldehyde according to the 
manufacturer's protocol. Blots were hybridized with the different VH probes and washed as 
previously described (33) Autoradiography was performed using Kodak XAR-5 film 
(Eastman Kodak Co., Rochester, NY).

Synthesis of cDNA, and cloning and sequencing of mAb VH and VL genes

Total cDNA was synthesized from 5′ poly(A+) mRNA using ohgo(dT) priming and reagents 
as provided by Pharmacia LKB Biotechnology, Inc. cDNA with EcoRI adaptors on both 
sides was ligated into EcoRI-digested, dephosphorylated λgt11 arms (Promega Biotec, 
Madison, Wl). Recombinant λgt11 was packaged using the Packagene (Promega Biotec) 
packaging extract and used to construct recombinant libraries. Replica filters (Gene Screen 
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membranes, Biotechnology Systems NEN Research Products) from each plate were 
separately hybridized with appropriate 32P-labeled H and L chain gene-specific DNA or 
oligonucleotide probes. Genuine clones were derived from double positive viral plaques by 
two rounds of plating and screening. Viral DNA was purified from amplified λgt11 clones 
using LambdaSorb Phage Adsorbent (Promega Biotec). cDNA inserts were amplified from 
recombinant λgt11 phage DNA using the polymerase chain reaction (PCR) method and 
forward and reverse λgt11 specific primers (New England Biolabs, Beverly, MA). After 
amplification, full-length H chain and L chain cDNA inserts were digested with EcoRI, 
purified, and ligated into EcoRI-digested, dephosphorylated pUC 18 vector (Pharmacia LKB 
Biotechnology, Inc.,). Recombinant pUC 18 plasmids were amplified in DH5α competent 
Escherichia coli cells, purified using Qiagen-pack 100 columns (Qiagen, Inc., Studio City, 
CA). The VH and Vλ gene segments were sequenced by the Sanger's dideoxy chain 
termination method (34), using Taq polymerase (Promega Biotec) and [α-35S]dATP. The 
comparison of the obtained cDNA sequences and their predicted protein translations with 
already known DNA sequences was performed using the programs provided by the 
University of Wisconsin Genetics Computer Group and a VAX11/785 computer.

Isolation of the genomic RF mAb 61 VH segment

To obtain the genomic VH segment putatively equivalent to VH4.18, granulocyte DNA (1–2 
µg) from the rheumatoid patient under study was amplified using a 5′ primer corresponding 
to a part of the V2-1 leader intron (5′-GGGAATTCGTGAATGTTTCTAGGATGCAG-3′) 
and a primer to the 3′ end of the V2-1 and VH4.21 segments (5′-
GGGAATTCAGTAATACACAGCCGTGTCT-3′). Due to the unavalabihty of the leader 
intron sequence of VH4 18, the leader intron sequence of its closest allele, V2-1 (35,36), was 
chosen to synthesize the putatively specific 5′ primer. Using a Perkin Elmer thermocycler 
(Perkin Elmer Cetus, Norwalk, CT), 35 cycles of amplification were performed, each cycle 
consisting of a denaturation step (94°C, 1 min), an annealing step of 2 min at 5°C below the 
calculated dissociation temperature, and an extension step (72°C, 3 min). After the 35th 
cycle, a further extension step was performed for 7 min at 72°C in order to increase the 
percentage of full-length molecules. The PCR product was extracted, ethanol-precipitated, 
dissolved, and digested with EcoRI. The digestion products were separated in a 1.2% 
agarose gel and DNA fragments of ~400 bp were isolated. These fragments were ligated into 
EcoRI-digested, dephosphorylated pUC 18 vector and used to transform DH5α cells (BRL, 
Life Technology, Inc.). Plasmids were prepared from colonies yielding products 
hybridizating with a VHIV probe (58P2) and sequenced.

Results

Generation and immunochemical characterization of human RF mAb

Five RF mAb were studied. They were produced by monoclonal EBV-transformed B cell 
hybrids generated from independent microcultures using purified peripheral blood CD5+ B 
lymphocytes from a single rheumatoid arthritis patient. The construction and 
immunochemical characterization of three of these RF (mAb 60, 61, and 63: an lgA1, IgM, 
and IgM, respectively) have been reported previously (20). At that time, RF mAb 60 and 61 
had been classified as bearing a χL chain. Further studies using specific high-affinity anti-χ 
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and anti-λ antibodies showed that the RF mAb actually utilized λL chains (Table 1). The 
two RF mAb newly generated for the purpose of this study (mAb 67 and 65, an IgM and an 
lgA1, respectively) also utilized λL chains (Table 1). Three RF mAb (mAb 63, 67, and 65) 
displayed a low affinity (Kd ~ 10−4–10−5 M) for IgG Fc fragment (Table 1) and were 
polyreactive, as they bound not only to IgG Fc fragment but also to other Ag, including 
human thyroglobulin, human insulin, ssDNA, and tetanus toxoid, in general with a low 
affinity (Kd ~ 10−3–10−6 M) (not shown). The remaining two RF mAb (mAb 61 and 60) 
displayed a two orders of magnitude higher affinity for IgG Fc fragment (Kd ~ 10−7 M) 
(Table 1) and were monoreactive, as they bound to IgG Fc fragment but to none of the other 
Ag tested (20; and results not shown).

Utilization of VH and VL chain genes by the RF mAb

Using slot blot analysis of the mRNA, the three polyreactive RF mAb, mAb 63, 67, and 65, 
and one of the two monoreactive RF mAb, mAb 61, were found to utilize a member of the 
VHIV gene family (Table 1). The other monoreactive RF mAb, mAb 60, utilized a member 
of the VHIII family (Table 1). Consistent with the results of the immunochemical 
experiments, the incubation of mRNA from the five RF mAb-producing cell clones with a 
[α32P]dCTP-labeled genomic Cχ DNA and Vχ-specific cDNAs, and a 32P-end-labeled Cλ-
specific oligonucleotide resulted in strong hybridization with the latter, but not the Cχ or Vχ-
specific probes.

Cloning and sequencing of the VH genes

cDNA libraries were screened using the appropriate CH DNA probe and the VH DNA probe 
from the family assigned in the slot blot experiments. Double positive λgt11 phage clones 
with at least 1.5 and 1.8 kbp length inserts in the case of lgA1 and IgM, respectively, were 
sequenced in pUC18 vectors. All clones but one, mAb 65, proved to be full length (Fig. 1A). 
Their sequences were compared with published VH gene sequences. Eighty percent 
similarity was used as the critenon for assignment to a VH gene family.

The low-affinity polyreactive RF mAb 63 VH segment displayed 97.20% similarity with the 
V58 genomic VHIV sequence reported by Lee et al. (35). Further comparison, however, of 
the RF mAb 63 VH segment sequence with a genomic allele of V58, VH4.21, recently 
reported by Sanz et al. (36), resulted in absolute nucleotide homology (Fig. 1A). 
Comparison of the RF mAb 67 VH gene segment with the (VHIV) V79 germline sequence 
(35) yielded only two nucleotide differences (99.33% similarity), in positions 43 and 284, 
resulting in two amino acid variations (Fig. 1B). The slight departure from the germline of 
this expressed VH gene was most likely due to the usage of a different V79 allele (36). In 
contrast, RF mAb 65, the low-affinity polyreactive lgA1 RF mAb, displayed only 87.30% 
similarity when compared with V71-2 (35), the closest identifiable gene among the members 
of the VHIV family (Fig. 1A). Three and nine nucleotide differences were found in the 
complementarity determining region 1 (CDR1) and CDR2, respectively, whereas 20 
differences were found in the framework regions (FR). These differences resulted in six 
amino acid variations in the CDR and seven in the FR when compared with the deduced 
protein sequence of V71-2 (Fig. 1B).
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When compared with the genomic VH4.18 sequence (36), the VH gene sequences of the 
high-affinity monoreactive IgM RF mAb 61 displayed seven nucleotide differences, 
resulting in 97.64% similarity (Fig. 1 A). Such nucleotide differences yielded five amino 
acid variations, all in the CDR1 and 2 (Fig. 1B). The sequence of the VH gene of the second 
high-affinity monoreactive RF mAb, mAb 60, an lgA1, displayed 92.10% similarity to the 
germline VH11 gene, a member of the VHIII family isolated by Rechavi et al (37) The 23 
nucleotide differences yielded five and seven ammo acid variations in the CDR and FR, 
respectively (Fig. 1B).

Having established that the two low-affinity polyreactive IgM RF mAb (mAb 63 and 67) VH 

segments were in germline configuration, we investigated whether the VH segment utilized 
by the high-affinity monoreactive IgM RF mAb 61 was the expression of a somatically point 
mutated gene Granulccyte DNA from the same patient used for the generation of the RF 
mAb was primed with a VHIV 5′oligonucleotide [priming the V2-1 gene from the 5′ end 
(leader intron), as the sequence of the VH4.18 leader is not available] and a VHIV 3′ 

oligonucleotide [priming the V2-1 and the identical VH4.18 segments from the 3′ end 
(nucleotides 270–290)] and amplified by PCR (see Methods). Among the VHIV family 
members, the leader intron primer recognized only the V2-1 segment, due to the three 
unique nucleotide variations of V2-1 when compared with all the other VHIV members 
(35,36). The 3′ VHIV primer encompassed a sequence identical in both V2-1 and VH4.18 
and different in two nucleotides from any other known member of the VHIV family (35,36). 
In two different experiments, six independent clones were isolated. All of them yielded 
nucleotide sequences identical with the published VH4.18 (Fig. 1A: MLH4-1) genome 
segment (36), suggesting that the VH gene encoding the high-affinity monoreactive IgM RF 
mAb 61 consists of a somatically point mutated form of the VH4.18 gene.

The high number of still uncharacterized members of the VHIII family (29,37,38–40) made 
it difficult to determine whether lgA1 RF mAb 60 utilized a mutated VH11 gene or a 
different germline VHIII member.

The D gene segments

The D segments utilized by the five RF mAb were very heterogeneous and could be 
accounted for only partially by previously reported germline D segments (41–48). The D 
gene segments of RF mAb 63, 67, and 65 were 45, 45, and 36 bp, respectively, in length. 
The core 31 nucleotides of the D gene encoding the RF mAb 63 were virtually identical with 
those of the genomic DXP4 D segment (45) (Fig. 2A). A stretch of 21 of these nucleotides 
was also utilized in the mAb 67 D segment (Fig. 2A). RF mAb 65 D segment displayed 
some homology with DxP1, a genomic D segment reported by Ichihara et al. (45) and 
identical with D21/0.5, a genomic D segment identified by Buluwela et al. (46). In addition, 
the sequence of the first half of the RF mAb 65 D gene displayed some similarity to the 
reverse complement of the DLR-5 gene (45). The D genes utilized by RF mAb 61 and 60 
were only 24 and 15 bp in length respectively (Fig. 2A), and displayed some similarity with 
the genomic DLR1 sequence originally reported by Siebenlist et al. (41). The deduced 
protein sequences of the D genes of the RF mAb are reported in Fig. 2(B).
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The JH segments

RF mAb 63 and 67 utilized germline JH4 segments in a truncated and complete form, 
respectively (Fig. 2C). The only and identical variation displayed by both RF mAb, a G 
instead of an A, was silent at the protein level and has been recently found in several 
expressed JH4 genes (29). RF mAb 65 and mAb 61 utilized truncated forms of the JH6 
segment. Assuming that the difference of a G with a C displayed by the two RF mAb was 
merely due to the expression of a JH6 polymorphic allele, then mAb 61 displayed only one 
nucleotide difference, a G instead of T (resulting in the variation of a Tyr with an Asp), 
when compared with the JH6 germline sequence (Fig. 2C and D). The RF mAb 65 JH 

segment displayed six nucleotide differences when compared with the germline JH6 
sequence, resulting in four amino acid substitutions (Fig. 2C and D). Finally, RF mAb 60 
utilized a full JH5 segment displaying eight nucleotide differences when compared with the 
germline JH5 sequence and resulting in two ammo acid variations (Fig. 2C and D).

Cloning and sequencing of the VL genes

The γgt11 libraries constructed for the cloning of the H chain genes were screened with Cλ 

segment-specific 32P-labeled oligonucleotide. The phages containing a fragment of at least 
800 bp were amplified for insertion and sequencing in pUC18 vector. All the clones were 
full length (Fig. 3A). Both RF mAb 67 and 61 utilized a VλI gene (Table 1 and Fig. 3A). RF 
mAb 61 VλI gene displayed 11 nucleotide differences (96.26% similarity) when compared 
with 1B9/F2, a gene of the VλI subgroup expressed by a Burkitt's lymphoma B cell line (49). 
RF mAb 67 showed six of the same 11 nucleotide differences and displayed two other 
differences compared with the 1B9/F2 sequence (Fig. 3A). The deduced Vλ amino acid 
sequences of the RF mAb 67 and 61 were identical, except for two amino acid variations, an 
Ala and Gly instead of a Thr and Ala in positions 91 and 98, respectively (Fig. 3B). Thus, 
these RF IgM mAb probably utilized the same novel allelic variant of VλI in near germline 
configuration, as further suggested by the complete identity of the leader sequences of these 
expressed genes (Fig. 3A). The deduced protein sequences of these VλI genes shared a high 
degree of similarity (92.86%) with the deduced sequence of the expressed 1B9/F2 Vλ gene 
and with the Vλ chain of the WAH myeloma protein (91.67–92.71%) (50) (Fig. 3B).

The low-affinity IgM RF mAb 63 and lgA1 RF mAb 65 utilized Vλ genes 95.80 and 96.85% 
similar, respectively, to the expressed p3C4λ5 gene (Fig. 3A), originally identified in an IgM 
produced by the H6-3C4 human–mouse heterohybridoma and belonging to the VλIV 
subgroup (containing at least eight members) (51). The deduced protein sequence of RF 
mAb 63 and 65 Vλ chains were virtually identical and displayed 90.53 and 91.58% 
similarity, respectively, to the deduced sequence of the expressed p3C4λ5 gene (Fig. 3B). 
They also displayed a high degree of similarity (87.37–92.63%) to the amino acid sequence 
of the Sh λ type Bence–Jones protein (52) and the amyloid AL GIL protein (53) (Fig. 3B).

The Vλ segment of the high-affinity RF lgA1 mAb 60 displayed a nucleotide sequence with 
little similarity with any of the Vλ sequences available in the literature (Fig. 3A). In fact, the 
highest degree of similarity found was only 72.73%, to the Vλ chain of pC34λ5 (VλIV 
subgroup) (not shown). However, the deduced protein sequence of the RF mAb 60 Vλ 

segment displayed a higher degree of similarity (80.65%) with the Bau λ (Bence–Jones) 
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protein, a member of the VλIII subgroup (54) (Fig. 3B) Compared with this, the RF mAb 60 
VλIII segment displayed a high number of amino acid differences, 14 out of a total of 18 
ammo acids, in the CDR.

The Jλ segments

Three of the five RF mAb utilized Jλ2 segments (Table 1 and Fig. 3C) (55). RF mAb 61 
displayed one nucleotide difference, resulting in variation of the second amino acid, a Val 
with an lieu, when compared with the translated form of the genomic Jλ2 (Fig. 3D). An 
identical variation has been reported in the Jλ2 segments of two different Bence–Jones λ 

proteins, Bau and Tro (54,56), suggesting that these RF mAb utilized an allelic variant rather 
than a somatically mutated form of Jλ2. The nucleotide differences in the RF mAb 67 Jλ2 
resulted in the substitution of the first amino acid, a Val, with a Trp (Fig. 3C and D), 
whereas the two nucleotide differences of RF mAb 60 Jλ2 were silent (Fig. 3C and D). 
Finally, both RF mAb 63 and 65 utilized a Jλ1 segment in complete germline configuration 
(Fig. 3C and D).

Discussion

Rheumatoid arthritis is a systemic autoimmune disease of unknown etiology. The central 
clinical feature of the disease is a chronic inflammatory synovitis, an expression, in part, of 
immune complex pathology. Antj-IgG RF autoantibodies with high complement-fixing 
potential are the main constituents of such immune complexes (3–5). In rheumatoid arthritis 
patients, high- and low-affinity IgM, IgA, and, most likely, IgG RF autoantibodies are 
produced by actively proliferating CD5+ B cells (20). High titers of RF are associated with 
high disease activity and extensive extra-articular (systemic) pathology (3), suggesting that 
RF are a major component in the pathogenesis of rheumatoid arthritis. Due to the difficulties 
in constructing human mAb-producing cell lines of defined specificity, the structural 
features of RF have been mostly inferred so far, and perhaps improperly, from the study of 
low-affinity IgM RF mAb isolated from individuals with monoclonal gammopathies, such 
as mixed cryoglobulinemia or Waldenstrom's macroglobulinemia (24). Very few of these 
patients had manifestations of rheumatic disease. We report here the complete nucleotide 
sequence of the VH and VL segments of not only low affinity (polyreactive) RF mAb but 
also of high-affinity (monoreactive) IgM and lgA1 RF mAb derived from a rheumatoid 
arthritis patient.

The IgG Fc fragment-binding mAb we studied are different in genetic composition from 
cryoglobulinemic and Waldenstrom's RF, as well as from a series of IgM RF isolated from 
synovial tissue and recently sequenced by Pascual et al. (62). The latter ones have been 
consistently shown to utilize VH segments, mostly in germline configuration, of the VHIII, 
VHI, and, to a lesser extent, VHII gene families (22,24,57–62). These are the largest in the 
human, containing ~30, 20, and 15 members, respectively (29,38,39). Four of the five RF 
mAb we generated from a single rheumatoid arthritis patient by selection for binding to IgG 
Fc fragment utilized four members of the relatively small (about nine members) VHIV 
family (35,36). This is not likely to be due to a biased tropism of EBV for VHIV-expressing 
antibody-producing cell precursors, as (i) others (63–65) and we (33,66,67; H. Ikematsu et 
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al., in preparation) have generated by EBV-transformation a number of mAb-producing B 
cell lines expressing VH genes other than those of the VHIV family; and (ii) in these very 
experiments, we generated, using the same methodology, a mAb-producing cell line 
expressing a VHIII family member (RF mAb 60) Expression of VHIV family genes has been 
reported in at least 50% of CD5+ chronic lymphocytic leukemia (CLL) B cells (63), the 
neoplastic equivalent of normal CD5+ B lymphocytes, and, in addition, in some clonally 
related CLL CD5− B cells producing IgM cryoglobulins with strong anti-IgG binding (RF) 
activity (68). Other human mAb with defined binding activity utilizing members of the 
VHIV family include three mAb reported by Sanz et al. (66). These, an IgM, an lgG3, and 
an lgA1, were generated using CD5+ B cells from healthy subjects and, similar to some of 
the RF mAb reported here, were polyreactive and displayed a high Kd (low affinity) for IgG 
Fc fragment. Polyreactive ‘RF’ mAb from both healthy subjects and rheumatoid patients 
identify with the Ig that have been previously termed ‘natural antibodies’ (17,19,67).

The utilization of Vλ L chains by the present polyreactive and monoreactive RF mAb 
contrasts with the highly biased utilization of Vχ L chain, in most cases of the VχIIIb 
subgroup (product of the germline Vχ 325 gene), by monoclonal RF paraproteins and Ig 
produced by CD5+ CLL and small lymphocytic leukemia B lymphocytes (69–74). It has 
been speculated that, at least in some cases, the VχIIIb chain would provide the structural 
basis for the binding to the IgG Fc fragment (71). The present experiments showed that RF 
activity can be mediated by Ag-binding sites involving VλI, VχIII, and VχIV gene products. 
The possibility that Vχ chains underlie certain autoimmune responses would be further 
supported by the findings that λL chains are predominantly utilized by anti-laminin IgG 
autoantibodies in SLE patients (75), by the anti-TSH receptor autoantibodies produced by 
plasma cells infiltrating the thyroid tissue in patients with Graves’ disease (76), and by the 
autoantibodies produced by plasma cells infiltrating the salivary gland in patients with 
Sjogren's syndrome (77).

Although limited to a single rheumatoid patient, our experiments showed that low-affinity 
polyreactive RF are encoded in the germline. In addition, although they do not rule out the 
possibility that selected combination of germline VL and VH genes may encode 
monoreactive high-affinity RF, they suggested that high-affinity monoreactive RF can 
display somatic point mutations. Absolute proof that mAb 61 VH gene segment is 
somatically mutated would require differential Southern hybridization of specific 
oligonucleotides, encompassing the putatively mutated CDR, with the patient's genomic 
DNA. RF mAb 61 VH somatic point-mutations are distributed in a way that is consistent 
with an Ig-receptor-dependent selection of these mutations. In the specific immune response 
to a defined Ag, such a selection is Ag-dnven and yields an oligoclonal B cell population 
producing high-affinity antibodies (78,79). Thus, the high affinity and genetic composition 
of the monoreactive RF mAb 61 in our rheumatoid arthritis patient suggest that this 
autoantibody could not result from a mere polyclonal B cell activation (80), and may mimic 
the affinity and the selective point mutations of the specific antibodies induced in a ‘mature’ 
Ag-driven response (78,79). Similar features apply to the RF and anti-DNA autoantibody 
response in autoimmune MRL/lpr mice (81,82), and contrast with the low affinity and 
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germline configuration of (possibly, poly-reactive) ‘RF’ induced by LPS-activation of B 
cells in normal mice (83,84).

The heterogeneity of D segments expressed by the RF mAb exemplifies the high complexity 
of this genetic element in man. It has been suggested that the departure from the germline of 
the D segments expressed in human mAb often results from mechanisms of site-specific 
recombination or recombination following unconventional rules of gene conversion, 
putatively yielding D–D fusions (63,85). Along these lines, the long D segments utilized by 
the low-affinity polyreactive RF mAb possibly resulted from the expression of a given D 
segment, variously complemented by other D genes, by either deletion or inversion 
mechanisms. Moreover, the predominance of C and G over A and T, at both ends, suggested 
that, at least in part, these D genes could have been generated through N segment addition 
by terminal deoxytransferase (86). The difference in length between the D segments utilized 
by the polyreactive RF mAb (36 and 45 bases) and those utilized by their monoreactive 
high-affmity counterparts (15–24 bases) raises the issue of whether the configuration of the 
D segment may contribute to antibody poly- or monoreactivity. The possibility that a long D 
segment may be a prerequisite for antibody polyreactivity would be further supported by the 
length, 28–60 (average 45) bases, of the D segments of other polyreactive natural antibodies 
of various Ig classes that we have also generated from CD5+ B cells (66). Recent three-
dimensional X-ray crystallography data show that the D gene product (CDR3) plays a major 
role in Ag capture, particularly in antibodies binding protemic Ag (87,88). Although 
polyreactivity is most often associated with low affinity, as apparent from our present and 
previous studies (16,19,20,26,63,65), some polyreactive antibodies display a relatively high 
affinity for certain Ag, as best exemplified by the IgM mAb to ssDNA we generated from 
healthy subjects and SLE patients (16,26,27). Along these lines, it is possible that the low-
affinity polyreactive (for IgG Fc fragment) RF mAb 65 arose in response to and displayed a 
much higher affinity for an as yet unidentified, possibly exogenous, Ag.

Finally, our findings may question the assumption that CD5+ B lymphocytes are primordial 
cellular elements producing only low-affinity polyreactive antibodies, and suggest that, in 
some cases, these cells are capable of a ‘maturation’ process yielding high-affinity 
antibodies (89). The nature and complexity, unveiled here, of the VH and VL genes 
expressed by rheumatoid CD5+ B lymphocytes may help to further our understanding of this 
important subset of the human B cell repertoire.
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D diversity segment of Ig
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Fig. 1. 
(A) Nucleotide sequence of the VHIV and VHIII genes utilized by the RF mAb. The top 
sequence in each cluster is used for germline comparison. Identities are indicated by dashes 
Asterisks indicate the boundaries of the CDR. The V58, VH4.21, V79, V71-2, and VH4.18 
genes are members and alleles of the VHIV family (35,36). Parentheses in the VH4.21 and 
V79 sequences denote deletions in these genes when compared with another member of the 
VHIV family, V71-2 (35). Due to the unavailability of the leader sequences of VH4.21 and 
VH4.18, the leader sequences of their most similar published germline segments, [V58] and 
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[V2-1], respectively, are provided. MLH4-1 is the sequence we obtained by targeted PCR 
amplification of the genomic DNA from the patient under study (boxes depict the sequence 
and the complementary sequence of the 5′ and 3′ primers, respectively, utilized in these 
experiments). Notice its perfect identity with the genomic VH4.18 allele reported by Sanz et 

al. (36). Small letters denote the leader intron sequence of the V71-2 gene The VH11 gene is 
a member of the VHIII family (37). (B) Deduced amino acid sequences from the above 
nucleotide sequences. Identities are indicated by dashes. Blank spaces represent deletions. 
The new VH nucleotide sequences presented here are available from EMBL/GenBank/DDBJ 
under the following accession numbers: mAb60, X54435; mAb61, X54437; mAb63, 
X54441; mAb65, X54443; mAb67, X54445; and MLH4-1, X54447.
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Fig. 2. 
(A) Nucleotide sequences of the D segments utilized by the RF mAb. The top sequence in 
each cluster is used for germline comparison Identities are indicated by dashes (B) Deduced 
ammo acid sequences from the above nucleotide sequences Identities are indicated by 
dashes (C) Nucleotide sequences of the JH segments utilized by the RF mAb The top 
sequence in each cluster is used for germline comparison. Identities are indicated by dashes. 
(D) Deduced amino acid sequences of the JH segments Identities are indicated by dashes. 
The new nucleotide sequences presented here are available from the EMBL/GenBank/DDBJ 
under the accession numbers listed in the legend to Fig. 1.
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Fig. 3. 
Sequences of the Vλ genes utilized by the RF mAb. The top sequence in each duster is used 
for comparison. Identities are indicated by dashes. Asterisks indicate the boundaries of the 
CDR and the 5′ untranslated regions (UT) regions. No term of comparison is given for the 
RF mAb 60, VλIII gene. (B) Deduced amino acid sequences from the above nudeotide 
sequences. Identities are indicated by dashes. (C) Nudeotide sequences of the Jλ segments 
utilized by the RF mAb. The top sequence is each cluster is used for germline comparison 
Identities are indicated by dashes. (D) Deduced amino acid sequence of the Jλ segments. 
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Identities are indicated by dashes. The new nudeotide sequences presented here are avaiable 
from the EMBL/GenBank/DDBJ under the following accession numbers: mAb60, X54436; 
mAb61, X54438; mAb63, X54442; mAb65, X54444; and mAb67, X54446.
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