
Theoretical and Mathematical Physics, 166(1): 1–22 (2011)

COMPLETE SET OF CUT-AND-JOIN OPERATORS IN THE

HURWITZ–KONTSEVICH THEORY

A. D. Mironov,∗† A. Yu. Morozov,† and S. M. Natanzon‡

We define cut-and-join operators in Hurwitz theory for merging two branch points of an arbitrary type.

These operators have two alternative descriptions: (1) the GL characters are their eigenfunctions and

the symmetric group characters are their eigenvalues; (2) they can be represented as W -type differential

operators (in particular, acting on the time variables in the Hurwitz–Kontsevich τ -function). The oper-

ators have the simplest form when expressed in terms of the Miwa variables. They form an important

commutative associative algebra, a universal Hurwitz algebra, generalizing all group algebra centers of

particular symmetric groups used to describe the universal Hurwitz numbers of particular orders. This

algebra expresses arbitrary Hurwitz numbers as values of a distinguished linear form on the linear space

of Young diagrams evaluated on the product of all diagrams characterizing particular ramification points

of the branched covering.

Keywords: matrix model, Hurwitz number, symmetric group character

1. Introduction

1.1. Hurwitz numbers and characters. The Hurwitz numbers Covq(Δ1, Δ2, . . . ,Δm) count the

number (weighted in a certain way) of ramified q-fold coverings of a Riemann sphere with fixed positions

of m branch points of the given types Δ1, . . . ,Δm. The types are labeled by ordered integer partitions

of q, i.e., by the Young diagrams Δ with |Δ| = q boxes. This seemingly formal problem appears related

to numerous directions of research in physics and mathematics and attracts increasing attention in the

literature (see [1]–[24] and the references therein). After an accurate definition (see Sec. 2.1 below), the

problem becomes a problem in the representation theory of symmetric groups and reduces to the celebrated

formula [3]

Covq(Δ1, Δ2, . . . ,Δm) =
∑

|R|=q

d2
RϕR(Δ1)ϕR(Δ2) · · ·ϕR(Δm) (1)

(our normalization of ϕR(Δ) differs from that used in textbooks by a factor). The right-hand side is a sum

over all representations (Young diagrams) R with |R| = q, and the ϕR(Δ) are expansion coefficients (they

are in fact proportional to the characters of symmetric groups [25]) of the GL characters (Shur functions)

χR(t) [25] in the time variables pk = ktk:

χR(t) =
∑

|∆|=|R|

dRϕR(Δ)p(Δ) =
∑

∆

dRϕR(Δ)p(Δ)δ|∆|,|R|. (2)
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For the integer partition Δ = [µ1, . . . ], where µ1 ≥ µ2 ≥ · · · ≥ 0 with
∑

j µj = |Δ|, a monomial is p(Δ) ≡∏
i pµi

=
∏

j p
mj

j . In what follows, we also use a differently normalized monomial: if p(Δ) =
∏

k pmk

k , then

p̃(Δ) ≡
∏

k

1

mk!

(
pk

k

)mk

=

(∏

k

mk!kmk

)−1

p(Δ).

In what follows, we use the same definition of Ỹ (Δ) to define monomials for arbitrary chains of variables

{yk}. The definitions of χR(t) and dR = χR(tk = δk,1) are standard (see Sec. 2.6 below).

We can extend the definition of ϕR(Δ) to larger diagrams R with |R| > |Δ| by

ϕR([Δ, 1, . . . , 1︸ ︷︷ ︸
k

]) ≡

⎧
⎪⎪⎨
⎪⎪⎩

0, |Δ| + k > |R|,

ϕR([Δ, 1, . . . , 1︸ ︷︷ ︸
|R|−|∆|

])Ck
|R|−|∆|, |Δ| + k ≤ |R|. (3)

Here, Ca
b = b!/(a! (b − a)!) are the binomial coefficients, and Δ is a Young diagram that does not contain

units, 1 /∈ Δ. With this extension, we can lift the requirement that all |Δα| = q in (1).

1.2. Hurwitz partition functions. There are two different ways to define generating functions of

Hurwitz numbers (also see [26] for other generating functions related to partitions). First, ϕR(Δ) in (1) can

be contracted with p(Δ) and converted into χR(t) using (2). Second, ϕR(Δ) can be exponentiated. This

implies the definition of the Hurwitz partition function [23]

Z(t, t′, t′′, . . . |β) ≡
∑

R

d2
R

χR(t)

dR

χR(t′)

dR

χR(t′′)

dR
· · · exp

(∑

∆

β∆ϕR(Δ)

)
, (4)

where the sum is now over all representations (Young diagrams) R of an arbitrary size |R| and β is a set of

constants depending on the Young diagrams. If only β[2] corresponding to the diagrams Δ = [2] is nonzero,

then this reduces to the generating function for the N -Hurwitz numbers. In particular [8], [9],

N = 1: Z(t|β) =
∑

R

dRχR(t)eβ2ϕR([2]) −→ Z(t|0) =
∑

R

dRχR(t) = et1 ,

N = 2: Z(t, t̄|β) =
∑

R

χR(t)χR(t̄)eβ2ϕR([2]) −→

−→ Z(t, t̄|0) =
∑

R

χR(t)χR(t̄) = exp

(∑

k

ktk t̄k

)
(5)

are the respective KP and Toda-chain τ -functions in t and in t and t̄ [27], [9], [19], [22], but integrability is

violated for N ≥ 3 [23]. It is also violated by including higher β∆ with |Δ| ≥ 3 [16], [20], [23]: to preserve it,

we must exponentiate the Casimir eigenvalues CR(|Δ|) [27] instead of ϕR(Δ) �= CR(|Δ|). The replacement

of ϕR with CR in the definition of the partition functions was called the transition to complete cycles

in [16], [20], and Z is obtained from the thus-defined τ -function [27] by the action of quite sophisticated

operators B∆ (see [23]).

The KP τ -function Z(t|β) is in fact related [10], [19], [22] by the equivalent-hierarchies technique [28]

to the Kontsevich τ -function [29], and following [22], we call it and its further generalization (4) the

Kontsevich–Hurwitz partition function. This remarkable relation allows using the well-developed technique

of matrix models [29]–[35] to study the Hurwitz numbers. This paper develops a particular example [24] of

such a use.
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1.3. General cut-and-join operators. Alternatively, we can introduce the β-deformations in the

partition function using the cut-and-join operators Ŵ , which are differential operators acting on the time

variables {tk} (or, alternatively, on {t′k} or {t′′k}) and have the characters χR(t) as their eigenfunctions and

ϕR(Δ) as the corresponding eigenvalues:

Ŵ(Δ)χR(t) = ϕR(Δ)χR(t). (6)

As an immediate corollary of (6) and (4), we then have

Z(t, t′, . . . |β) = exp

(∑

∆

β∆Ŵ(Δ)

)
Z(t, t′, . . . |0). (7)

In the simplest case of Δ = [2], we obtain the standard cut-and-join operator [8]

Ŵ([2]) =
1

2

∞∑

a,b=1

(
(a + b)papb

∂

∂pa+b
+ abpa+b

∂2

∂pa∂pb

)
=

=
1

2

∞∑

a,b=1

(
abtatb

∂

∂ta+b
+ (a + b)ta+b

∂2

∂ta∂tb

)
, (8)

which is the zero-mode generator of the W3-algebra [36]: Ŵ([2]) = Ŵ
(3)
0 . The W3-algebra is a part of

the universal enveloping algebra of GL(∞) and is a symmetry of the universal Grassmannian [37], [38].

Hence, the action of this operator preserves the KP integrability [37], [39], [28] and deforms the Toda

integrability [40] in a simple way [27], [9].

Operator (8) is conveniently rewritten [24] in terms of the matrix Miwa variable X (the matrix variable

was called ψ in [24]),

pk = ktk = trXk, (9)

where X is an N×N matrix,

Ŵ([2]) =
1

2
(tr D̂2 − N tr D̂) =

1

2
: tr D̂2: . (10)

Here, we use the matrix operator D̂ = X(∂/∂X̃) involving the transposed matrix X̃ as usual in matrix

model theory [29]–[35] (hereafter, summation over repeated indices is implied):

D̂ab ≡ Xac
∂

∂Xbc
(11)

i.e., a family of operators [D̂ab, D̂cd] = D̂adδbc− D̂bcδad acting on the algebra of functions generated by Xab:

D̂abXcd ≡ Xadδbc. The normal ordering implies that the X derivatives inside colons do not act on the X

between the same pair of colons. This is equivalent to taking a symbol of the operator.

Our goal here is to clarify that (10) has a direct generalization to all other operators Ŵ(Δ):

Ŵ(Δ) = :D̃(Δ):, (12)

where D̃(Δ) is constructed from the operators D̂k ≡ tr D̂k in exactly the same way as p̃(Δ) is constructed

from the time variables pk = ktk: D̃ (Δ) ≡ (
∏

k mk!kmk)−1D̂mk

k . We note that the operators D̂ab given

by (11) realize the regular representation of the algebra gl. The (commuting) Casimir operators in the
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universal enveloping algebra of gl can be realized as D̂k, and the characters χR(t) of the group GL are their

eigenfunctions [41], [42]. Because all D̂k mutually commute, all the D̂(Δ) and Ŵ(Δ) mutually commute

(and their common system of eigenfunctions is still formed by the characters). This allows expressing Z(t|β)

in terms of the trivial τ -function Z(t|0) = et1 :

Z(t|β) = exp

(∑

∆

β∆ :D̃(Δ):

)
Z(t|0). (13)

Moreover, extra sets of time variables can be introduced using the same operators, for example,1

Z(t, t̄|β) ≈ : exp

(∑

k

t̄k tr D̂k

)
:Z(t|β). (14)

This opens a way to incorporate Hurwitz partition functions naturally into the M-theory of matrix mod-

els [35].

Beyond Δ = [2], the normal ordering makes even operators Ŵ([k]) with a single-row Young diagram

Δ = [k] nonlinear combinations of the Casimir operators; this takes Ŵ(Δ) out of the universal Grassman-

nian [37], [38] and leads to a violation of integrability, observed in [16], [20], [23].

Restricting the set {β∆} of β variables in (13) to a single β[2] = β, we obtain a representation for the

Kontsevich–Hurwitz τ -function Z(t|β), which was the starting point in [24] for deriving a promising matrix-

model representation for this intriguing function. It is actually expressed (in a yet poorly understood but

clearly established way [10], [19], [22]) in terms of the standard cubic Kontsevich τ -function [29], [34].

The cut-and-join operators Ŵ form a commutative associative algebra (see Sec. 2.4.3 below):

Ŵ(Δ1)Ŵ(Δ2) =
∑

∆

C∆
∆1∆2

Ŵ(Δ), (15)

where the structure constants are related to the triple Hurwitz numbers Cov(Δ1, Δ2, Δ3) (see Sec. 1.4).

Accordingly, these Cov(Δ1, Δ2, Δ3) can be alternatively studied in the theory of dessins d’enfants and Belyi

functions [43]. At |Δ1| = |Δ2| = |Δ|, these numbers are the structure constants c∆
∆1∆2

of the center of the

group algebra of the symmetric group S|∆|.

Equations (13) and (15) should have an interesting non-Abelian generalization to the case of open

Hurwitz numbers [13], [14], [44], counting coverings of Riemann surfaces with boundaries, which should be

an open-string counterpart of closed-string formula (13).

1.4. Universal Hurwitz numbers and the universal Hurwitz algebra. The structure constants

C∆
∆1∆2

allow introducing the universal Hurwitz numbers defined for arbitrary sets of Young diagrams and

not restricted by the condition |Δ1| = · · · = |Δm|.

We consider the vector space Y generated by all Young diagrams. The correspondence Δ 
→ Ŵ(Δ)

generates the structure of a commutative associative algebra on Y ; we let ∗ denote the corresponding

multiplication of Young diagrams. We consider the linear form l: Y → R such that l(Δ) = 1/|Δ|! for

Δ = [1, 1, . . . , 1] and l(Δ) = 0 for all other Young diagrams. This definition is motivated by Eq. (72) in the

theory of characters (see Sec. 2.7 below). We call

Cov(Δ1, Δ2, . . . ,Δm) = l(Δ1 ∗ Δ2 ∗ · · · ∗ Δm) (16)

the Hurwitz number of Δ1, Δ2, . . . ,Δm. These generalized Hurwitz numbers coincide with the classical ones

for |Δ1| = |Δ2| = · · · = |Δm|, when restricting the ∗-operation reproduces the composition ◦ of conjugation

classes of permutations, considered in Sec. 2.2.

1For a more accurate formulation of what ≈ means in this equation, see Sec. 2.8 below.
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The symmetric bilinear form 〈Δ1, Δ2〉 = l(Δ1 ∗ Δ2) is nondegenerate and invariant,

〈Δ1 ∗ Δ, Δ2〉 = 〈Δ1, Δ2 ∗ Δ〉 ∀Δ (17)

as a consequence of commutativity and associativity. Moreover,

∑

∆

C∆
∆1∆2

〈Δ, Δ3〉 = l(Δ1 ∗ Δ2 ∗ Δ3), (18)

i.e.,

C∆
∆1∆2

=
∑

∆3

G∆∆3 l(Δ1 ∗ Δ2 ∗ Δ3), (19)

where G∆2∆3 is the inverse matrix of G∆1∆2 = 〈Δ1, Δ2〉.

Finally, our universal Hurwitz algebra of cut-and-join operators is freely generated by a set of Casimir

operators and, as a vector space, in fact coincides with the center of the universal enveloping algebra of

gl(∞) (see Sec. 2.5 below and [23], [42] for more details).

2. Comments

2.1. Hurwitz numbers and counting of coverings. A q-sheet covering Σ of a Riemann surface

Σ0 is a projection π : Σ → Σ0, where almost all the points of Σ0 have exactly q preimages. The number of

preimages decreases at finitely many singular (ramification) points x1, . . . , xm ∈ Σ0. In fact, π−1(xα) is a

collection of points y
(α)
i ∈ Σ such that in the vicinity of each y

(α)
i , the projection π is

π : (x − xα) = (y − y
(α)
i )µ

(α)
i . (20)

With each singular point, we then associate an integer partition of q, which can be ordered, Δα : µ
(α)
1 ≥

µ
(α)
2 ≥ · · · ≥ 0, i.e., is in fact a Young diagram. This diagram Δα is called the type of the ramification

point xα.

If we select some nonsingular point x∗ ∈ Σ0 and consider a closed path C∗ in Σ0 that begins and ends

at x∗, then the q preimages of x∗ in Σ are somehow permuted when we travel along C∗. A permutation of

q variables is thus associated with a path C∗, i.e., the covering defines a map from the fundamental group

π1(Σ0, x∗) into the symmetric (permutation) group Sq. Changing x∗ amounts to the common conjugation

of all the permutations associated with different contours, and the covering itself is associated with the

conjugated classes of maps of π1(Σ0, x∗) into Sq. In fact, the converse is also almost true: given such a

map, we can reconstruct the covering. Enumerating ramified coverings thus becomes a pure group theory

problem and defines Hurwitz numbers for a Riemann surface of an arbitrary genus g:

Covg
q(Δ1, . . . ,Δm) =

∑ 1

|Aut(π)|
(21)

is the number of its coverings π with a fixed set of singular points x1, . . . , xm of the types Δ1, . . . ,Δm

divided by the order of the automorphism group. For brevity, we merely set Cov0
q = Covq. The sum in (21)

is over all possible equivalence classes of coverings, and the equivalence is established by a biholomorphic

map f : Σ → Σ′ such that π′ = f ◦ π.

Because Covq(Δ1, . . . ,Δm) is simultaneously a group theory quantity, it can also be expressed in terms

of symmetric groups, and this approach leads to formula (1). An extension to arbitrary-genus surfaces Σ0

follows from topological field theory [45], [46] [3], [13]. A certain nontrivial generalization to Σ0 with

boundaries can be found in [13], [14].
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2.2. Permutations, cycles, and their compositions. Cut-and-join operators appear when we

study the merger of two ramification points xα and xβ of the types Δα and Δβ . As a result of such a

merger, a single singular point arises instead of two, but its type Δ is not defined unambiguously by Δα

and Δβ . It depends on the actual distribution of preimages y
(α)
i and y

(β)
j between the sheets of the covering,

and this distribution is summed over in the definition of Hurwitz numbers.

The Young diagram Δ labels the monodromy element of a critical value and a conjugation class in the

symmetric group Sq. When two critical points merge, the resulting monodromy is a product of the two

original monodromies.

Before we consider multiplication of classes, we examine multiplication of permutations. Any permu-

tation can be represented as a product of cycles. For example, S3 consists of the six elements

{123} −→ {123}, {132}, {213}, {321}, {231}, {312},

which can be respectively expressed in terms of cycles as

123, 1(23), (12)3, (13)2, (132), (123).

The notation (132) for a cycle means that 1 → 3 → 2 → 1. For brevity, we write 123 instead of (1)(2)(3).

The Young diagram Δ describes the conjugation class of group elements. We let the same symbol Δ

denote the element of the group algebra equal to the sum of all elements of the conjugation class (with unit

coefficients).

For instance, the Young diagrams with three boxes label the three conjugation classes of these permu-

tations as

Δ = [1, 1, 1] = 123, Δ = [2, 1] = 1(23), (12)3, (13)2, Δ = [3] = (132), (123).

The corresponding elements of the group algebra are

Δ = [1, 1, 1] = 123, Δ = [2, 1] = 1(23)⊕ (12)3 ⊕ (13)2, Δ = [3] = (132) ⊕ (123).

It is convenient to define ‖Δ‖ as the number of different permutations in the conjugation class Δ, for

example, ‖3‖ = 2, ‖2, 1‖ = 3, and ‖1, 1, 1‖ = 1.

Similarly, there are five conjugation classes for S4, and the corresponding group algebra elements are

Δ = [4] = (1234) ⊕ (1243)⊕ (1324)⊕ (1342)⊕ (1423)⊕ (1432), ‖4‖ = 3! = 6,

Δ = [3, 1] = (123)4 ⊕ (124)3 ⊕ (132)4 ⊕ (134)2 ⊕ (142)3 ⊕ (143)2 ⊕ 1(234)⊕ 1(243), ‖3, 1‖ = 8,

Δ = [2, 2] = (12)(34) ⊕ (13)(24)⊕ (14)(23), ‖2, 2‖ = 3,

Δ = [2, 1, 1] = (12)34 ⊕ (13)24 ⊕ (14)23 ⊕ 1(23)4 ⊕ 1(24)3 ⊕ 12(34), ‖2, 1, 1‖ = 6,

Δ = [1, 1, 1, 1] = 1234, ‖1, 1, 1, 1‖ = 1.

If we now consider the merger of two ramification points, for example, with Δ = [2, 1] and Δ′ = [3],

then we must see what happens when any of the three permutations from the conjugation class Δ = [2, 1]

are multiplied by any of the two from Δ′ = [3]. This is described by the 3×2 table

[2, 1] ◦ [3] =

1(23)◦(132) 1(23)◦(123)

(12)3◦(132) (12)3◦(123)

(13)2◦(132) (13)2◦(123)

=

(13)2 (12)3

1(23) (13)2

(12)3 1(23)

= 2 · [2, 1] (22)
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or, simply,

[2, 1] ◦ [3] =
(
1(23)⊕ (12)3 ⊕ (13)2

)
◦

(
(132) ⊕ (123)

)
=

= 2 ·
(
1(23) ⊕ (12)3 ⊕ (13)2

)
= 2 · [2, 1], (23)

where ◦ denotes the composition of permutations. As usual, the second permutation acts first, for example,

{123}
(132)
−→ {132}

1(23)
−→ {321}, and the result is the same as {123}

(13)2
−→ {321}. The numbers in the

permutation notation refer to places, not elements: (12) permutes the entries in the first and second places,

not the elements 1 and 2.

Having the composition of permutations, we can use the corresponding structure constants c∆′′

∆∆′,

Δ ◦ Δ′ =
∑

∆′′

c∆′′

∆∆′Δ′′, (24)

to define the cut-and-join operator by the rule

Ŵ(Δ)p̃(Δ′) =
∑

∆′′

c∆′′

∆∆′ p̃(Δ′′). (25)

Equation (22) implies that the operator Ŵ([2, 1]) thus defined contains an term

Ŵ([2, 1]) = 2 · ˜p([2, 1])
∂

∂p̃([3])
+ · · · = 3p1p2

∂

∂p3
+ . . . , (26)

where the dots denote terms that annihilate p3.

Similarly, the composition table

[3] ◦ [2, 1] =
(132)◦1(23) (132)◦(12)3 (123)◦(13)2

(123)◦1(23) (123)◦(12)3 (123)◦(13)2
=

=
(12)3 (13)2 1(23)

(13)2 1(23) (12)3
= 2 · [2, 1] (27)

implies that

Ŵ([3]) = 2p1p2
∂2

∂p1 ∂p2
+ . . . , (28)

where the dots now denote terms from the annihilator of p1p2.
2

The elements of the group algebra corresponding to the Young diagrams generate the center of the

group algebra. In our example, we can see that the right-hand sides of (27) and (22) are the same, as

implied by commutativity of the center.

We can similarly analyze the composition of any other pair of conjugation classes and reconstruct all

the entries in the operators Ŵ(Δ). We can thus verify that any continuation of the first column in the

Young diagram does not affect the cut-and-join operator,

Ŵ([Δ, 1, 1, . . . , 1]) ∼= Ŵ(Δ), (29)

2We can compare this formula with the full expression in Eq. (53). The coefficient 2 in (28) arises from the second term
in (53) with abcd = 1212, 1221, 2112, 2121, and only two of these four terms contribute because of the factor (1 − δacδbd).
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if acting on a proper quantity in accordance with (3) (see Sec. 2.4.2 for details). We briefly present just one

more example:

[2, 1, . . . , 1︸ ︷︷ ︸
q−2

] ◦ [3, 1, . . . , 1︸ ︷︷ ︸
q−3

] =

(12)3456 . . . q ◦ (123)456 . . . q . . .

(13)2456 . . . q ◦ (123)456 . . . q

1(23)456 . . . q ◦ (123)456 . . . q

(14)2356 . . . q ◦ (123)456 . . . q

. . .

123(45)6 . . . q ◦ (123)456 . . . q

. . .

=

=

(13)2456 . . . q . . .

1(23)456 . . . q

(12)3456 . . . q

(1423)56 . . . q

. . .

(123)(45)6 . . . q

. . .

. (30)

There are ‖3, 1, . . . , 1︸ ︷︷ ︸
q−3

‖ = 2C3
q = q(q − 1)(q − 2)/3 columns and ‖2, 1, . . . , 1︸ ︷︷ ︸

q−2

‖ = C2
q = q(q − 1)/2 rows in

the tables. Clearly, each column of the second (resultant) table contains three elements from the class

[2, 1, . . . , 1︸ ︷︷ ︸
q−2

], 3(q − 3) plus 3(q − 3) elements from the class [4, 1, . . . , 1︸ ︷︷ ︸
q−4

] plus (q − 3)(q − 4)/2 elements from

the class [3, 2, 1, . . . , 1︸ ︷︷ ︸
q−5

]. Therefore,

[2, 1, . . . , 1] ◦
[3, 1, . . . , 1]

‖3, 1, . . . , 1‖
= 3 ·

[2, 1, . . . , 1]

‖2, 1, . . . , 1‖
+ 3(q − 3) ·

[4, 1, . . . , 1]

‖4, 1, . . . , 1‖
+

+
(q − 3)(q − 4)

2
·

[3, 2, 1, . . . , 1]

‖3, 2, 1, . . . , 1‖

or

[2, 1, . . . , 1] ◦ [3, 1, . . . , 1] = 2(q − 2) · [2, 1, . . . , 1] + 4 · [4, 1, . . . , 1] + [3, 2, 1, . . . , 1]. (31)

Because Ŵ([2, 1, . . . , 1︸ ︷︷ ︸
q−2

]) acts on p3p
q−3
1 in this example, we have

Ŵ([2, 1, . . . , 1︸ ︷︷ ︸
q−2

])p3p
q−3
1 =

1

2

(
6p1p2

∂

∂p3
+ 6p4

∂2

∂p1∂p3
+ p2

∂2

∂p2
1

+ · · ·

)
p3p

q−3
1 . (32)

We see that the coefficient in the term p1p2(∂/∂p3) is the same as in (26), in full accordance with (29).

Both representations in (31) imply the same result for Ŵ([2, 1, . . . , 1︸ ︷︷ ︸
q−2

]) because

p̃(Δ) =
‖Δ‖

|Δ|!
p(Δ) =

p(Δ)

Aut(Δ)
,

and both multiplication formulas can be used to extract the cut-and-join operator from (25).
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Fig. 1. Composition of two permutations of the cycle (123) with a cycle of length six. At the same

time, these Feynman diagrams contribute to multiplication of the normal-ordered matrix differential

operators W([3]) and W([6]).

In general, for a composition of conjugation classes, we have

Δ1 ◦ Δ2 =
∑

|∆|=|∆1|=|∆2|

c∆
∆1∆2

· Δ, (33)

where we use the lowercase letter c to stress that we deal with the composition of permutations in the

group S|∆|, i.e., |Δ| = |Δ1| = |Δ2|. The above examples demonstrate that even in this case, the cut-and-

join operator is not exactly
∑

|∆1|=|∆2|
c∆1

∆∆2
p̃(Δ1) ∂/∂p̃(Δ2). The actual degree of the differential operator

satisfying (25) can be much lower than implied by this formula. In fact, the constraint that |Δ′| = |Δ|

in (25) can be easily lifted: we can extend Δ to a diagram [Δ, 1|∆
′|−|∆|] by adding a unit-height line of

appropriate length and define

Ŵ(Δ)p̃(Δ′) = p̃
(
[Δ, 1|∆

′|−|∆|] ◦ Δ′
)

=
∑

|∆′′|=|∆′|

c∆′′

[∆,1|∆′|−|∆|] ∆′ p̃(Δ′′) for 1 /∈ Δ (34)

and

Ŵ([Δ, 1s])p̃(Δ′) =
∑

|∆′′|=|∆′|

(|Δ′| − |Δ|)!

s!(|Δ′| − |Δ| − s)!
c∆′′

[∆,1|∆′|−|∆|] ∆′ p̃(Δ′′) for 1 /∈ Δ. (35)

Cut-and-join operators can thus be defined as acting on the time variables of an arbitrary level entirely in

terms of the structure constants of the universal symmetric group S(∞). But Eq. (12) provides a much

more explicit and transparent alternative representation of these operators, which also allows extending the

set of the S(∞) structure constants by lifting the remaining restriction |Δ′′| = |Δ′|, which is still preserved

in (34) and (35). The extended structure constants C∆′′

∆∆′ describe multiplication of the universal operators,

which are defined by either (35) or (12).

2.3. Composition of permutations and Feynman diagram technique. A composition of per-

mutations can be conveniently calculated using a simple Feynman diagram technique. On one hand, this

literally reflects the geometric definition of the Hurwitz numbers; on the other hand, it is equivalent to the

description in terms of differential operators. We represent a cycle (132) of length three by an oriented circle

in the left-hand side of the diagram and a cycle of length six by another oriented circle in its right-hand

side (see Fig. 1). The composition itself is represented by lines connecting all outgoing lines of the left circle

with three arbitrarily chosen incoming lines of the right circle. New cycles are formed as a result: just one

9



of length six for connecting lines as in the left diagram and three of the lengths one, two, and three if one

of the connecting lines is changed as in the right diagram.

In Fig. 1, we deal with a situation of the type (123) ◦ (123456), where the first cycle is a subset of

the second. We should only keep in mind that along with (123456), we should consider all the 5! different

cycles formed by the same six elements: only two of these 5! possibilities are shown in the figure. To obtain

our operators, we should sum over all these options. We should also add all the other cycles: each Δ is a

set of several cycles of given lengths.

An advantage of this diagrammatic representation is that we can further represent such pictures—the

Feynman diagrams—by operators. This is the simplest way to obtain (12), which immediately reproduces

Eqs. (26) and (28). The normal ordering appears because one connecting line cannot act on another

connecting line.

This Feynman diagram technique ties together the geometric interpretation of the Hurwitz numbers,

their combinatorial expressions, and the normal-ordered differential matrix operators.

2.4. Algebra of cut-and-join operators.

2.4.1. Examples of normal ordering. We begin with a few examples illustrating the role of normal

ordering:

: tr D̂2: = tr D̂2 − N tr D̂ = tr(D̂ − N)D̂

or

tr D̂2 = : tr D̂2: + N tr D̂,

tr D̂3 = : tr D̂3: + 2N : tr D̂2: + :(tr D̂)2: + N2 tr D̂,

tr D̂4 = : tr D̂4: + 3N : tr D̂3: + 3 : tr D̂ tr D̂2: + (3N2 + 1) : tr D̂2: +

+ 3N : (tr D̂)2: + N3: tr D̂:,

...

and similarly

(tr D̂)2 = :(tr D̂)2: + tr D̂, (36)

(tr D̂2)2 = :(tr D̂2)2: + 2N : tr D̂ tr D̂2: + 4 : tr D̂3: +

+ 4N : tr D̂2: + (N2 + 2) : (tr D̂)2: + N2 tr D̂ (37)

and so on.

2.4.2. Comment on formula (29): Inserting an extra D̂1 in the cut-and-join operator.

We completely describe normal ordering for a small but important class of operators containing powers of

D̂1 = tr D̂ =
∑

a apa(∂/∂pa),

Ŵ([Δ, 1, . . . , 1︸ ︷︷ ︸
k

]) =
1

k!
:

˜
D(Δ)D̂k

1 :, (38)

where we assume that Δ contains only k units (see [42] for a more systematic description).
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The relations

:D̃(Δ)D̂1: = :D̃(Δ): D̂1 − |Δ| :D̃(Δ): = :D̃(Δ): (D̂1 − |Δ|),

:D̃(Δ)(D̂1)
2: = :D̃(Δ)D̂1: D̂1 − (|Δ| + 1) :D̃(Δ)D̂1: = :D̃(Δ)D̂1: (D̂1 − |Δ| − 1) =

= :D̃(Δ): (D̂1 − |Δ|)(D̂1 − |Δ| − 1), (39)

...

:D̃(Δ)(D̂1)
k: = :D̃(Δ):

k−1∏

i=0

(D̂1 − |Δ| − i)

follow directly from the definition of normal ordering. This implies that when we act with :D̃(Δ): on some

quantity of weight |R|, for example, on :D̃(R):, then D̂1 acts as multiplication by |R|, and we can always

replace :D̃(Δ): with

1

(|R| − |Δ|)!
:D̃(Δ)(D̂1)

|R|−|∆|: = :D([Δ, 1, . . . , 1︸ ︷︷ ︸
|R|−|∆|

]): , 1 /∈ Δ, (40)

without changing the result, in accordance with rule (3) and formula (29).

If Ŵ(Δ) contains D̂1 factors, then this rule should be modified by a numerical factor. For example,

:D̃([1]): is replaced with

1

(|R| − 1)!
:D̃([1])(D̂1)

|R|−1: =
1

(|R| − 1)!
:(D̂1)

|R|: = |R| :
˜

(D̂1)|R|: =

= |R| :D([1, . . . , 1︸ ︷︷ ︸
|R|

]): , (41)

which contains an extra factor of |R|, again in accordance with (3).

2.4.3. Multiplication algebra of Ŵ operators. Using the relations in Sec. 2.4.1, we can now

multiply different cut-and-join operators:

Ŵ(Δ1)Ŵ(Δ2) =
∑

∆

C∆
∆1∆2

Ŵ(Δ). (42)

We note that in contrast to (33), there is no restriction on the sizes of the Young diagrams Δ1, Δ2, and Δ

and there is only the selection rule

max(|Δ1|, |Δ2|) ≤ |Δ| ≤ |Δ1| + |Δ2|. (43)

These new structure constants with |Δ1| = |Δ2| = |Δ| nevertheless coincide with the structure constants of

conjugation-class algebra (33). The Feynman diagram technique in Sec. 2.3 can be considered a pictorial

representation of (42), and expression (25) for the Ŵ operator in terms of the time variables can be

considered a corollary of (42) projected to the |Δ1| = |Δ2| = |Δ| subset. In this case, it implies that

Ŵ(Δ1)p̃(Δ2) =
∑

∆

C∆
∆1,∆2

p̃(Δ) = Ŵ(Δ2)p̃(Δ1), |Δ1| = |Δ2|. (44)
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Table 1

R
Δ

1 2 11 3 21 111 4 31 22 211 1111 5 41 32 311 221 2111 11111

1 1

2 2 1 1

11 2 −1 1

3 3 3 3 2 3 1

21 3 0 3 −1 0 1

111 3 −3 3 2 −3 1

4 4 6 6 8 12 4 6 8 3 6 1

31 4 2 6 0 4 4 −2 0 −1 2 1

22 4 0 6 −4 0 4 0 −4 3 0 1

211 4 −2 6 0 −4 4 2 0 −1 −2 1

1111 4 −6 6 8 −12 4 −6 8 3 −6 1

5 5 10 10 20 30 10 30 40 15 30 5 24 30 20 20 15 10 1

41 5 5 10 5 15 10 0 10 0 15 5 −6 0 −5 5 0 5 1

32 5 2 10 −4 6 10 −6 −8 3 6 5 0 −6 4 −4 3 2 1

311 5 0 10 0 0 10 0 0 −5 0 5 4 0 0 0 −5 0 1

221 5 −2 10 −4 −6 10 6 −8 3 −6 5 0 6 −4 −4 3 −2 1

2111 5 −5 10 5 −15 10 0 10 0 −15 5 −6 0 5 5 0 −5 1

11111 5 −10 10 20 −30 10 −30 40 15 −30 5 24 −30 −20 20 15 −10 1

Furthermore, in accordance with (6), the eigenvalues ϕR(Δ) satisfy the same algebra (42):

ϕR(Δ1)ϕR(Δ2) =
∑

∆

C∆
∆1∆2

ϕR(Δ). (45)

The structure constants in this relation are independent of R, which is not so obvious if we extract ϕR(Δ)

from character expansion (2). We can verify this explicitly for the first few ϕR(Δ) using Table 1 for them

(ϕR(Δ) differs by a factor from symmetric group character [25]).

2.4.4. Examples of structure constants. We now give some explicit examples of (42): a multipli-

cation table restricted to the case where |Δ| ≤ 4. Many of the examples are direct consequences of relations

in Sec. 2.4.2. We note that the explicit dependence on N that appeared in the normal-ordered products

in Sec. 2.4.1 disappears when we consider products of the normal-ordered operators Ŵ . The components
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satisfying |Δ1| = |Δ2| = |Δ|, dictated by permutation composition (33), are underlined:

Ŵ([1])Ŵ([1]) = Ŵ([1]) + 2Ŵ([1, 1]),

Ŵ([1])Ŵ([2]) = 2Ŵ([2]) + Ŵ([2, 1]),

Ŵ([1])Ŵ([1, 1]) = 2Ŵ([1, 1]) + 3Ŵ([1, 1, 1]),

Ŵ([1])Ŵ([3]) = 3Ŵ([3]) + Ŵ([3, 1]),

Ŵ([1])Ŵ([2, 1]) = 3Ŵ([2, 1]) + 2Ŵ([2, 1, 1]),

Ŵ([1])Ŵ([1, 1, 1]) = 3Ŵ([1, 1, 1]) + 4Ŵ([1, 1, 1, 1]),

Ŵ([1])Ŵ([4]) = 4Ŵ([4]) + Ŵ([4, 1]),

Ŵ([1])Ŵ([3, 1]) = 4Ŵ([3, 1]) + 2Ŵ([3, 1, 1]),

Ŵ([1])Ŵ([2, 2]) = 4Ŵ([2, 2]) + Ŵ([2, 2, 1]),

Ŵ([1])Ŵ([2, 1, 1]) = 4Ŵ([2, 1, 1]) + 3Ŵ([2, 1, 1, 1]),

Ŵ([1])Ŵ([1, 1, 1, 1]) = 4Ŵ([1, 1, 1, 1]) + 5Ŵ([1, 1, 1, 1, 1]),

Ŵ([1, 1])Ŵ([2]) = Ŵ([2]) + 2Ŵ([2, 1]) + Ŵ([2, 1, 1]),

Ŵ([1, 1])Ŵ([1, 1]) = Ŵ([1, 1]) + 6Ŵ([1, 1, 1]) + 6Ŵ([1, 1, 1, 1]),

Ŵ([2])Ŵ([2]) = Ŵ([1, 1]) + 3Ŵ([3]) + 2Ŵ([2, 2]),

Ŵ([1, 1])Ŵ([3]) = 3Ŵ([3]) + 3Ŵ([3, 1]) + Ŵ([3, 1, 1]),

Ŵ([1, 1])Ŵ([2, 1]) = 3Ŵ([2, 1]) + 6Ŵ([2, 1, 1]) + Ŵ([2, 1, 1, 1]),

Ŵ([1, 1])Ŵ([1, 1, 1]) = 3Ŵ([1, 1, 1]) + 12Ŵ([1, 1, 1, 1]) + 10Ŵ([1, 1, 1, 1, 1]),

Ŵ([2])Ŵ([3]) = Ŵ([3, 2]) + 4Ŵ([4]) + 2Ŵ([2, 1]),

Ŵ([2])Ŵ([2, 1]) = 2Ŵ([2, 2, 1]) + 3Ŵ([3, 1]) + 4Ŵ([2, 2]) + 3Ŵ([3]) + 3Ŵ([1, 1, 1]),

Ŵ([2])Ŵ([1, 1, 1]) = Ŵ([2, 1]) + 2Ŵ([2, 1, 1]) + Ŵ([2, 1, 1, 1]).

2.5. From D̂ to differential operators in time variables. One way to express the operators Ŵ

in terms of the time variables is already given in (12). But it is much simpler to extract such expressions

directly from (25), i.e., by making a Miwa transformation back from the matrix variable X to the times

pk = tr Xk. This is done by a simple rule: when acting on a function of time variables, the X derivatives
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give

D̂abF (p) = Xac
∂

∂Xbc
F (p) =

∞∑

k=1

k(Xk)ab
∂F (p)

∂pk
. (46)

Further, the operators D̂ act both on the X that appeared in the first stage and on the remaining function

of time variables:

D̂a′b′D̂abF (p) =

∞∑

k,l=1

kl(X l)a′b′(X
k)ab

∂2F (p)

∂pk ∂pl
+

∞∑

k=1

k−1∑

j=0

k(Xj)ab′(X
k−j)a′b

∂F (p)

∂pk
, (47)

where we use

D̂a′b′(X
k)ab = Xa′c′

∂

∂Xb′c′
(Xk)ab =

k−1∑

j=0

Xa′c′(X
j)ab′(X

k−j−1)c′b =

=
k−1∑

j=0

(Xj)ab′(X
k−j)a′b. (48)

We note that the power of X in the second factor in the right-hand side of (48) is always nonzero, while it

can vanish in the first factor. If we considered a normal-ordered product of operators instead of (47), then

this power would also be nonzero:

:D̂a′b′D̂ab: F (p) =
∑

k

(
k

k−1∑

j=1

(Xj)ab′(X
k−j)a′b

)
∂F (p)

∂pk
+

+
∑

k,l

kl(Xk)ab(X
l)a′b′

∂2F (p)

∂pk ∂pl
. (49)

This is the property that guarantees that the potential dependence on N is eliminated from the formulas,

as it should be for operators expressible in terms of time variables, and hence independent of the details of

the Miwa transformation (of which N is an additional parameter).

The first few examples of the cut-and-join operators in terms of the time variables are

Ŵ([1]) = tr D̂ =
∑

k=1

kpk
∂

∂pk
, (50)

Ŵ([2]) =
1

2
: tr D̂2: =

1

2

∞∑

a,b=1

(
(a + b)papb

∂

∂pa+b
+ abpa+b

∂2

∂pa ∂pb

)
, (51)

Ŵ([1, 1]) =
1

2!
:(tr D̂)2: =

1

2

( ∞∑

a=1

a(a − 1)pa
∂

∂pa
+

∞∑

a,b=1

abpapb
∂2

∂pa ∂pb

)
, (52)

Ŵ([3]) =
1

3
: tr D̂3: =

1

3

∞∑

a,b,c≥1

abcpa+b+c
∂3

∂pa ∂pb ∂pc
+

+
1

2

∑

a+b=c+d

cd(1 − δacδbd)papb
∂2

∂pc ∂pd
+

+
1

3

∑

a,b,c≥1

(a + b + c)(papbpc + pa+b+c)
∂

∂pa+b+c
, (53)
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Ŵ([2, 1]) =
1

2
: tr D̂2 tr D̂: =

1

2

∑

a,b≥1

(a + b)(a + b − 2)papb
∂

∂pa+b
+

+
1

2

∑

a,b≥1

ab(a + b − 2)pa+b
∂2

∂pa ∂pb
+

+
1

2

∑

a,b,c≥1

(a + b)cpapbpc
∂2

∂pa+b ∂pc
+

+
1

2

∑

a,b,c≥1

abcpapb+c
∂3

∂pa ∂pb ∂pc
, (54)

Ŵ([1, 1, 1]) =
1

3!
:(tr D̂)3: =

1

6

∑

a≥1

a(a − 1)(a − 2)pa
∂

∂pa
+

+
1

4

∑

a,b

ab(a + b − 2)papb
∂2

∂pa ∂pb
+

+
1

6

∑

a,b,c≥1

abcpapbpc
∂3

∂pa ∂pb ∂pc
. (55)

As should be expected from (39) and (41), it follows from these formulas that

Ŵ([1, 1]) =
1

2
Ŵ([1])(Ŵ([1]) − 1),

Ŵ([2, 1]) = Ŵ([2])(Ŵ([1]) − 2),

Ŵ([1, 1, 1]) =
1

6
Ŵ([1])(Ŵ([1]) − 2)(Ŵ([1]) − 1).

(56)

The manifest expressions for higher operators rapidly become much more involved. But there is a much

more compact representation for the operators: when expressed in terms of the time variables, operators

are in fact constructed from the scalar field current

∂Φ(z) =
∑

k

(
ktkzk +

1

zk

∂

∂tk

)
=

∑

k

(
pkzk +

k

zk

∂

∂pk

)
(57)

and from an additional dilatation operator

R̂ =

(
z

∂

∂z

)2

(58)

(see [23], [42] for more details; we give only the first few examples here).

The normal ordering in these formulas means that all factors with p are to the left of factors with ∂/∂p

and we do not take p derivatives of the p when constructing an operator from ∂Φ(z). The subscript 0 means

that the coefficient of z0 in the z series should be taken. Because adding units to the Young diagram, as we

have seen, is a trivial procedure, we here list only the operators corresponding to Young diagrams without
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units [42]:

Ŵ([1]) = Ĉ1,

Ŵ([2]) =
1

2
Ĉ2,

Ŵ([3]) =
1

3
Ĉ3 −

1

2
Ĉ2

1 +
1

3
Ĉ1,

Ŵ([2, 2]) =
1

8
Ĉ2

2 −
1

2
Ĉ3 +

1

2
Ĉ2

1 −
1

4
Ĉ1,

Ŵ([4]) =
1

4
Ĉ4 − Ĉ1Ĉ2 +

5

4
Ĉ1,

(59)

where the Casimir operators are [42]

Ĉ1 =
1

2
:[(∂Φ)2]0:,

Ĉ2 =
1

3
:[(∂Φ)3]0:,

Ĉ3 =
1

4
:[(∂Φ)4 + ∂Φ(R̂∂Φ)]0:,

Ĉ4 =
1

5
:

[
(∂Φ)5 +

5

2
(∂Φ)2(R̂∂Φ)

]

0

:,

Ĉk =
1

k + 1
:

[
(∂Φ)k+1 +

(k + 1)!

4! (k − 2)!
(∂Φ)k−1(R̂∂Φ) + · · ·

]

0

: .

2.6. The GL(∞) characters. The GL characters χR(t) are defined using the first Weyl determinant

formula

χR(t) = det
ij

sµi+j−i(t), (60)

where sk(t) are the Shur polynomials,

exp

(∑

k

tkzk

)
=

∑

k

sk(t)zk. (61)

As a result of the Miwa transformation pk = ktk = tr Xk, the same characters are expressed in terms of

the eigenvalues of X by the second Weyl formula

χR[X ] = χR

(
tk =

1

k
tr Xk

)
=

detij x
µj−j
i

detij x−j
i

. (62)

The expansion of χR(t) in powers of the p defines the coefficients ϕR(Δ) by Eq. (2) for |R| = |Δ| and by

Eq. (3) for all other Δ. In (2), the parameter dR is the value of the character at the point tk = δk,1,

dR = χR(δk1), (63)

and is given by the hook formula

dR =
∏

all boxes of R

1

hook length
=

∏|R|
i<j=1(µi − µj − i + j)
∏|R|

i=1(µi + |R| − i)!
. (64)
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We can also introduce a natural scalar product on the characters,

〈χR(t), χR′(t)〉 = δRR′ , (65)

given by the explicit formula

〈A(t), B(t)〉 ≡ A

(
∂

∂p

)
B(t)

∣∣∣∣
tk=0

. (66)

In particular,

〈p(Δ), p̃(Δ′)〉 = δ∆∆′. (67)

These formulas together with (2) immediately lead to the inverse expansion

p̃(Δ) =
∑

R

dRϕR(Δ)χR(t)δ|∆|,|R|. (68)

Hence, (6) is actually an exhaustive alternative definition of the operators Ŵ(Δ), and it can be verified

that (12) does satisfy this definition (see Sec. 2.7 and [23], [42]). The equivalence of the two definitions, (25)

and (6), follows from formula (1).

2.7. Deriving (6) from (12). The idea of a straightforward derivation of (6) from (12) is as follows.

For simplicity, we consider a Δ that does not contain units (the generalization is straightforward). Obviously,

:D̃(Δ): et1 = :D̃(Δ): etr X = p̃(Δ)et1 . (69)

Because

et1 =
∑

R

dRχR(t), (70)

it hence follows that ∑

R

dR :D̃(Δ): χR(t) = p̃(Δ)et1 . (71)

The right-hand side of this formula can be rewritten using (68) and (3) as

∑

k

p̃(Δ)
tk1
k!

=
∑

k

p([Δ, 1, . . . , 1︸ ︷︷ ︸
k

]) =
∑

k

∑

R

dRϕR([Δ, 1, . . . , 1︸ ︷︷ ︸
k

])χR =

=
∑

k

∑

R:|R|=|∆|+k

dRϕR(Δ)χR =
∑

R

dRϕR(Δ)χR, (72)

which together with (71) and the fact that χR(t) are the eigenfunctions of :D̃(Δ): ultimately leads to (6).

2.8. Details of (14). Deviation from the naive formula (14) arises because we should carefully impose

the condition |Δ| = R in (2) when passing from ϕR(Δ) in (1) to the characters χR(t′) in (4):

Z(t, t′, . . . ) =
∑

q

{ ∑

∆,∆′

p(Δ)p′(Δ′)δ|∆|,qδ|∆′|,q Covq(Δ, Δ′, . . . )

}
=

=
∑

R

χR(t)χR(t′) . . . (73)
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or, alternatively,

Z(t, t′, . . . ) =
∑

∆′,R

dRχR(t)ϕR(Δ)p′(Δ) · · · δ|∆|,|R| =

=

∮
dz

z

∑

∆,R

dRχR(t)ϕR(Δ)p′(Δ)z|∆|−|R| · · · =

=

∮
dz

z

∑

∆

z|∆|p′(Δ) :D̃(Δ):
∑

R

dRχR(t)z|R| · · · =

=

∮
dz

z
: exp

( ∞∑

k=1

zkt′kD̂k

)
:
∑

R

dRχR(t)z|R| . . . .

This is the full (correct) version of Eq. (14). If we consider Z(t, t′|0), then the sum over R is equal to et1/z,

and as a simplest example, we obtain

Z(t, t′|0) =

∮
dz

z
: exp

( ∞∑

k=1

zkt′kD̂k

)
:et1/z =

= exp

(∑

k

ktkt′k

) ∮
dz

z
et1/z = exp

(∑

k

ktkt′k

)
. (74)

Generalizations are easily derived. If we want to consider multiple Hurwitz numbers with more sets of

t variables, then we must consider additional δ-functions and integrals over z.

3. Summary and conclusion

The general cut-and-join operator Ŵ(Δ) is associated with an arbitrary Young diagram Δ and can be

defined in two alternative ways.

First, we can define Ŵ(Δ) in terms of the characters, requiring that

Ŵ(Δ)χR(t) = ϕR(Δ)χR(t) (75)

for any Young diagram R. Then the Hurwitz partition function for two sets of time variables, for example,

is equal to

Z(t, t̄|β) ≡
∑

R

χR(t)χR(t̄) exp

(∑

∆

β∆ϕR(Δ)

)
= exp

(∑

∆

β∆Ŵ(Δ)

)
Z(t, t̄|0), (76)

where

Z(t, t̄|0) =
∑

R

χR(t)χR(t̄) = exp

(∑

k

ktk t̄k

)
= exp

(∑

k

1

k
pkp̄k

)
.

The Hurwitz Toda τ -function [27], [9] for the double Hurwitz numbers,

Z(t, t̄|β) =
∑

R

χR(t)χR(t̄)eβ2ϕR([2]) = eβ2
W([2])Z(t, t̄, 0)

is a particular case, and the Kontsevich–Hurwitz KP τ -function for the single (or ordinary) Hurwitz numbers

is a further restriction to t̄k = δk,1. The integrability in these two examples is preserved because the simplest
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cut-and-join operator Ŵ([2]) coincides with the (second) Casimir operator, and integrability is present when

any combination of Casimir operators acts on the τ -function [27]. The integrability is violated by the general

cut-and-join operators with |Δ| ≥ 3. Of course, the β variables can be regarded as associated with some

new integrable structure, reflected in the commutativity of the operators Ŵ(Δ),

[Ŵ(Δ1), Ŵ(Δ2)] = 0 ∀Δ1, Δ2. (77)

But there is no obvious way to relate this integrability to the group-theory-induced Hirota-like bilinear

relations [47], and there are even fewer chances that it is somehow induced by the free-fermion representation

of Û(1) (these are the two features built into the definition of integrable hierarchies of the KP/Toda type).

Second, we can define Ŵ(Δ) in terms of permutations and their cyclic decompositions. This is the

problem directly related to the merger of ramification points of the Hurwitz covering. The central formula

is (25),

Δ ◦ P(p) = Ŵ(Δ)P(p), (78)

and in Sec. 2.2, we explained how Ŵ(Δ) is explicitly reconstructed from the knowledge of permutation

compositions.

Both these definitions, conditions (75) and (78), are explicitly resolved by (12), which is a direct

generalization of the representation of the simplest cut-and-join operator Ŵ([2]) in [24]. The first few

operators in this set are listed in Sec. 2.5. These operators form a commutative associative algebra

Ŵ(Δ1)Ŵ(Δ2) =
∑

∆

C∆
∆1∆2

Ŵ(Δ). (79)

We call it the universal Hurwitz algebra because it allows defining the universal Hurwitz numbers for an

arbitrary collection of Young diagrams, not necessarily of the same size. That is, if complemented by (43),

formula (1) allows defining the Hurwitz number as

Cov(Δ1, . . . ,Δm) =
∑

∆

C∆
∆1···∆m

(∑

R

d2
Rϕ(Δ)

)
, (80)

where C is a combination of structure constants, for example,

C∆
∆1...∆m

=
∑

∆a,∆b,...,∆c

C∆a

∆1∆2
C∆b

∆a∆3
· · ·C∆

∆c∆m
(81)

(the order of pairing is in fact inessential because the algebra is associative and commutative). Evaluating

the Hurwitz numbers thus reduces to evaluating the single form on the linear algebra of Young diagrams

∑

R

d2
RϕR(Δ) =

⎧
⎪⎪⎨
⎪⎪⎩

0, Δ contains more than one column,

1

n!
, Δ = [1, . . . , 1︸ ︷︷ ︸

n

].
(82)

That the form is zero except on the single-column diagrams is a direct consequence of fundamental sum

rule (70).

More details about the character-related description and the integrability aspects of the problem can

be found in [23], [42]. All these relations here and in [23], [42] deserve better understanding. Study-

ing the matrix-model representation [24] for the Hurwitz KP τ -function, its application (using [35]) to

understanding the mysterious relation of twisting of the Hurwitz KP τ -function to the Kontsevich τ -

function [10], [19], [22], and the further non-Abelian generalization of this entire formalism to the Hurwitz

numbers for coverings of Riemann surfaces with boundaries [14] (e.g., a disk instead of the Riemann sphere)

is especially interesting.
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