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Abstract
In this study, we present some new results for the time fractional mixed boundary value problems. We consider a gen-
eralization of the Heat - conduction problem in two dimensions that arises during the manufacturing of p - n junctions.
Constructive examples are also provided throughout the paper. The main purpose of this article is to present mathematical
results that are useful to researchers in a variety of fields.
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1 Introduction

Fractional partial differential equations provide an excellent model for the description of memory and hered-
itary properties of various processes and materials. This is the main advantage of fractional partial differential
equations in comparison with classical integer - order models, in which such effects are in fact neglected. It
is well - known that the mixed boundary value problems occur in the theory of elasticity in connection with
punching and crack problems. The main objective of present study is to justify, in a clear fasion, the interest-
ing possibility that fractional methods represent for modelling the dynamics certain phenomena which ordinary
models cannot. The solution of the mixed boundary value problems requires considerable mathematical skills.
Most mixed boundary value problems are solved using integral transform method or separation of variables
[7,13,14]. Transform method are usually led to the problem of solving dual or triple Fourier or Bessel integral
equations. For a discussion of such equation see [4,5]. The main goal of this study is to give an updated treat-
ment of this subject. An alternative method of solving mixed boundary value problem involves Green’s function.
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Conformal mapping is a mathematical technique to solve certain types of mixed boundary value problems [4].
It should be emphasized that the focus of this paper is only on integral transform method for solving fractional
partial differential equations. However, some papers have recently presented numerical techniques for this class
of problems. In[9], the authors used a q- homotopy analysis transform method to find the solution for fractional
Drinfeld - Sokolov - Wilson equation, where fractional derivative defined with Atangana - Baleanu (AB) opera-
tor. In[16], P.Veeresha used a numerical technique called q - homotopy analysis transform method to solve a non
- linear Fisher’s equation of fractional order. Finally, we list a number of research articles where the background
and many applications of numerical methods of solution could be found (see [8,9,12,15-17]) and focus mostly
on the solution of non - linear equations.

1.1 Definitions and Notations

In the last three decades or so, fractional derivatives and notably fractional calculus have played a very
important role in the various fields such as chemistry, biology, engineering, economics and signal processing.
At this point, it should be pointed out that several definitions have been proposed of a fractional derivative,
among those the Riemann - Liouville and Caputo fractional derivatives are the most popular. The differential
equations defined in terms of Riemann - Liouville derivatives require fractional initial conditions, whereas the
differential equations defined in terms of Caputo derivatives require regular boundary conditions. For this reason,
the Caputo fractional derivatives are popular among engineers and scientists.

Definition 1.1. The left Caputo fractional derivative of order α (0 < α < 1) of φ(t) is as follows

Dc,α
a φ(t) = 1

Γ(1−α)

´ t
a

1
(t−ξ )α φ ′(ξ )dξ , (1.1)

Definition 1.2. The Laplace transform of the function f (t) is as follows[6]

L { f (t)}=
ˆ

∞

0
e−st f (t)dt := F(s). (1.2)

If L { f (t)}= F(s), then L −1{F(s)} is given by

f (t) =
1

2πi

ˆ c+i∞

c−i∞
estF(s)ds, (1.3)

where F(s) is analytic in the region Re(s)> c. The parameter s is generally complex, but for the present time it is
more convenient to consider it as real. The existence of the Laplace transform will depend upon the parameter
s and the function f (t). The above complex integration along vertical line Res = c is known as Bromwich’s
integral[6,10]. The real merit of the Laplace transform is revealed by its effect on fractional derivatives. Here
we derive a relation between the Laplace transform of the Caputo fractional derivative of a function and the
Laplace transform of the function itself [11].

L [Dc,α
0,t f (t);s] = sαL [ f (t);s]− sα−1 f (0+).0 < α < 1. (1)

Definition 1.3. A two - parameter Mittag - Leffler function is defined by the series expansion [11]

Eα,β (ξ ) =
+∞

∑
k=0

ξ k

Γ(αk+1)
. (2)

Lemma 1.1. The following integral identities hold true[11]

1.
ˆ +∞

0
e−sttαk+β−1E(k)

α,β (±λ tα)dt =
k!sα−β

(sα ∓λ )k+1 . (3)
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2.
ˆ +∞

0
e−sttβ−1Eα,β (±λ tα)dt =

sα−β

(sα ∓λ )
. (4)

Note

3.
ˆ +∞

0
e−sttαEα,α−1(±λ tα)dt =

1
s(sα ∓λ )

. (5)

Note: With E(k)
α,β (ξ ) =

dk

dξ k Eα,β (ξ ).
Many problems of physical interest lead to Laplace transform whose inverses are not readily expressed in terms
of tabulated functions. Therefore, it is highly desirable to have methods for inversion. In this section an algorithm
to invert the Laplace transform is presented [1,2,3]
Remark. In the next Lemmas, we need the following integral representation for the modified Bessel’s function
of the second kind

1. K0(aξ ) =

ˆ +∞

0
e−aξ coshzdz,

Lemma 1.2. By using an appropriate integral representation for the modified Bessel’s functions of the second
kind of order zero, eλ sK0(λ s), show that

L −1[eλ sK0(λ s)] =
1√

t(t +2λ )
. (6)

Proof. In view of the definition1.1 taking the inverse Laplace transform of the given eλ sK0(λ s), we obtain

f (t) =
1

2πi

ˆ c+i∞

c−i∞
est(eλ sK0(λ s))ds, (7)

at this stage, using the following integral representation for K0(λ s).

eλ sK0(λ s) =
ˆ

∞

0
eλ s−(λ s)coshzdz. (8)

By setting relation (8) in (7), we obtain

f (t) =
1

2πi

ˆ c+i∞

c−i∞
est(

ˆ
∞

0
eλ s−(λ s)coshzdz)ds, (9)

let us change the order of integration in relation (9), we arrive at

f (t) =
ˆ

∞

0
(

1
2πi

ˆ c+i∞

c−i∞
es(t−(λcoshz−λ ))ds)dz, (10)

the value of the inner integral is δ (t− (λcoshz−λ )), therefore

f (t) =
ˆ

∞

0
δ (t− (λcoshz−λ ))dz, (11)

after making a change of variable t− (λcoshz−λ ) = ψ , and considerable algebra, we obtain

f (t) =
ˆ 0

−∞

δ (ψ)

λ

√
( t+λ−ψ

λ
)2−1)

dψ =
1√

t(t +2λ )
. (12)
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In view of the relation (1.3), we obtain the following integral relation
ˆ

∞

0

e−st√
t(t +2λ )

dt = eλ sK0(λ s). (13)

Thus, we get the following integral representation for the modified Bessel’s function of the second kind of order
zero,

K0(λ s) =
ˆ +∞

0

e−(λ+t)s√
t(t +2λ )

.

Definition 1.4. The Hankel transform of order ν of a function f (t) is given by

Hν [ f (t);ρ] =

ˆ +∞

0
f (t)tJν(ρt)dt = F(ρ). (14)

In order for a transformation to be useful in solving boundary value problems, it must have an inverse. The
inverse Hankel transform of a function F(ρ) is given by [6]

H −1
ν [F(ρ); t] =

ˆ +∞

0
F(ρ)ρJν(tρ)dρ = f (t). (15)

Lemma 1.3. We have the following relation

Hν [1;ρ] =

ˆ +∞

0
tJν(ρt)dt =

ν

ρ2 . (16)

Proof: Let us start with the following Laplace transform relation

L [Jν(λ t)] =
ˆ +∞

0
e−stJν(λ t)dt =

(
√

s2 +λ 2− s)ν

λ ν
√

s2 +λ 2
, (17)

taking derivative with respect to the parameter s from both sides of the above relation, we obtain
ˆ +∞

0
−te−stJν(λ t)dt =−λ

ν [
−1
2
(s2 +λ

2)
−3
2 (

√
s2 +λ 2− s)ν ]+ ......

..+λ
ν [(s2 +λ

2)
−1
2 (

√
s2 +λ 2− s)ν−1(

s√
s2 +λ 2

−1)], (18)

in the above relation, if we set s = 0 and λ = ρ after simplifying, we obtain
ˆ +∞

0
tJν(ρt)dt =

ν

ρ2 . (19)

Note. In special case ν = n+ 1
2 , we have

ˆ +∞

0
tJn+ 1

2
(ρt)dt =

n+ 1
2

ρ2 . (20)

Corollary 1.1. The following integral identities hold true

1. Hν [δ (t−λ );ρ] =

ˆ +∞

0
tJν(ρt)δ (t−λ )dt = λJν(λρ). (21)
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2. Hν [tν−1e−at ;ρ] =

ˆ +∞

0
tνe−atJν(ρt)dt =

(2ρ)νΓ(ν +0.5)√
π(ρ2 +a2)ν+0.5 (22)

Corollary 1.2. Parseval’s relation for Hankel transform
If F(ρ) and G(ρ)are Hankel transforms of f (t) and g(t) , respectively, then we have the following relation

ˆ +∞

0
t f (t)g(t)dt =

ˆ +∞

0
ρF(ρ)G(ρ)dρ. (23)

Like the Laplace transform, the Hankel transforms used in a variety of applications. Perhaps the most common
usage of the Hankel transform is in the solution of boundary value problems. However, there are other situations
for which the properties of the Hankel transform are also very useful, such as in the evaluation of certain inte-
grals.
Example 1.1. By using Parseval’s relation show that

ˆ +∞

0

ρ2ν+1dρ

[(ρ2 +a2)(ρ2 +b2)]ν+0.5 =
πΓ(2ν)

4ν(a+b)2νΓ2(ν +0.5)
. (24)

Solution. Let us take f (t) = tν−1e−at and g(t) = tν−1e−bt , with Hankel transforms

F(ρ) =
(2ρ)νΓ(ν +0.5)√

π(ρ2 +a2)ν+0.5 , G(ρ) =
(2ρ)νΓ(ν +0.5)√

π(ρ2 +b2)ν+0.5 . (25)

respectively.
At this point, using Parseval’s relation leads to

ˆ +∞

0
e−(a+b)tt2ν−1dt =

Γ(2ν)

(a+b)2ν
=

ˆ +∞

0

ρ(2ρ)2νΓ2(ν +0.5)
π[(ρ2 +a2)(ρ2 +b2)]ν+0.5 dρ. (26)

After simplifying, we arrive at
ˆ +∞

0

ρ2ν+1dρ

[(ρ2 +a2)(ρ2 +b2)]ν+0.5 =
πΓ(2ν)

4ν(a+b)2νΓ2(ν +0.5)
. (27)

Lemma 1.4. The following integral relations hold true.

1.
ˆ +∞

0
xν+1Jν(ρx)

dx
(x2 +a2)λ+1 =

aν−λ ρλ

2λ Γ(λ +1)
Kν−λ (aρ). (28)

2.
ˆ +∞

0
ρ

λ+1Jν(xρ)Kν−λ (aρ) =
2λ Γ(λ +1)xν

aν−λ (x2 +a2)λ+1 . (29)

3.
ˆ +∞

0
ρYν(xρ)Kν(aρ)dρ =

2π(a−νxν cosπν−aνx−ν

2(x2 +a2)sinπν
. (30)

Proof: Let us start with the following elementary integral identity

1
(x2 +a2)λ+1 =

1
Γ(λ +1)

ˆ +∞

0
e−(x

2+a2)uuλ du. (31)
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By substituting this integral on the left hand side of the first integral and interchanging the order of integration,
we obtain

ˆ +∞

0
xν+1Jν(ρx)[

1
Γ(λ +1)

ˆ +∞

0
e−(x

2+a2)uuλ du]dx = ....

=
1

2Γ(λ +1)

ˆ +∞

0
e−a2uuλ (

ˆ +∞

0
xν+1e−ux2

Jν(ρx)dx)du. (32)

At this point, let us evaluate the inner integral by making a change of variable x2 = φ and ρ = 2
√

β , after
evaluation of the integral, we arrive at

ˆ +∞

0
xν+1Jν(ρx)[

1
Γ(λ +1)

ˆ +∞

0
e−(x

2+a2)uuλ du]dx = ....

β
ν

2

Γ(λ +1)

ˆ +∞

0
e−a2uuλ (

e−
β

u

uν+1 )du =
ρν

2νΓ(λ +1)

ˆ +∞

0
e−(a

2u+ ρ2
4u )

du
2uν−λ+1 . (33)

Making a change of variable a2u = w, after simplifying, we obtain

ˆ +∞

0
xν+1Jν(ρx)

dx
(x2 +a2)λ+1 =

ρλ a2(ν−λ )

2λ Γ(λ +1)
[(

aρ

2
)ν−λ

ˆ +∞

0
e−w− a2ρ2

4w
dw

2wν−λ+1 ]. (34)

But, the value of the integral in the braces is Kν−λ (aρ), therefore we get the following

ˆ +∞

0
xν+1Jν(ρx)

dx
(x2 +a2)λ+1 =

ρλ aν−λ

2λ Γ(λ +1)
Kν−λ (aρ). (35)

At this stage, the above relation can be written as Hankel transform of a function as below

Hν [
xν

(x2 +a2)λ+1 ;ρ] =
aν−λ

2λ Γ(λ +1)
ρ

λ Kν−λ (aρ). (36)

Thus, by taking the inverse Hankel transform, we obtain

ˆ +∞

0
ρ

λ+1Jν(xρ)Kν−λ (aρ)dρ =
2λ Γ(λ +1)

aν−λ

xν

(x2 +a2)λ+1 . (37)

Let us choose λ = 0, after simplifying we get

ˆ +∞

0
ρJν(xρ)Kν(aρ)dρ =

2xν

aν(x2 +a2)
. (38)

Let us consider the following relations,

Kν(ξ ) = K−ν(ξ ), Yν(ξ ) =
π

2
Jν(ξ )cos(πν)− J−ν(ξ )

sin(πν)
. (39)
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Combination of (38) and (39) leads to the following integral relation
ˆ +∞

0
ρYν(xρ)Kν(aρ)dρ =

2π(a−νxν cosπν−aνx−ν)

2(x2 +a2)sinπν
. (40)

Note: In the above relation, Yν(ξ ) stands for the Newmann function of order ν .
Theorem 1.1. Let us assume that L [ f (t)] = F(s), then the following relation holds true

exp[−exp(− t
2
)] f (exp

−t
2
) = L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ]. (41)

Proof: The right hand side of the above relation can be written as follows

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =
1

2πi

ˆ c+i∞

c−i∞
est [

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ]ds. (42)

In the above double integral, we set L [ f (η)] = F(ξ ) =
´ +∞

0 e−ξ η f (η)dη . to obtain

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =
1

2πi

ˆ c+i∞

c−i∞
est [

ˆ +∞

0
ξ

sJ2s(2
√

ξ )

ˆ +∞

0
e−ξ η f (η)dη ]dξ ds, (43)

changing the order of integration leads to

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =
1

2πi

ˆ c+i∞

c−i∞
est [

ˆ +∞

0
f (η)[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )e−ξ ηdξ ]dη ]ds, (44)

after evaluating the inner integral, we get

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =
1

2πi

ˆ c+i∞

c−i∞
est [

ˆ +∞

0

e−
1
η

η2s+1 f (η)dη ]ds, (45)

at this stage, we change the order of integration and simplifying, we arrive at

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =

ˆ +∞

0
e−

1
η f (η)[

1
2πi

ˆ c+i∞

c−i∞
est−(2s+1) lnηds]dη , (46)

after simplifying the inner integral, we obtain

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =

ˆ +∞

0
η
−1e−

1
η f (η)[

1
2πi

ˆ c+i∞

c−i∞
es(t−2lnη)ds]dη , (47)

the value of the complex integral is δ (t−2lnη), therefore

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =

ˆ +∞

0
η
−1e−

1
η f (η)δ (t−2lnη)dη , (48)

making a change of variable φ = t−2lnη , then we get η = e
t−φ

2 and dη = −1
2 e

t−φ

2 , after simplifying we have
the following

L −1[

ˆ +∞

0
ξ

sJ2s(2
√

ξ )F(ξ )dξ ] =

ˆ +∞

−∞

e−e
φ−t

2 f (e
φ−t

2 )δ (φ)dφ = e−e
−t
2 f (e

−t
2 ). (49)
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Lemman 1.5 Let us assume that L [ f (t);s] = F(s), then the following identities hold true

1. L [ f (t3);s] =
1

3π

ˆ +∞

0

√
s
ξ

K 1
3
[2(

s

3 3
√

ξ
)]F(ξ )dξ , (50)

2. L [
1
t

f (
1
t
);s] =

ˆ +∞

0
J0(2
√

su)F(u)du. (51)

3. L [
1
t

f (
1
t3 );s] =

ˆ +∞

0
J0(2
√

su)[
1

3π

ˆ +∞

0

√
s
ξ

K 1
3
[2(

s

3 3
√

ξ
)]F(ξ )dξ ]du. (52)

Proof. See [6].
Example 1.2. The following integral identity holds true

λ
7
6

3
e
− s

3√
λ =

ˆ +∞

0
J0(2
√

su)[
1

3π

ˆ +∞

0

√
s
ξ

K 1
3
(

2s

3 3
√

ξ
)e−λξ dξ ]du. (53)

Solution. Let us take f (t) = δ (t−λ ), then F(s) = e−λ s , so we may evaluate L [1
t δ ( 1

t3 −λ )] in two different
ways as below, first, directly by the definition of the Laplace transform, we get

L [
1
t

δ (
1
t3 −λ )] =

ˆ +∞

0
e−st 1

t
δ (

1
t3 −λ )dt =

λ
7
6

3
e
− s

3√
λ . (54)

On the other hand, by using part three of the Lemma 1.5, we arrive at

λ
7
6

3
e
− s

3√
λ =

ˆ +∞

0
J0(2
√

su)[
1

3π

ˆ +∞

0

√
s
ξ

K 1
3
(

2s

3 3
√

ξ
)e−λξ dξ ]du. (55)

2 Main Results

In the past three decades, considerable research efforts have been expended to study anomalous diffusion
using the time fractional equation. Anomalous diffusion transport appears to be a universal experimental phe-
nomenon. A number of works have been published dealing with anomalous transport in fractals and disordered
media, glass - forming liquids and colloidal structures. Let us consider the following two-dimensional heat con-
duction problem that arises during the manufacture of p-n junctions. To the best of the author’s knowledge this
kind of fractional mixed boundary value problem is not considered in the literature.
Problem 2.1. Let us consider the following time fractional diffusion problem with mixed boundary conditions

∂ c,αu(x,y, t)
∂ tα

= a2
∆u(x,y, t), 0 < α < 1. (56)

where −∞ < x < ∞ , 0 < y, t <+∞ and subject to the mixed conditions

uy(x,0, t) = 0, (57)
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u(x,y,0) = 0, (58)

u(x,π, t) =
U0tα

Γ(α +1)
. (59)

lim|x|−>+∞u(x,y, t) = limy−>+∞u(x,y, t) = 0. (60)

Note: In this study, it is assumed that the time fractional derivatives have been defined in the sense of the Caputo
fractional derivatives.
Solution: In order to solve the above mixed boundary value problem, we reformulating it in cylindrical coordi-
nates, to obtain

∂ c,αu(r,φ , t)
∂ tα

= a2(urr +
1
r

ur +
1
r2 uφφ ), 0 < α < 1. (61)

where 0 < φ < π , 0 < r, t <+∞ and subject to the mixed conditions

uφ (r,0, t) = 0, (62)

u(r,π,0) = 0, (63)

u(r,π, t) =
U0tα

Γ(α +1)
. (64)

limr−>0u(r,φ , t) = limr−>+∞u(r,φ , t) = 0. (65)

The above mixed boundary value problem can be solved via the Laplace transform.
Let us define

U(r,φ ,s) =
ˆ +∞

0
e−stu(r,φ , t)dt. (66)

Then the transformed equation becomes

sαU(r,φ ,s) = a2(Urr +
1
r

Ur +
1
r2Uφφ ), 0 < α < 1. (67)

where 0 < φ < π , 0 < r, t <+∞ and subject to the mixed conditions

Uφ (r,0,s) = 0, (68)

U(r,π,0) = 0, (69)

U(r,π,s) =
U0

sα+1 . (70)

limr−>0U(r,φ ,s) = limr−>+∞U(r,φ ,s) = 0. (71)

At this stage, let us choose

U(r,φ ,s) =
U0

sα+1 +V (r,φ ,s). (72)
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Then we have the following relations

sα

a2 V (r,φ ,s) =Vrr +
1
r

Vr +
1
r2Vφφ −

U0

a2s
, 0 < α < 1. (73)

where 0 < φ < π , 0 < r, t <+∞ and subject to the mixed conditions

Vφ (r,0,s) = 0, (74)

V (r,π,0) = 0, (75)

limr−>0V (r,φ ,s) = limr−>+∞V (r,φ ,s) = 0. (76)

Now, we express the Fourier series solution to the above equation as follows

V (r,φ ,s) =
+∞

∑
n=0

Vn(r,s)cos(n+
1
2
)φ . (77)

Note that the Equation (77) satisfies the boundary conditions (74),(75) and each Fourier coefficient Vn(r,φ ,s) is
governed by the following non - homogenous second order Bessel’s differential equation.

V ′′n +
1
r

V ′n− (
(n+ 1

2)
2

r2 +
sα

a2 )Vn =
2(−1)nU0

πa2(n+ 1
2)s

(78)

Equation (78) is known as non - homogeneous modified Bessel equation of order (n+ 1
2) with complete solution

as below

Vn(r,s) = c1Kn+ 1
2
(

r
a

√
sα)+ c2In+ 1

2
(

r
a

√
sα)+Ψc(r,s), (79)

where, Ψc(r,s) is the complementary solution and not known. Since the modified Bessel’s functions Iν(r),Kν(r)
are unbounded at origin and infinity respectively, so that in view of the boundary conditions (60), we should have
c1 = c2 = 0, therefore, we get the following formal solution

Vn(r,s) = Ψc(r,s). (80)

One of the principal uses of the Hankel transform is in the solution of boundary value problems involving
cylindrical coordinates. At this stage, we apply the Hankel transform of order (n+ 1

2) to the variable r in (78),
this action leads to

Hn+ 1
2
[V ′′n +

1
r

V ′n−
(n+ 1

2)
2

r2 Vn]−Hn+ 1
2
[
sα

a2 Vn] = Hn+ 1
2
[

2(−1)nU0

πa2(n+ 1
2)s

], (81)

after using some properties of the Hankel transform and in view of the Lemma 1.3, we arrive at

−ρ
2A(ρ,s)− sα

a2 A(ρ,s) =
2U0(−1)n

πa2(n+ 1
2)s

(
n+ 1

2
ρ2 ), (82)

from which we deduce that

A(ρ,s) =− 2(−1)nU0

πρ2s(sα +a2ρ2)
. (83)
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Inverting this result by means of the Hankel inversion formula, we have

Vn(r,s) = Ψc(r,s) =−
ˆ

∞

0

2(−1)nU0

πs(sα +a2ρ2)
Jn+ 1

2
(rρ)

dρ

ρ
, (84)

and

V (r,φ ,s) =−
+∞

∑
n=0

[

ˆ
∞

0

2(−1)nU0

πs(sα +a2ρ2)
Jn+ 1

2
(rρ)

dρ

ρ
]cos(n+

1
2
)φ . (85)

Finally, we get the solution to transformed Equation (67) as follows

U(r,φ ,s) =
U0

sα+1 −
2U0

π

+∞

∑
n=0

(−1)n[

ˆ
∞

0

1
s(sα +a2ρ2)ρ

Jn+ 1
2
(rρ)

dρ

ρ
]cos(n+

1
2
)φ , (86)

and thus by taking the inverse Laplace transform, we obtain

u(r,φ , t)
U0

=
tα

Γ(α +1)
− 2

π

+∞

∑
n=0

(−1)n[

ˆ
∞

0
L −1[

1
s(sα +a2ρ2)

]Jn+ 1
2
(rρ)

dρ

ρ
]cos(n+

1
2
)φ , (87)

at this point, by virtue of the part three of the Lemma 1.1, and the inversion of Equation (87) yields

u(r,φ , t)
U0

=
tα

Γ(α +1)
− 2tα

π

+∞

∑
n=0

(−1)n[

ˆ
∞

0
Eα,α−1(±λ tα)Jn+ 1

2
(rρ)

dρ

ρ
]cos(n+

1
2
)φ , (88)

Note: It is easy to check that u(r,φ ,0) = uφ (r,0, t) = 0,u(r,π, t) = U0tα

Γ(α+1)

3 Conclusions

In this work, the author presents analytical techniques to solve time fractional diffusion problem with mixed
bounadry conditions.We consider a generalization of the fractional heat conduction problem in two dimensions
that arises during analysis of the impurity atom distribution near the diffusion mask for a planar p - n junction.
The article is intended for scientists and researchers of different disciplines of engineering and science dealing
with the solutions of fractional mixed boundary value problems. The results reveal that the integral transforms
method is very convenient and effective. It is hoped that this study will lead to further investigations in the field
and more elegant solutions would be found.
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