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Complete solution of the cyclotomic problem in
F, for any prime modulus /, g = p*, p= 1(mod I)*

by
S. A, Katre and A. R. Rajwape (Chandigarh, India)

1. Introduction. Let [ be an odd rational prime and p a rational prime
= 1(mod1). Let g = p*, @ = 1, and et F, be the finite field of 4 elements. Let
{ be a primitive (complex) Ith root of unity fixed once for all. Given a
generator y of F¥, the Jacobi sums J (i, j) and the cyclotomic numbers -4;; of
order |}, for 0< i, j < i1 (or rather for i, j modulo {), are defined by

Ji =3 Xy (+1),

veF,

and

Ay = Card. {veF,| x(0) =1, xlo+1) =

“where the character % on F, is defined by x(y) = { and x(0) = 0. (Clearly, the

A;; do not depend upon { whereas the J(i, j) do)) These are related by
Y NG, =14, and 3N AT = J(a, b).
i f i
Thus knowing the Jacobi sums one knows the cyciotomic numbers and
conversely. One has J(0,0) =¢g—2, J(0,))=~1 if j# O(modl), J{,))
=J(j, ) =J({, —i=)=J(, —i=p=J(~i=j, iy =J(—i—] ]} and  for
(k, ) = 1, J{i, )™ = J (ik, jk), where o, is the automorphism { -»{* of Fel(d
over (. From this one sees that all the Jacobi sums and the cyclotomic
numbers of order I are known if one knows the Jacobi sums
J(l 1), J(l (1—3)/2) for { >3, and J(1, 1) for [ =3 (see [9]). If y and '
= y* are two generators of Fy and il kk = 1 mod/, then J(i, j),, = J (ik, jk),.
This shows that the con]ugates of J(i, j) for a given y are the values of J(i,))
for different generators y of F} and conversely.
The determination of the eyclotomic numbers of order /=3 in F, was
considered by Gauss in [3] in terms of the solutions of the diophantine

* This paper was presented in the Indo-Soviet Symposium in Number Theory held at
Centre for Advanced Study in Mathematics, Chandigarh, India, during January 16-21, 1984, .



184 S.A. Katre and A R. Rajwade

system dp = I2 +27M?, L = 1(mod 3) when he obtained his period equation
in this case in terms of the uniquely determined L. (The three cyclotomic
periods of order 3 satisfy x3+x2——P—3—1x—~2%(3p—1+ ph = 0) Later, this
case | =3 was again taken up by Dickson in § 9 of [1] in conpection with
Waring’s problem.) These equations determine L uniquely, but M is deter-
mined only upto sign. Gauss gives formulae for cyclotomic numbers of order
3 in terms of L and M, eg he proves that A,, = 2p—4- L+9M)/18. He
says that these formulae give the cyclotomic numbers of order 3 for some
primitive root y of F,. If M is replaced by — M in all the formulae then one
gets cyclotomic numbers corresponding to some other primitive root ' mod p
(in fact ¥ can be any primitive root satisfying ind,y" = 2mod 3). One says
that the cyclotomic problem in F, for I =3 was solved by Gauss. However
the solution does not make it clear which sign of M goes with which 7y,
without an alternative cvaluation (from definition or otherwise) of some
cyclotomic number of order 3, say 4,4 or A,;. In a footnotle to the section
358 of Disquisitiones Arithmeticae [3] (p. 444, English edition or p. 432,
German edition) Gauss remarks: “As far as the ambiguity of the sign of M
in dp = 24+ 27M? L= 1{mod3), for the determination of cyclotomic num-
bers of order 3, is concerned, it is unnecessary to consider this question here,
and by the nature of the case it cannot be determined because it depends on
the selection of the primitive root g mod p. For some primitive roots, M will
be positive, for others negative” (see aiso Dickson [1], § 9)

Marghall Hall [4] and Storer [11] generalized the results of Gauss and

Dickson for [ =3 to finite fields of g = p* elements. However when p-

= l(mod3), their results for F, again have a Gauss-type ambiguity.
Whiteman [14] has avoided the Gauss ambiguity for g = p using Jacobsthal
sums, whereas to remove this ambiguity Williams requires an additional
agent 7 (a. prime factor of p in the Eisenstein domain Z [w], @ = exp(2xi/3))
(see [18] and [16], p. 278). In our Proposition 1 in § 3, we are able io resolve
the sign ambiguities of Gauss-Dickson and Hall-Storer giving a condition of
equality of the cube root-y@~ 2 of unity (mod p) with the cube root of unity,
viz. (L+9M)AL—9M), thus determining the sign of M and the cyclotomic
numbers of order 3 without using Jacobsthal sums or the prime factor = of p.

We thank the referee for pointing out to us a paper by T. Stieltjes [107,
:[13] in which the sign ambiguity of M has been resolved for the case g = p.

More generally, the cyclotomic problem in F, (or in F,) is said to be
solved (in the Gauss-Dickson sense) for the modulus ! if the 2 cyclotomic
numbers are known in terms of solutions of certain diophantine equations.
Here the cyclotomic numbers corresponding to some primitive root
ymodp (inF,, corresponding to some generator y of F¥) are found. and it
- ‘may not be clear, to which v the results correspond. Thus classically one tries
to solve the cyclotomic problem upto primitive roots. In [3] (§ 358), Gauss
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uses his theory of the cyclotomic periods to obtain the above-mentioned
diophantine system and also the formulae for cyclotomic numbers for [ =3
in F,. This was done around 1801, In 1935, the case [ = 3 as well as the next
case |=35 were treated for g =p (ie. « =1) by Dickson [1] using the
properties of Jacobi sums. For the case =35, Dickson considers the
diophantine system 16p = x*+50u®+ 500 + 125w?, xw = v —duw—u?, x
= 1(mod 5). This system has 4 solutions. If (x, u, v, w) is one solution then
the remaining three are (x, —u, —v, w), (x, v, —u, —w} and (x, —v, u, —w).
In terms of these solutions Dickson gives formulae for cyclotomic numbers of
order 5, eg. Adgo =75(p—14+3x), Ay = thp(4p—16—3x+50u+25w) etc.
However, Dickson does not tell which solution goes with which y. Again

- Whiteman determines the solution (x, u, v, w) corresponding to y for the

determination of cyclotomic numbers of order 5, in terms of Jacobsthal sums
[14]. As before Williams uses a prime factor #" of p in Z [exp(2ri/5)] to give
the exact connection (see [17], p. 549). In 1982, Parnami, Agrawal and Rajwade
generalized the results of Dickson for /=35 in F,, g = p% p = 1(mod 5). (See
their Proposition 2 in [9] (a calculation error in their § 3 of [9] can be

‘removed by replacing W by 5W in all the expressions except in XW and

125W?)) They again did not remove the sign-ambiguity of Dickson-type. In
our Proposition 2 in § 3 we state a result which resolves this sign-ambiguity
using a fifth root of unity mod p in terms of a solution of the corresponding
diophantine system and thus avoiding the use of external agents like
Jacobsthal sums of order 5 or a prime factor of p in Z [exp (Zni/3)] (in other
words not going outside the relevant diophantine system).

Following Dickson, Leonard and Williams treated the next cases [ =7
(1974) [5], £6] and ! =11(1975) [7] again using properties of the Jacobi
sums. For I =7 they solved the cyclotomic problem in the Gauss—Dickson
sense and also obtained cyclotomic numbers of order 7 in terms of
Jacobsthal sums. For ! = 11, they connect. the Jacobi sums with Jacobsthal-
Whiteman sums, but they could not locate the Jacobi sums even upto
conjugates without it, hence their solution to the cyclotomic problem in this
case is somewhat incomplete.

In 1982, Parnami, Agrawal and Rajwade treated the problem for the
general lcase in the setting of finite fields of g = p* elements (p = 1 (mod }).
Their results make an indispensable use of Jacobi sums. They considered a
diophantine system (see condijtions (i), (i), (iit} and (iv) of the following
theorem} which generalizes the diophantine systems of Gauss—Dickson and
Leonard-Williams; moreover they gave a rejection condition (see condition
(v) below) which fixes certain Jacobi sums upto conjugates. A slightly
alternative formulation of their theorem reads as follows:

TreoREM (Parnami, Agrawal, Rajwade [9]). Let p and | be odd rational
primes, p=1(modl), g=p% a = 1. Let { be a fixed primitive (complex) I-th
root of umity. Let J(i, j} denote the Jacobi sums of order 1 in F,. For (k, ) = 1
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let o, be the automorphism [ —~{* of Q(0). Let A(r) denote the least
non-negative remainder of rmodl. Let 1<n<I1-2 be fixed. Let H

= 3y g {le Z[{] (where we may (or may not) give any fixed value to one of
i(modi)
the o). Suppose that the a; satisfy the arithmetic conditions (or the diophantine

system):
-1 -1
() g= 3 al— 3 aa.,, (e 29 =(ag—a) +(ay—a)*+ ... +
i=0 i=0
(a1 2~ @) Har- 1 —ag)?),
-1 -1 -3
(ii) z i1 = Z didiyp = ... = Z & Qi (- 1y 20
i=0 i=0 i=
iil) 14+ag+.... +a,_; =0 (modl),
(V) ay+20,+ ... +(I-1)a,_, =0 (mod}),
() (Rejection condition) p¥ [] H™,
Mim+ 1)k) >k
then H = J{1, n} for some generator y of Fy (in other words, given a generator
v, H is a conjugate of J(1, n)), and conversely. (Note that the conditions

() and (i) together may be written in the better looking form 2g
I-1 ’

= Z (ai"_ai+j)2s J= 1,2 ..., (I-“'l)/z)
i=0

Using this theorem PAR show how to solve the cyclotomic problem
upto a generator y of F} (p = 1(mod])) for the cases I < 19, They indicate a
method to solve the problem in F, for general . However the solution for the
l-case is by no means complete even upto 7, because they have not given the
necessary connections among J(1, n) beyond [ =19.

To get rid of this difficulty by an alternative means we first ask the
following question: Given a generator y of Fy, what additional arithmetic
conditions should H = Y (' in the above theorem satisfy so that H

i(modl
=.J(l, n) for this 7. Th(is ()luestion is answered in our main theorem by
noting that J (1, n) in fact depends upon Y9~ "/ (which belongs to F, since p
= 1(mod ).

Moreover our main theorem completely solves the cyclotomic problem
in F, (p=1(modl)) for all odd primes I, and that too not just upto a
generator of F}, but in a stronger version, viz. given a generator y the
cyclotomic numbers are determined unambiguously in terms of solutions of
the diophantine system consisting of the arithmetic conditions (i}-{vi) of the
main theorem for 1 € n< {—2. (In Remark 5 of § 2 it is shown that in fact it
suffices to consider the solutions for only & values of n, where for ['> 3,
k= (+1)/6 if I=5(mod6) and k = (I+5)/6 if |=1(mod6)) The precise

“statement of our main theorem is as follows: ‘
Main THEOREM. The notations being as in the above theorem, let y be a
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generator of F¥ and b be any rational integer =" V' (modp). Ler H

=3 @ {'. Suppose that the a; satisfy the above conditions (i), (ii), (iif), (iv),
i{modi) :

and (v) together with the-new condition '

v) plH ] (b—Ca"—l), where k™' is taken modl.
A(n+ 1)}k) >k
Then H =J(1, n) for this y and conversely. (This determines all the
Jacobi sum J(i,j) and the cyclotomic numbers A;; of order | related to vy
unigquely.} Moreover, for 1 < n<<!1-2, if we fix a; = 0 at the ouiset and write
I-1
the a; corresponding to a given n as a;(n) (i.e. we have J(1, &)=Y a;(m{,
i=1

ag{n) =0), then the cyclotomic numbers of order 1 are given by

-2 I-1
PAyp=gq-31+1-) Y a(n),

A=l k=1

and
-2

P Ay =e(d+el)+el—)+1 Y ame;(n)+12 doo,

=1

where

I LU ' 8
e(i) = . .
i
and the suffixes in a4 ;(n) are to be considered module 1. This gives a complete
solution of the cyclotomic problem in F, (even overcoming the usual y-
ambiguity) for an odd prime I where g = p*, p = 1(mod ).

The cyclotomic numbers of order 2 in F, are given by Age = (g~ 5)/4,
Aoy = Ao =Ayg ={g—1)/4 if g=1(mod4), Ay = Ay ="4s; =(g—3)/4
Agy =(g+1)4 if g =3(mod4). Thus the cyclotomic problem is solved
completely for any prime [, in F,, ¢ =p" p= 1{mod])).

We note that condition (vi) of our main theorem is very.crucial and it
contains a connection between the Jacobi sum and the fth root of unity
mod p given by "/ It is our opinion that this powerful condition can be
used to obtain expressions for the Ith roots of unity modp in terms of
certain Jacobi sums, and these expressions can be used to write condition (vi)
in an alternative form. This we illustrate in the Gauss case [ =3 for finite
fields F, (p = 1(mod 3)) where we show that condition {(vi) is equivalent to
equating the cube root ¥ 13 of unity mod p to the cube root of unity
mod p, viz. (L+9M)/(L—9M), obtained in terms of a solution of the Gauss
system (see Proposition 1 in the example after the proof of the main
theorem). This fixes the sign of M and so also the cyclotomic numbers of
order 3 in terms of y, thereby solving the cyclotomic problem completely for
! = 3 without the y-ambiguity. The case | = 5 is much more elaborate and we
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consider it in a separate paper. However we would like to mentiom that in
this case also condition (vi) can be shown to be equivalent to eguating
Y-V to certain expression for fifth root of unity modp in terms of
solutions of the Dickson—PAR system in F,, p = 1(mod}3) (after removing a
calculation error in the case [ =35 in § 3 of [9] as stated earlier). (For the
exact statement of our result see Proposition 2 in § 3)) ‘

Thus the idea of equating y4~ "' to an lth root of unity modp is
contained in our condition (vi) implicitly. It would be interesting to obtajn
explicit results at least for say / =7 and [ = 11, Explicit results in the general
l.case seem too difficult. A discussion of this will be found in Remark 3
of §2.

We also note that when 2 is not an Ith power in F,(ie. equivalently in
F,, since p itself is = 1{mod), for n =1 in the main themem ie. for the
determination of J(1, 1), after letting a, = 0 at the outset the condition (vi)
may be replaced by a very simple condition, viz. a.. is odd (other g; even, 1 < i
< I—1) where i’ is chosen uniquely by 1<i <Ii-1, i = ~2ind, 2(mod ).
(If we do not fix 43 =0 then we have the condition that @, has a parity
different from the remaining ¢.) This will be treated in a separate paper
along with expressions for the solutions of our diophantine system (see [6] for
the case | = 11 in F)) in terms of Jacobsthal sums and Jacobsthal-Whiteman
sums and conversely.

2. Historical survey and some remarks. In this section, to bring out the
significance of our theorem in the cyclotomic probiem more clearly we give a
survey of the results obtained by various authors in this connection.

To solve the cyclotomic problem in F, up to primitive roots, Gauss
(I =3), Dickson (I =5) and Leonard and Williams ({ =7 and ! = 11} con-
sidered a diophantine system which is equivalent to the arithmetic conditions
(i), (i), (iii), (iv) of our main theorem for g = p case. This four-conditional
system in the p-case, (after fixing one of the g; there) may have at most
2= solutions. In the g-case (g = p*) it has at most {a+ 1)*~ 2 solutions,
this number being the number of all possible ideals a in the ring Z [{] which
satisfy a@ = (g). (That for a given ideal factor a of (g) such that a@ == () there
is at most one solution (ao, R satisfying (H) = a where H= Y 4,

{mod D
can be seen from Lemma 5 of [9], however whether there always exists such

a solution is not clear for > 19, in which case the class number of the
cyclotomic field Q() is > 1. As for I <19, Z[t] is a P. 1. D. and there js a
prime factor m; of p in Z [{] satisfying =, = 1(med (1 —{)?) by Lemma 1 in
[8]. Then the (x+1)*~ 12 algebraic integers

: iy g i . .
LR ey, GFhejEa, e (T ),

correspond to the exactly (x4 1)~ "2 distinct solutions (aq, ..., a,_,) of the

four-conditional system (after fixing one of the a)). Out of these solutions we |
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are interested in only those solutions which correspond te the Jacobi sums
JG, j), i, J, i+j 2 0 (mod ) (which also satisfy J(i, }J (i, ) = ¢ and J (i, ) =
~1{mod(1—{}*} (sec Lemmas 1 and 3 in § 3) and thus correspond to some
solutions of the above four arithmetic conditions). In fact it is sufficient to
know the solutions corresponding to J(1, 1}, ..., J(1,1-2) {or even fewer

- than these by Remark 5 of this section). Therefore to solve the cyclotomic

problem upto a generator of F} we should fulfil the following requirements:

(1) Given n, 1 <n<I-2 out of the possible (x+1)'" " solutions
(24~ 2 solutions for ¢ = p) we should tell which sclutions correspond to
J(1, n) and its conjugates {i.e, which solutions are such that they correspond
to J{1, n) for some generator y of F¥).

{(2) Knowing (13, given two differeni values of n, say n; and n,;, we
should give a connection between J (1, n;) and J{1, ny). At least one should
connect each J(1, n) to J(1, 1}, so that among the solutions giving the values
of J(1, ) corresponding to various generators of Fy, we can pick up the
solution which gives J (1, n} so that J(1, 1) and J(1, n) are connected to the
same y. Thus an arbitrary choice of a solution corresponding to J(1, 1) and
the choice of connected J(1, n) gives the Jacobi sums and the cycloiomic
numbers correctly upto generators of FY.

In F, the difficulty (1) starts right from the case [= 3. However, for
g=p these difficulties did not arise in the cases [ = 3, [ = 5, since everything
is then connected to J(1, 1), and the number of conjugates of J(1, 1) is 2 and
4 respectively, which is also exactly equal to the number of solutions of the
relevant diophantine system. In the case I =7 for ¢ = p the system has 8
solutions and everything is connected to J(1, 1) and J(1, 2) which have in all
6+2 =8 conjugates. Of the 8 solutions, Leonard and Williams term two
solutions as trivial, and these are connected to J(I, 2). The remaining 6 are
connected to J{1, 1). This fulfils the requirement (1). The requirement (2) 15
fulfilled by their equation p J(1,2)=J(1, 1)J(2, 2)J(4,4). For =11 (q
= p) there are 32 solutions. In this case everything is connected to J {1, 1)
and J(1, 2) (ie. each Jacobi sum other than J(i, 0), J(0, i) and J(i, ~H is a
conjugate of J (1, 1) or J(1, 2)} (see [9]. the case I=11), and s0 il is suffictent

“to find J(1,1) and J(1,2). There are in all 10410 = 20 solutions cor-

responding to J(1, 1) and J(1, 2) and their conjugates. Out of the 32, two
are separated as trivial and are excluded. Of the remaining 30 solutions,
Leonard and Williams do. not tell us how to indicate the solutions cor-
responding to J (1, 1) and J(1, 2) and their conjugates directly. Instead, they
give us the expressions for J(i, 1) and J(1, 2) in terms of the so-called
Jacobsthal-Whiteman sums ¢"(a) of order 11, for n=1 and 2 (see [7], § 5.
§6). Thus given 7, using ¢"(a) of order 11 they are able to find the
cyclotomic numbers of order 11 correctly (i.e. not just upto a primitive root)
even without using the diophantine system. This is an interesting result in
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itself. However, the original problem of determining the cyclotomic numbers
of order 11 in terms of the solutions of the system remains unsolved in the
gense that the solution does not tell us how to select the solutions cor-
responding to J(1, 1) and J(1, 2} and how to connect them, without using
the external agent viz. the Jacobsthal-Whiteman sums. This and the next
cases (i.e. [ 2= 13) were not considered in the literature until recently Parnami,
Agrawal and Rajwade [9], considered this problem in a more general set up
of finite field F, (g=p*% p=1(mod])). In addition to the above described
conditions (1), (i), (ii), (iv) of our main theorem, which were generally
considered in some equivalent form in the previous cases, PAR introduced
one more condition {condition (¥) of our main theorem) which fixes J(1, n)
upto conjugates (or upto generators y). Thus they overcome difficulty (1)
stated above for all odd primes I. To overcome difficulty (2), they go case by
case to connect the Jacobi sums J(1, nr) to J(I1,1) and they show the
connections upto = 19. Thus they solve the cyclotomic problem ‘for the
cases [ < 19 in F, {g = p%, p = 1(mod!)). For larger /, they indicate a method
to connect at least some of the Jacobi sums, however this is not enough for
us. The cyclotomic problem will be solved for general I by this method only
if onc either gives explicit expressions connecting the other Jacobi sums to
J(1,1), or at least gives an algorithm to do so.

In the present paper, to solve the cyclotomic problem in the general
l-case, we choose an entirely different path. (This was in fact motivated by
our solution to the /=3 case, although in this paper we derive it from the
main theorem.) To overcome difficulty (2), instead of connecting the Jacobi
sums among themselves, we connect each of them to the chosen generator y
of F¥ by a new condition (condition (vi) of our main theorem). The six
conditions of our theorem are very natural and they fix the Jacobi sums
J(1, n) completely and thus given a generator y, the cyclotomic numbers can
be uniguely determined in terms of the solutions of this new system, and the
cyclotomic problem has now been solved completely in a stronger version
and moreover for all odd primes [ in the set up of Fy (g =% p=1(mod!)),
{The solution for I=.2 is trivial as stated already.)

Rem ark 1. Since conditions (i} and (ii) of our theorem may be written

2Q—Z(a z+j j=1’23'--1

la| < \/— 2g, for j=1,2, ..., 1—1. Even then the computer takes an exhorbi-
tant amount of time to get the solutions of the classical conditions (i), (ii),
(ixi), (iv). Thus the sofution of the cyclotomic problem is mostly of theoretical
interest. However having got these solutions (which are at most (a+1)¢~1¥2
in number) the correct selection of the solution corresponding to J(1, n) is
manageable by the new conditions (v) and (vi)- without much difficulty.
Therefore the solution is important because to obtain the I* cyclotomic

(1—1)/2, if we fix aq =0, it follows that
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numbers of order I correctly, at least in theory we do not require to handle
the whole model of F,, just the knowledge of ¥~ "/ (modp) is sufficient.
Remark 2. From the proof of the theorem we shall observe that for
a =1 (i.e. ¢ = p case), condition (v) is not required to determine the Jacobi
sums, ie. it follows from the remaining five arithmetic conditions.
Remark 3. For a given n, 1 € n < [—~2, condition (vi) is equivalent io
a system of {—1 linear equations modp in b, b%, ..., B~ "2, Suppose that
the g; occurring in these equations correspond to a solution of the first five
conditions. Then these g; give us J(1, n} for some y and then any 3 to which
J(1, n) corresponds will give rise to a solution b =y9"1" of the above
system of !—1 equations. Thus the system is consistent, and at most (I—1)/2
equations in the system are linearly independent. The coefficient matrix of
the system has rank < (I—1)/2 In case J(1, n) does not have distinct
conjugates, the rank of the coefficient matrix is in fact < (I— 1)/2, since, then,
there exist at least two generators y, 7 of F¥ such that ind,y # I(modl),
both of which have the same J(1, n). Thus b = y4~ O and b = @ W will
both be (unequal) solutions mod p of the system. (More precisely, if 7 be a
generator of F¥ corresponding to J (1, n), then b = 3@~ is a solution of the
b-system. Let for keF¥, y, denote any generator of F§ such that ind,7y,
= k(mod ). Then for G = Gal(@(¢/QUd, n)) and K = ‘keF*EakeGm
we have ke K, if and on]y it J{1, n)”"—.f(l n), 18 J(1, 1 =J(1, n),i
if and only if pd~ W= k=D 5 g solution of the b-system. Thus the
solutions of the b-system, which are ipso facto Ith roots of unity mod p, form
the set U, = {y*@ V¥ |keK,}, the cardinality of this set being |G, = |K,l.
Note that if instead of the solution of the five-conditional system correspond-
ing to J (1, n) we take a solution correspondmg to a conjugate J(1, n)’* then
the above set U, becomes U, = {4~ '#4~ 1| ke K1) However, if J(1, n) has
distinct conjugates, then one hopes that the rank of the coefficient matrix is
in fact (I—1)/2. (This is actually so for ! =3 and I=35) If this be the case,
using Cramer’s rule one gets an expressmn for b = y2~ 1 in terms of the
a’s, ie. the coefficients of J(I, n). (This will be a rational expression in the
as of degree (I—1)/2 in the numerator as well as in the denominator.) PAR
have checked that all the conjugates of J(1, 1) are distinct (see [9], Corollary
3). Thus we hope that we should get expressions for Ith roots of unity mod p
in terms of the coefficients of J(1, 1), and this should also happen for J(1, n)
whenever it has distinct conjugates. Then one can replace condition (vi) in
this case by “y@~ ¥ = Jth root of unity mod p obtained in terms of 4s”. In
§ 3, in an example after the proof of the main theorem, we actually verify thls
result for the case I =3. In this case we get an expression for a primitive
cube root of unity in F,, p = 1(mod 3), (viz. (L+9M)/(L—9M)), which is well
known for g = p. Using this we remove the ambiguity described by Gauss in
this case and give correct formulae for cyclotomic numbers of order 3. The.
cyclotomic problem for ! =5 can be similarly solved completely using an
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expression for fifth root of unity in F,, which is obtained from our condition
(vi) {see the statement of Proposition 2 in § 3). As stated in the introduction
one may also try!= 7,11 eic. similarly.

Remark 3'. Indeed the authors expect that in the distinct-conjugate-
case any (I—1)/2 equations out of the I—1 equations of the b-system are
tinearly independent, (We can prove this for =3 and ! =35.) In case this is
so one gets many different-looking expressions congruent to the same Ith
root of unity modp (viz. ¥~} any one of which may be used to resolve
the v-ambiguity.

Remark 4. The cyclotomic numbers of order I satisfy the relations A;;
=Ay=A_; =A== Aj;=A_p Taking i=j, we get A,
=A_;0=4Ag,-i 50 We get -1 claqses of 3 cyclotomic numbers each. A4
forms a single class. For { =3, 4,, = 4,;. For !> 3, the remaining cyc-
Iotomic numbers fall inte (1—1)(1— 2)/6 classes of 6 numbers each. Thus for !
= 3 we need find just 4 cyclotomic numbers, whereas for I > 3 we need find
only (I4+1)(1+2)/6, choosing one from each class, If we use the (I+1)/2
additional relations (which are independent of each other and also indepen-
dent of the previous ones), given by

b (f—1 if i=0,
J.;OA"fz{f it 1<igi-1

(g=1+If), for 0<i<(I~1)/2, then for I >3 we are left with the deter-
mination of just (P~ 1)/6 cyclotomic numbers of order 1.

Remark 5. Comsider J(l,n) for 1<n<i—2 One has J(I,n =
JiLI=t~-n=gaJ(,n" Y=0,J(1,1-1—n" l)mcr(, femd (L, (I=1—m)71)
=6y_1-md (1, I=1~(~1~n}""). For | =3, it is enough to calculate J(1, 1)
to find the cyclotomic numbers. For > 3, taking n=1 we get J(I, 1)
=J(1, =2y = J(1, (1=-1)/2). The remaining J{1, n) fall in classes of con-
jugates, each class corresponding to six distinct values of n, unless n* +n+1
=0 (mod)), ie. (2n+1)* = —3(modl), which bappens if and only if !
= 1(mod3). This shows that it is sufficient to find only k J(I, n), ie.
sufficient to determine solutions to our system corresponding to only &
values of n, 1 € n< -2, whete k = (I41)/6 if | = 5{mod 6} and k = (I4-5)/6

if /= 1(mod6). (For q = p, see Dickson, [2], p. 368.)

Remark 6. For = 1(mod3), J(1,n), n*+n+1 =0 (mod, is invariant

under the antomorphism { —{" of order 3. Hence only (1—-1)/3 a; in J(1, n)

are independent. Thus in this case all the cyclotomic numbers are obtained
‘ -1 I

as linear comblnatlons of in all —6_-(! —_ 1)-|——3—1 = (I*—1)/6 total number of

;. For ! == 5(mod6) one requires $(I-+1)(I—1) =(>—1)/6 a’s. In any case

one obtains the cyclotomic numbers in terms of in all {*—1)/6 a;’s. Note that

by Remark 4, this number is the same as the number (I*--1)/6 of undeter-
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mined cyclotomic numbers. It would be interesting to see if ome can lessen
either or both of these numbers. (One does not have a sharper result in the
literature at least upto I=11)

Remark 7. H. S. Vandivcr [12] has in essence shown that for ¢;eF,,
g =p* and for 1 < m; < g—1 (trivial modlﬁcatlons if m; are any integers), the
number of solutions of the equation ¢, x; '+ ... +e, X4 cepy =0 in F,,
can be obtained by a step by step procedure in terms of cyclotomic numbers
of order e where e=gcd.(g—1, lem.(my,...,m)) (provided a table
of indices for F, is known). Thus in the case e =1 one should know
the cyclotomic numbers in F,, g =1(modl), where p is not necessarily
= 1(mod ). Thus one should solve the cyclotomic problem for [ in this
most general case also. This has not been done by the present authors.

3. Technical lemmas, Dickson-Hurwitz sums and proof of the main
theorem. In the proof of our main theorem we require the following lemmas.

LemMma 1.

i n#0, —l(modl)

— (g
J(l,n)J(l,nJ—{l if n=0, —1(modl).

Lemma 2. Let p=1(modl) and let b =y4"Y" Then beF,. If by abuse
of motation b denotes any integer =99~V in F,, then Ngguo(b—10)
= 0 (mod p). (Here N stands for the norm.) Further there is exactly one prime
divisor p of p in Z[{J which divides b—{, and for this p,

Jem= 1 "%
Alln+ 1Y)k
where k™! is taken mod].

Lemma 3. J(1, n) = —1{mod(1--{)%).

Lemma 4. J(1, n) is uniquely determined by the statements of lemmas
1, 2 3

{(For proofs of these lemmas one is referred to [9])

We next consider the Dickson—Hurwitz sums of order Iin F, (¢ = 1+1}).
These are defined, for i, jmodl by

-1

S (hy imjh).

h=0

B, jy =

They satisfy the relations:
B(i, )= B(@, I-1-j), B(0,0=/-1, B{ 0=Sf if

11
Y. Bli.j)=
i=0

l<igl-1,
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and for (j, ) =1,
B(i, /) =B(,j) where j=1(modl.

One also has
-1
J{, n) = Z B(i, m .
i=0

B(i, n) of order | may alternatively be defined by this property together with
-1

Y B(i,n)=qg—2 The cyclotomic numbers of order [ can be given in terms
i=o
of Dickson~Hurwitz sums by the formula
-1
PAy=—(-1)g—D+e@+1 3 Blintj, n),
=90 :
where
e(®=0if Ili and e@)=1!1if Lji.

A proof of these results for g = p is found in a paper of A. L. Whiteman (see.
[15]). The same reasoning works also in the F, case. Using this result we

‘prove the following:
-1
Lemma S. Let J(1, n)= Y. a;(m){'. Then the Dickson-Hurwitz sums and
i=1
the cycloromic numbers of order | are given by
-1

1BG, ) = Ia,(m)+{g =2~ Y. a;(n)

i=1
and
' -2 -2 -1
P Ay =q=31+14e@)+e()+el—D+1 T aurs 0= 5 ¥ aln),
n=1 n=1 k=1
where
o O
ag(n) =0, s(t)-—{l i L

and the suffixes in ay,.;(n) are considered modulo I
In particular,
-2 11

12A00=q’—3l+1_z zak(n)

=1 k=1
and
S I-2

Pay=e@+e(D+eli—N+Y ape (m+1 Aog.
n=1 .
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(The formula for Ao has been stated by Dickson for g == p on p. 370 in [2])
Proof.

-1 -1

JL,m=Y aml=73 BGi,m{, am=0
{=0

i=1
gives
a;(n)=B@i,n—B0O,n), 0<i<I-1,0<ngl-1.

Summing from i=0to I-1 we get

-1

Y a(m =g—2—IB{0, n).

i=1

Thus
-1
IB(0, m) =g—2— 3 a;(n).

. i=1

This gives
-1 -

IB(i, n) = la,(m)+1B(0, n) = la;(n)+(g—2)— Y a;(n),

i=1

as required,
Now

-1

24y = —(I—-1}g—1)+a(i)+! 3 B(in+j, n)

a=0
-1 -1

= —(I-1){g— D+e@)+ };O{laan+j(ﬂ)+(q"2)— 2 a(m}

k=1
-1 1-1 1—1 .
=g—1—I+e()+1 3 ame;n)— 3 2. a(n).
n=0 n=0 k=1
: -1 : -1
But J(1,0)=~1= } (0" giving Y a,(0) =1-1. Similarly
k=1 k=1

i—1 .
Y a(I-1) =1-1. (Note that J(1, [-1)=—1)
1 - : .

k=
Also

. -1
a;(0) = coefficient of £in Ui, 0= Y &
k=1
_Jjo ity
Qi
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Thus la;(0) = e(j). Smmilarly lay,— 1) ;(I—1) =e(i—j) Hence
' i-2 -1

-2
P A = g3+ 1-+e()+e()+e(i—jr+! Z Qi j (R) — E Y a.(n).
n=1 n=3 k=1
This proves the lemma.
We are now in a position to give

Proof of the main theorem. (I) We first show that for H = J(l, n)
. -1

all the six conditions are satisfied. For 0<j<I-1, put X; = Z Qi iy
=

(Note that X; = X,_; for 1 €j<{—1) Then using H = ) a’, one checks
i(modl)
at once that

HA =(Xo~X)+(X,— X )+ ... (X — XN

Since H = J (1, n), (i} and (ii) follow from Lemma 1 and (iii) and (iv) follow
from Lemina 3. To prove (v) and (vi) we use Lemma 2. For convenience let

S= k| 1<k<I-1, An+Dk) >k} and 5 ={1,2, ..., I-1}\S.
By Lemma 2, (H)= I—[(pa"_l)“. Now p”~! kthe product on the right hand
keS

side of (v), for otherwise there exist k, k'e S such that —1 = k™ &' (mod ), i.e.
k' = —k{mod ). This is impossible, since for 1 < k< {1, ke§ il and cnly if
I—k¢S. It follows that p ¥ the required product. This proves (v). Next, by the
choice of p, p|(b—{). Hence
1™ 167,

ks

keS

Now (p) = |1 p " and (H)=H)"'= [l (p ¥y give us (vi).
1<k<l-1 keS’ _

(Ii) Conversely suppose that H satisfies the six conditions. (i) and (ii)
ensure that HH = g. (iii) and (iv) ensure that H = ~ 1 (mod(1—{)?). Now by
(vi) p|I7IH(b—Cd“_1). Taking complex conjugates, p|H H(b——iﬂ"ml). But

keS8 keSS’
ged {(p), [T@&-Y=TTp*"",
_ : kaS* keS'
So, [T9"* | H. When « = 1, this itself proves that (H) =]Tp* ", and by
keS ’ keS _
Lemma 4, we get H = J (1, n). However for o > 1, we must use (v). Thus for

a2 1,-by (v), p 4 [[ H™. Hence there exists a prime divisor p’ of p such that
ke§

p ¥T] H™, ie. p’ Y H* for each ke$§, ie. p’a"bl ¥ H for ke§. This shows that
keS

there are at least (I-1)/2 = card § divisors of p which do not divide. H.
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Hence H is divisible only by pg"_l, keS. Then the condition HH =g¢

demands that (H) = [](p"* ¥ Hence H = J(1, n) by Lemma 4.
keS
The derivation of the formulae for cyclotomic numbers in terms of the
coefficients of J(1, n), ie. in terms of the solutions of the system follows from
Lemma 5. This proves the theorem.

Examples. We illustrate the ideas of the main theorem for the case I =3
in the following proposition in which we resolve the sign ambiguity described
by Gauss in [3] (§ 358, footnote).

ProrosmioN 1. Let p = 1(mod 3), g = p*, and let y be a generator of Fy.
Let ¢ be the primitive cube-root of unity in terms of which we define the Jacobi
sums of order 3. Then the diophantine system

4q = B+ 2TM?,
pyL ~L=1(mod3),
Y@~ 13 = (L L OMAL—9M)(mod p),

has a unigue solution (L, M) for which J(1,1)=(L+3M)/2+3Mw.
Conversely, for this value of J(1, 1), L, M form the unique solution of the above
diophantine system. In any case, the cyclotomic numbers of order 3 related to y
are uniquely given by

A=Ay ={g—8F+L)9, .

B= A, = Azg = Agz = (29 —4— L+9M)/18,

C= Ay, = Ay = Azy = (29— 34— L—-9M)/18,

D= Ay; = Agy = (g+1+1))9.
This solves the cyclotomic problem in this case completely (withour the
v-ambiguit y).

Proof. Let b = 4~ D3 From the work of PAR (see [9], Proposition 1
and its proof) it follows that if I, M satisfy 4q=I*+27M? ptL L
= 1(mod 3), then J{1, 1) is a conjugate of H = (L+3M)/2+3Mw and con-
versely. Qur condition (vi) may be written as ' .

plA(b~o),
ie.
pl(b—w)(L—3M)2—3Ma),
1.e.
pl {b(L—3M)2~w((L—3M)/2+3bM)+3Mw’},
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1E.
pl{(b(L—3M)/2—3M)—w((L+3M)/2+3bM)},
ie.
b(L—3M)/2—3M = 0(mod p),
(L+3M)/2+3bM = 0(mod p).

This is a system of two linear equations”in b which are linearly dependent
mod p. The second equation is a nonzero multiple (mod p) of the first (use dq
= [*-+27M? p¥L), and conversely. From the second equation we get

b = (L+3MY(—6M)(mod p) = (L+9IM){(L—9M){mod p}.

(Note that L+SM, L—9M % 0 (mod p).)

This condition together with the previous conditions, fixes J(1, 1)
=(L4+3M)/2+3Mw, and conversely, as required. The evaluation of the
cyclotomic numbers can then be done as in [9]. Alternatively, from our main
theorem,

9400 = q—8—{a; (1}+ay (1)},
and

94, = () +e()+eli—7)-+3a, (1) +94,0.

Fromithis also we can get the cyclotomic numbers noting that here ag (1)
=0, a, (1) ={—L+3M)/2, a,(1) = —(L+3M)/2. This proves the proposition.
Now there is no ambiguity in the sign of M as was there in the classical case
of Gauss, and the cyclotomic numbers of order 3 corresponding to a given
generator y are determined uniquely.

Remark.. Note also that (L+9M)/(L~9M) is a primitive cube-root of
unity mod p. The other primitive cube-root of unity can be obtained by
changing the sign of M. For g = p, this is a well-known resutt.

As an additional example we state here the corresponding beautiful
result for [ = 5. As said earlier, the proof is much more elaboraie and will be
treated in a separate paper.

Prorosimon 2. Let p = L(mod5), q = p% and let y be a generator of F}.
Let { be the primitive fifth root of unity in terms of which we define the Jacobi
sums of order 5. Then the diophantine system

169 = X4 50U% 450724 125W2,
XW=V2—4UV-U% X =1(mod$), p(X?—125W3), -
¥4 = (A~ 10B)/(A + 10B) (mod p),
A=X*~125W% B = 2XU—XV—25VW,
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has a unigue solution (X, U, V, W). For this solution .
J(1, 1) =3 (- X+ 2U+4V+-5W [+ (X +4U - 2V-SW) 3+
+i(— X —4U+2V-5SW) 3 +5(— X —2U —4V+5W) {*.

Conversely, for this value of J(1, 1), X, U, V, W give the unique solution of the
above system. In any case the cyclotomic numbers of order S related to vy are
uniguely given by Adgy =+(g—1443X), Agy = A,y = A4y = 1854 — 16—
—3X 4 50V4+ 25W), etc. This solves the cyclotomic problem for 1 =35 in this
situation completely (without the usual y-ambiguity),
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