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Abstract— A complete, three phase transformer model for the calculation
of electromagnetic transients is presented. The model consists of a set of
state equations solved with the trapezoidal rule of integration in order to
obtain an equivalent Norton circuit at the transformer terminals. Thus
the transformer model can be easily interfaced with an electromagnetic
transients program. Its main features are: (a) the basic elements for the
winding model are the turns, (b) the complete model includes the losses
due to eddy currents in the windings and in the iron core, (c) the solution
of the state equations is obtained in decoupled iterations. For validation,
the frequency response of the model is compared with tests on several
transformers. Applications to the calculation of transients are given for
illustration,
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currents, Laminations.

INTRODUCTION

There exists a wide variety of transformer models, however, no
transformer model for the study of electromagnetic transients, adequate
for a wider range of frequencies, is yet available. This paper presents a
complete transformer model which is suitable for the calculation of
transients.

The main streams in the computer modeling for analysis and design
of transformers can be classified as:

a) Modeling based on self and mutual inductances. The first
analytical attempt following this approach was presented by
Rabins [} followed by many others such as Fergestad and
Henriksen ?*0) and continued recently by Wilcox et al. [4-I6]
There are very accurate formulae available for the calculation of
self and mutual inductances for the windings, sections, or turns of
transformers. However, because of the presence of the iron core,
the numerical values of self and mutual inductances are very close
and may result in ill-conditioned equations. The problem of ill-
conditioning has been adequately solved in transient simulations by
subtracting & common flux in the calculation of self and mutual
inductances B7H9); gee reference [3] for details. The same
methodology can be applied in the models of references [4] to [6].
In fact, subtracting a large common quantity from the self and
mutual inductances is equivalent to the direct use of leakage
inductances.

b) Modeling based on leakage inductances. This approach was
initiated by Blume('” and improved by many others; see
references {11] to [13]. The three-phase multi-winding
generalization was presented by Brandwajn et al. ['¥! Dugan and
others [¥] uged the same technique for the modeling of multi-
section transformers. These models represent adequately the
leakage inductance of the transformer (i.e. load or short circuit
conditions), but the iron core is not properly included.
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¢)  Modeling based on the principle of dualiry. This aHE]roach was
introduced by Cherry '8! and generalized by Slemon [!’]. The iron
core can be modeled accurately. However, models based only on
this approach have the inconvenience that the leakage inductances
are not correctly represented (they are directly derived from the
leakage flux neglecting the thickness of the windings). This
inaccuracy has been corrected (when the magnetic field is assumed
axial) by EdelmannU8] and Krihenbiihl et al !'"] Lately,
Arturi 1] hags employed this approach in the modeling of highly
saturated conditions.

d) Modeling based on e s. There exists a great number of
high frequency transformer models derived from measurements;
see, for instance, references [21] to [31]. Tests are made for the
determination of the model parameters in the frequency domain or
time domain. Models obtained from measurements have the
drawback that their performance can only be guaranteed for the
tested transformers. Although some general trends can be inferred
from the tests, according to design, size, manufacturer, etc.,
accurate predictions for non-tested transformers cannot be assured.

e) Analysis based on electromagnetic fields. Designers of large
transformers use electromagnetic field approaches for the
calculation of the design parameters. The technique of finite
elements is the most accepted numerical solution for field
problems, *2H35]  There are, however, other techniques available;
see references [36] and [37]. There is general agreement that
three-dimensional field analyses are necessary in the design
process. These methods are impractical for the calculation of
transients since they would give very expensive simulations.

The purpose of this paper is twofold: (i) to present a complete, three
phase transformer model assembled from the theory developed in
references [38] to [41], and (ii) to illustrate the performance of the model
in the calculation of transients.

The complete model is derived from a combination between the
two approaches b and ¢ (leakage inductances and principle of duality)
described above. The leakage inductances and the iron core are properly
included in the model. Since we want a model appropriate for high
frequency transients, the parameters can be calculated on a turn-to-turn
basis or using sections with a small number of turns. All capacitances
between turns (or sections) on the same leg and capacitances from the
turns to ground (core) are included in the model. We have aiso included
in the model the losses produced by the eddy currents in the laminations
of the iron core and in the windings (skin and proximity effects). The
magnetization of the iron core can be modeled as a nonlinear function
between flux and current. The complete model is written as a set of state
equations (some of them nonlinear) that are solved, iteratively in a
decoupled way. The terminal model for the transformer is a Norton
equivalent and can thus be easily interfaced with an electromagnetic
transients program.

DESCRIPTION OF THE TRANSFORMER MODEL

Windings
Parameters

The windings parameters (inductances and capacitances) are calculated
starting with the turns as follows (see reference [38] for turn-to-turn and
[41] for sections):

A) Leakage inductances between pairs of turns (or sections) are the
basis of the model for the inductive phenomena in the window of
the transformer. For their calculation we use an image method.
This leads to a loop inductance matrix which describes the voltage
drop in the turns.
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B) The inter-turn (or inter-section) capacitances and the capacitances
to ground are calculated with the charge simulation method. We
get a turn capacitance matrix which can be transformed into a node
capacitance matrix.

When the parameters are calculated on a turn-to-turn basis several turns
can be lumped in series to form sections. Thus, we can reduce the turn-
to-turn model to a manageable size as shown in reference [39].

Eddy Current Modeling

A frequency dependent resistance matrix accounts for the damping
produced by the eddy currents in the turns. This matrix is obtained from
the total losses in the windings. The matrix is also calculated on a turn-
to-turn or section basis and, as in the previous cases, it can be reduced by
lumping a number of turns or sections in series. A state equation for the
voltage drop (due to the eddy currents in the windings) is derived from
the frequency variation of the resistance matrix. This permits to include
the damping in the complete transformer model; see reference [41].

State Equation Representation

For each leg in a transformer we have an independent equation
describing the voltage in the windings. For leg a, the total voltage is
given by (see reference [39]):

Vo=wae,+vi+L7, L, (O
dt

where v, is the vector containing the total voltages in the sections of leg
a; w, corresponds to the vector with the number of twrns per section; e,
represents the common voltage (due to the flux in the limb); v{ is the
vector of the voltage drops due to the eddy currents in the windings; L”,
stands for the loop (leakage like) inductance matrix; and, i, is the vector
containing the current in the sections.

The differential equation describing the behavior of the voitages
and currents in the capacitances (for leg a) is:

. d
i€ node = Chode :1'; Viode ()

where the nodal capacitance matrix C,,4. can be obtained from the turn
capacitances by shifting half of each capacitance to the two ends of the
turn (see reference [39]). We note that the capacitive state equation is in
the nodal reference frame while the inductive equation is in the branch
reference frame. To combine the two, we use a power-invariant
transformation to bring the inductive equation to the common nodal
reference frame.

For the voltage drop v; due to the eddy currents in the windings of
leg a, we have the following state equations:

%,=A, x, +B, i, (a)
vi=C,x,+D, i, (3b)

The elements of the state matrices A,, B,, C, and D, are computed
by the time domain approximation of the frequency dependent resistance
matrix. We fit a Foster series circuit to the diagonal elements of the
matrix and use the poles of these circuits to obtain basis functions for the
realization of the off-diagonal elements. The state variables x, are the
currents in the inductances of the Foster circuits. The details of the time
domain approximation are reported in reference {41]. A good general
review of circuit fitting can be found in reference [42].

Iron Core

For the iron core we represent the magnetization and the damping
produced by the eddy currents in the laminations. Hysteresis is not yet
included in the model; its expected effect is an increase of damping of
the transients and, possibly, some remanent magnetization. The
proposed magnetization model is a nonlinear function between current
and magnetic flux. This function can be fitted from tests on the iron core
material; see, for instance, reference {43]. The penetration of the eddy
currents in the iron core is taken into account by a Cauer equivalent
circuit fitted to the frequency dependent expression of the lamination
impedance. “?)  Figure 1 shows the equivalent circuit for the iron core.
This circuit can be interpreted as an optimized discretization of the
lamination for the selected fitting frequencies; see reference [40] and
Appendix A for details on the fitting.

Note that the Cauer circuit shown in Figure 1 has the first shunt
resistance R; removed. This has been found necessary in order to
improve the convergence of the decoupled iterative method used for the

calculation of transients with our transformer model. In reference [39]
we have shown that keeping the magnetizing current small guaranties
convergence. Therefore, a circuit having an inductance in series with the
input terminals is more suitable for our purpose. Moreover, the
methodology for fitting Cauer circuits described in reference [40] applies
to the circuit of Figure 1 almost unchanged. In Appendix A we have
described the changes and compared the value of the parameters with the
two kinds of fitting. They remain almost the same. However, in the
iterative solution of the complete transient model, the fact that the Cauer
circuits have a series inductance at their input terminals proved to be
crucial to assure convergence.

One major advantage of cur model for the laminations, over some
other models derived from the same basic impedance equation " »'™, is
that it permits the inclusion of the nonlinearities into the inductances of
the electric circuit. To be in full agreement with the principle of duality,
the iron core model should have the inductive branches placed
longitudinally. Otherwise only the terminal behavior under linear
conditions can be accurately represented. The state equations describing
the behavior of the Caver mode] are derived in Appendix B.

. L L, |
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€, % R, % Ry
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Figure 1. Cauer model for the iron core

Complete Model
Structure

The complete model for a three-legged transformer is shown
schematically in Figure 2. The magnetic model consists of a circuit
structure derived from the principle of duality. Each inductor
representing a section of the iron core has been substituted by a nonlinear
Cauer circuit and the inductors representing the flux path in air have been
substituted by a loop inductance matrix. Note that our model does not
consider mutual inductances in air between windings wound on different
limbs. The magnetic coupling is provided only by the iron core. The
conpecting points between the iron core circuits and the loop inductance
matrices are the points o and § which simultaneously represent the
leakage flux and the leakage inductance. The application of Kirchhoff’s
current law (KCL) to nodes 1 and 2 of Figure 2 is very important
conceptually. KCLs represent the fact that the sum of currents inside of
a window is zero (in the electric equivalent circuit) and correspond to the
sum of the mmf’s (of the magnetic circuit) around the windows.

The magnetic effects in the air are modeled (as mentioned before)
by the loop inductance matrices L”,, L5, and L”, (which do not have
an equivalent circuit representation). These matrices account for the
leakage inductances between the windings (sections or turns) wound on
the same leg. Mathematically, the model has three state equations (one
per limb) of the type of equation (1). These three state equations
combined with the relations derived from the two KCLs are the central
part of the model. All other components interact with them through
variables obtained from their solution.

Each nonlinear Cauer circuit in Figure 2 represents the
magnetization and eddy current losses in the laminations of a section (leg
or yoke) of the iron core. The mathematical model for every Cauer
circuit (we have a total of five) is given by the state equations (B-5) of
Appendix B. Note that the inputs to these circuits are the voltages and
the outputs are the currents.

The losses (or damping) due to eddy currents in the windings are
represented in Figure 2 by the blocks containing series Foster circuits.
The inputs to those blocks are the currents in the windings and the
outputs are voltage drops. Mathematically, the model for these losses
consists of three sets of state equations of the type of equations (3).

The model for the capacitances between turns (or sections) is
directly derived in the nodal reference frame while the inductive model
is formulated in the branch reference frame. To interface both models
we must convert them to a common reference frame. It is best to convert
the inductive equations to the node reference frame by a power-invariant
transformation.
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The complete nodal model is conveniently reduced to the external
terminals (or nodes) for each leg before the transformer connections (4,
Y, zig-zag, etc.) are made. The reason is that we can use the same
matrices if the three legs are constructed identically. In Figure 2 we have
shown a transformer with three legs and three windings but the modeling
described in this paper can bandle transformers of any number of legs
and windings. Moreover, the iron core divisions are not limited to
considering the whole leg or yoke as an entity; we can divide it in any
number of sections by using more fictitious turns.

Model Solution and Terminal Interfacing

As the iron core equations are nonlinear, the model requires an iterative
solution for every time step. We devised a decoupled iteration process in
which we treat independently:

a) the currents and voltages in the turns (or sections) and in the
capacitances,

b) the magnetizing currents, and
c) the voitage drops due to eddy currents in the windings.
The flow diagram of the transients program is shown in Figure 3.

‘COMPUTE THEVENIN
AND NORTON CIRCUITS

FIRST QUESS FOR
MAGNETIZING CURRENT AND
'VOLTAGE DROP DUE TO EDDY CURRENTS

UPDATE
HISTORY CURRENT SOURCES

SOLVE WITH THE

SOLVE FOR
INTERNAL NODES

UPDATE VALUES FOR
MAUNETIZING CURRENT AND
'VOLTAGE DROP DUE TO EDDY CURRENTS

TIME
CYCLE

EQUATIONS
CYCLE

Figure 3. Flow diagram of the transient program

We start by reading the initial conditions for all the state variables:
currents in the turns (i, iy, ic), voltages in the capacitances (Vige, Voot
¥5oqe), currents in the inductances of the Foster circuits (if, if, if ), and
currents in the nonlinear inductances representing the iron core sections
@4, 5, 3.

As the solution of the linear differential equations for the windings
is obtained by applying the trapezoidal rule of integration, we obtain
Thevenin or Norton equivalent circuits. We write a Thevenin equivalent
circuit for the voltage state equation (1) of the windings and Norton
equivalent circuits for the rest of the state equations. The details were
presented in reference [39]. All conductance matrices remain constant
during the whole transient simulation, while the cusrent sources
(representing the history) of the elements must be updated at every
iteration within a given time step.

The iteration begins by guessing values for the magnetizing
currents (ig, iG, iG, iy, iy,) and for the voltage drops due to eddy currents
in the windings (v¢, v, v¢); see Figure 2. The next step is updating
(calculating for the first iteration) the history current sources for all the
state variables. Now we can inter-connect the Thevenin and Norton
equivalent circuits to form an external Norton circuit reduced to the
terminals of the transformer. This circuit can be easily interfaced with an
electromagnetic transients program (for example the EMTP) since most
of the components are also modeled as Norton equivalent circuits.
Subsequently, we calculate the internal voltages and currents in the turns
or sections (Va, Vs, Ve, €as €5, €c, €,1 €y, ia, g, ic, i, i§, if). Note that
in this calculation we have included the voltages in the iron core and the
currents in the fictitious turns .

The iterative process continues with two independent steps:

i)  The magnetizing currents are updated using the voltages at the
terminals of the Cauer circuits as inputs (see Figure 2). We use a
Runge-Kutta method because a Norton equivalent circuit is not
needed for the magnetizing part of the model since, in the
decoupled solution, only the voltages (e,, e, ., €y, €y,) are inputs
to the nonlinear Cauer circuits.

ii)  The voltage drops due to eddy currents in the windings are updated
using the currents in the turns (i, iy, i) as inputs. We use the
trapezoidal rule of integration since only one (small) matrix is
needed and it remains constant during the iterative process.

Next, we get a second approximation for the external Norton equivalent.
We repeat the procedure until there is no significant change in the value
of the state variables and then we go to the next time step.

Convergence

In reference [39] we have shown that the iterative cycle converges
rapidly when detailed models for the iron core and for the damping due
to eddy currents in the windings are not included. Typically we needed 3
to 5 iterations with a tolerance of 1075. When the mode! for the losses
due to the eddy currents in the windings was included in the simulation
(as in reference [41]), convergence was obtained (for the same tolerance)
in 5 to 7 iterations for small time steps and in 8 to 10 for large ones. The
number of iterations increased not only because the number of equations
increased, but also because the added equations are stiff. Now that a
detailed modeling is included for the eddy currents in the iron core, we
get convergence in 4 to 5 iterations for small time steps and 10 to 11 for
large ones. We have also noted that the convergence properties
worsened in inverse proportion to saturation. A more detailed discussion
on the convergence of the method can be found in Appendix 2 of
reference {39] and a still more comprehensive discussion in
reference [49].

In addition to the requirement for a small integration time step
when we are interested in the simulation of fast transients, there are two
limitations in the size of the time step. One is imposed by the decoupled
method itself. No convergence is obtained for very large time steps. The
other limitation is due to the fact that the Runge-Kutta method is not A-
stable and thus requires a step size smaller than the smallest time
constant. The first limitation can be eliminated with a different (non-
decoupled) scheme for the transformer tramsient model. This may be
computationally more expensive, since the size of the Norton equivalent
matrix increases significantly. The second limitation can be overcome
by using an implicit integration method (for instance, the trapezoidal rule
of integration). We have also solved the problem with a two-time-step
method, one small time step as required by the transformer model and
another (larger one) for the external system; see reference [50].

VALIDATION OF THE TRANSFORMER MODEL

Parameters

We have previously validated the parameters (leakage inductances,
capacitances and resistances) for the windings independently. The
leakage inductances of pairs of turns have been validated against a two-
dimensional finite elements program in reference [38]. In the same
reference the total leakage inductance for a pair of windings was
compared against tests on a real transformer and with finite elements as
well. For the capacitances we have confirmed that the potential profiles
are close to the expected values. The frequency dependent resistance
matrix (from which our model is derived) was verified with a well-tested
equation in reference [41] and with frequency domain measurements.



Time Domain Approximations

For the frequency dependent parameters we have performed time
domain approximations obtained from the known frequency responses.
Each component of the iron core in the model (Figure 2) can be
represented by a Cauer circuit of order 4 if a very accurate response is
required up to a frequency of 1 MHz with no saturation; see reference
[40} and Appendix A. In the same reference we have shown that in the
expressions for the parameters the variables ® and p always appear in the
product form ® p. Therefore, the frequency response of a Cauer circuit
can be assessed as being good for any degree of saturation by simply
scaling the frequency axis to keep the product o |t constant. Thus, under
saturated conditions the same Cauer circuit is valid for even higher
frequencies.

We have shown in reference [41] that a model of the order of 3
times the number of sections in a winding is accurate enough for the
representation of the behavior of the winding resistance up to 1 MHz.

Frequency Response
Short Circuit
The frequency response in short circuit of three transformers was
available: a small 2 kVA laboratory transformer, a 75 kVA distribution
transformer, and a 93 MVA power transformer. In Figures 4, 5, and 6 we
compare the variation with frequency of the computed input impedance
of the model against measurements.

100000

10000 —

z

Q] 1000 simulation

100

T T
0 500 1000

frequency [kHz]
Figure 4. Input impedance for the 2 kVA transformer

From Figure 4 we can see that the overall response of the model for
the small transformer (including at resonance) is very satisfactory. For
this 2 kVA transformer the complete construction data was available; see
Appendix 2 of reference [38]. The parameters of the model were derived
on a turn-to-turn basis (as in reference [38]) and reduced to 4 sections per
winding (as in reference [39]) for the simulation of Figure 4.

1e+06 —
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10000 —|

Q1 1000

100 -

104

T T I T
0.1 1 10 100 1000 10000

frequency [kHz]
Figure 5. Input impedance for the 75 kVA transformer

In Figure 5 we show the variation of the input impedance for the 75
kVA distribution transformer described in reference [29]. We note that
the response of the model is very good at low frequencies (which is
mainly governed by the leakage inductance). The two main resonances
are also satisfactorily simulated, however, some smaller peaks have not
been obtained. For this case the construction data needed for the
estimation of the parameters for our mode! were not available and we
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have therefore performed an approximate design. A very efficient
procedure for parameter calculations was used (as described in Appendix
C of reference [41]) which consists in grouping several turns into
sections before applying the procedures of reference [38]. Considering
that the construction data was obtained by an approximate design and
that the model derived in this paper is intended to be used for the
simulation of transients (with an inherent time domain averaging), the
model response can be considered as adequate.

10000
test "\
1000 4
V4 100
Q]
10 simulation
14
I I T I
0.1 1 10 100
frequency [kHz]

Figure 6. Input impedance for the 93 MVA transformer

The variation of the input impedance of the 93 MVA transformer
described in reference [51] is shown in Figure 6 together with the
simulation obtained with the model of this paper. We have a reduced
frequency range for the tests because the resolution of the measurements
has limited the usable points. As in the previous case, the construction
data were obtained with an approximate design. Although the model
does not show all the resonances at the right locations, the results are
satisfactory for the calculation of transients.

Open Circult

Only the frequency response of the 75 kVA distribution transformer was
available in this test case. In Figure 7 we compare the variation of the
input impedance with frequency of the model against measurements.
While not all resonances are exactly matched, the results are quite
satisfactory for a model for time domain simulations.
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frequency [kHz]
Figure 7. Input impedance for the 75 kVA transformer in open circuit

To assure convergence in the open circuit simulation, we reversed
the internal iterations in the model, since before we relied on the fact that
the magnetizing current is small compared to the winding current. This
condition is normally satisfied, with the exception of the open circuit test
at low frequencies or when the transformer is strongly saturated; see
Appendix 2 of reference [39] for more details on convergence. For the
open circuit simulation at low frequencies, instead of starting- the
iteration with a small magnetizing current and computing the winding
currents later in the iteration, we start with the internal voltage and
compute the turn (or section) voltages in the iteration. In the example
shown in Figure 7 convergence was obtained in 3 to 9 iterations.

It is interesting to note that the short circuit test results show
resonances at significantly higher frequencies than open circuit tests.
Reference [29] presents a detailed discussion based on measurements.
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APPLICATIONS TO THE CALCULATION OF TRANSIENTS

Below we present simulations on the small, three-legged, three
phase transformer of reference [38], having 118 turns per winding in two
layers. We have considered for the simulations two sections per winding
with 59 turns each. The model for the eddy currents in the windings is of
order 2 (Foster circuits with two inductances). For the five iron core
sections we use "incomplete” Cauer circuits, as in Figure 1, of order 6
(six sublaminations). Saturation is considered, as mentioned above,
using the nonlinear function described in Appendix B.

Figure 8 shows the transient obtained when energizing the
transformer from a balanced sinusoidal voltage source. The transformer
connection is Yg/Yg with the secondary in open circuit.

2
Va
1 HmmlIul}IHIHIHHHHlillnmnm.nm
H H [ ' * e T Y
voltage H il
\)
0 Yy V,
b Ve
“l1‘l‘i‘l'|yll|‘|ly]lll{‘l,tll”‘l"’1'1y|‘|lIl.VA,I'I'lllll’l‘Aylltylykvlll'liu‘llxltlxlxyx :g
.14
T T T
0 50 100
time (us)

Figure 8. Primary and secondary voltages during energization

In the figure, upper case subscripts have been used for the primary
voltages and lower case subscripts for the secondary voltages. The
primary and secondary voltages in phases b and c are indistinguishable
during the short simulation time when v, and vg =v¢ remain virtually
constant. The frequency of oscillation is of the order of megahertzs and
matches the value calculated from w=1/ \‘L,mk C with the known
parameters C =107 F and L., =10"* H. Table 1 shows the number of
iterations (related to the decoupled nature of the computations) required
to obtain convergence within a given time step.

At [ps] | ITERATIONS COMMENT l
0.1 4-5 case shown in Figure 5 J
1 5-6
10 5-7
100 6-8
200 79 Runge-Kutta fails

Table 1. Number of iterations for different time steps

As a second example we show in Figure 9 the simulation of a
sequential energization followed by current chopping. The transformer
was now connected in Yg/A with the secondary in open circuit. The
switching sequence is as follows: phase a is connected at r =0 followed
by phase b which is connected at ¢ =0.02 ms; next, phase c is connected
at 1=0.04 ms and, finally, the whole transformer is disconnected at
t=0.06 ms.

We can see from Figure 9 that even when phases b and c are still
disconnected from the source there exists a voltage in both primary and
secondary. This voltage is induced by the flux in the iron core. The
oscillations before disconnection are, as in Figure 8, between leakage
inductances and capacitances. After disconnection, the main voltage
oscillations are much slower since they are related to the magnetizing
inductances. Their frequency is of the order of tens of kHz. This is in
accordance with the expected value, obtained with Ly, = 1 H.
Convergence of the decoupled method was obtained for all integration
steps in 4 to 6 iterations.

We have tested the behavior of the transformer model up to several
cycles (of power frequency) with different time steps and the results have
been fully satisfactory.
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0 0.05 0.1 0.15
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Figure 9. Voltages during sequential energization and current chopping

The next example is the energization of the transformer connected
Yg/Yg, with its secondary in short circuit at =0 and fault clearing at
zero current crossing. Inter-turn capacitances were neglected in this
simulation. After clearing the fault a 3 UF capacitance to ground remains
connected to the secondary. In Figure 10 we show the simulated
transient recovery voltage (TRV), Figure 10a presents the case when the
eddy currents in the windings are included and Figure 10b when they are
neglected. The frequency of oscillation is governed by the external
capacitance (of bus bars, bushings and between the contacts of the circuit
breaker) and the transformer leakage inductance. Thus with
Liax=43x10*H and C=3uF we get f=4000 Hz. The integration
step was 50 ps and convergence was obtained in 5 to 6 iterations. From
the figure, we can appreciate the significance of including the effect of
the eddy currents in the windings. In the case where the effect of the
eddy currents is included (case (a) in Figure 10) it appears that two
frequencies produce a cancellation effect. Coincidentally, this happens
when the source voltage is at its minimum.

2
phase B 1
voltage @)
(\2) 0
-1 4
T T T T T T
0 5 10 15 20 25
2
phase B 1
voltage (b
%)
-1
-2
T T T T T T
0 5 10 15 20 25
time (ms)

Figure 10 Transient recovery voltage with a 3 UF external capacitance.
(a) Eddy currents in the windings included
(b) Eddy currents in the windings negiected



Figure 11 shows the simulation of the inrush current obtained when
energizing the transformer (from a balanced voltage source of 110 V)
with its secondary in open circuit. We can see that the current taken by
the transformer is several times the magnetizing current. As expected,
the transient inrush current is very lightly damped. The results presented
here are in agreement with the fact that the inrush current may last for
several minutes. In this' transient the effect of eddy currents in the
windings is not significant. The damping, for the case presented here, is
mainly due to the low frequency resistance of the windings. Identical
results were obtained when we included the eddy current effects in the
windings.

We have used an integration step of 100 ps. Convergence is
obtained in 5 to 6 iterations in the regions where saturation is not
important. In the regions where saturation plays an important part,
convergence is obtained in an increasing number of iterations reaching a
maximum of 85 to 93 at points corresponding to the peak values of the
current.

0
phase B 14
current
A) “7
3]
T T T T T
0 100 200 300 400 500

time (ms)

Figure 11 Inrush currents during energization in open circuit

CONCLUSIONS

A complete, three phase transformer model for the calculation of
electromagnetic transients has been presented. The main features of the
model described in the paper are:

—  the basic elements for the calculation of parameters (inductances
and capacitances) are the turns so that internal resonances are fully
taken into account,

—  the model includes the losses due to eddy currents in the windings,

-  saturation and the damping produced by eddy currents in the iron
core (laminations) are represented,

—  the iterative solution is obtained in a decoupled way for the
windings, iron core, and voltage drop due to the currents in the
windings,

—  voltages and currents at any points in the windings can be
displayed.

The model is expressed as a set of state equations solved for the

windings with the trapezoidal rule of integration in order to obtain an

equivalent Norton circuit at the transformer terminals. Thus, the
transformer model can be easily interfaced with an electromagnetic
transients program.

For validation, every component of the transformer model has been
tested independently against measurements in references [38] to [41]. In
this paper the complete and assembled model has been validated with
frequency domain measurements. Transient simulations have been
petformed for illustration and further validation.
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APPENDICES

Appendix A ~ Lumped Parameter Fitting of the Iron Core

The procedure for fitting an "incomplete” Cauer circuit (with R, removed — see
Figure 1) is very similar to the one described in ref [40] for the plete Cauer
circuit (including R, ~ as in Figure 7 of reference [40]). The steps to follow are:

a) ‘We first estimate initial values for the N inductances and N-1 (2,3,..N)

resistances.
b) The iterative process starts from the highest frequency by computing a better

approximation for Ly,

Z -2,
L= l(mN? (wy) @A-D)
J Oy
where
Z; = known ] imped. puted with equation (3)

of reference [40]
= impedance seen at the right of inductance L,

c) Evaluate Z'/(w;) as

Zyo)=Z(w)-jo, L, for i=12,.,N~1 (A-2)

d) Use Z'(w;) instead of Z,(w;) in equation (22) of reference [40]. Thus, we can use
the pmcedure in eqlmmns (21) to (30) of that reference to compute better
pp jons of the g N-1 indy and N -1 resi

‘We have used the method described he.re to compute "incomplete” Cauer circuits of
orders 2 to 6. C ‘was obtained in a few i (typically less than 10) with a
tolerance of 107 fet all cases. The errors over a range of 1 MHz are similar to those
obtained with the complete Cauer circuit (i.e. less than 1% — see reference [40] for
details). In Table A-1 we compare the value of the ind and cond of the
two kinds of fitting for models of order 6. Note that the parameters in the two circuits are
very similar.

COMPLETE CAUER INCOMPLETE CAUER
G | L G L
T 8.494322 | 8.9127544E-10 - 3.
2 39.59985 2.4922988E-09 4346111 | 2.8191072E-09
3 96.43762 5.2383959E-09 || 104.4496 5.5004277E-09
4 || 188.4306 1.0356599E-08 || 193.9819 1.0501804E-08
5 || 374.0791 1.9719748E-08 || 375.4775 1.9677607E-08
6 || 694.9191 4.1570111E-08 || 690.5519 4.1214129E-08

Table A-1. Comparison of parameters of Cauer circuits of order 6

Appendix B — State Equati

for the Cauer Circuits

Consider a part of a Cauer circuit as shown in Figure B-1.

@ L")

e [N

Figure B-1. kth block of the Cauer circuit

The voltage equation for the kth inductance is
%

e i ! B-1)
where ¢, is the flux linkage of inductance k. Equation (B-1) can be written as a function
of the currents in the inductances as

Ao , ) L
=G (ipq — i) = G (ix g ) (B-2)

The nonlinear characteristics of the material can be expressed as a function of
magnetic field intensity (H) and magnetic flux density (B). From test on materials we fit
the following function M

H=K,B+K;;B" +K; BY ®B-3)
where
K, =31832=1p
K= 02181
Ky = 0.1353
Equation (B-3) can be transformed to a function of current and flux,
i=f®)=Ky 0+ K17 ¢ + Ky ¢ (B-4)
Substituting (B-4) into (B-2) we obtain the desired state equation
° =G [f 1) = ) 1= Geat [f (0) ~f (9es) ] (B-5a)

‘When k=1 the left hand side voltage is the forcing function e, (see Figure 1). Then, the
first state equation is

di
AV I ®-5b)
For the last element, k =#, so that
do,
;: =G, [f @)~ f($a)] (B-5¢)

‘The state equations (B-5) can be integrated with the Runge-Kutta method of order
4. This method was selected because the forcing function of the Cauer circuits is always
the voltage and there is no need to obtain for them a Norton equivalent. This, however,
imposes a limitation on the step size since the standard Runge-Kutta algorithm of order 4
is not A-stable.
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Discussion

J. R. Marti (University of British Columbia, Canada): The authors
are to be congratulated for putting together a practical three-phase
transformer model that can simulate a wide range of transient phe-
nomena, including the effects of core saturation and frequency
dependence of the iron and copper losses.

One of the components of the model is the windings’ series
impedance Z. The realizability of the diagonal elements of this
matrix is assured by synthesizing these elements with Foster’s RL
series networks. It is clear from the residues condition in network
synthesis theory that, as indicated in the paper, the poles of the off-
diagonal elements z;; in the Z matrix must be a subset of the set
formed by all the poles of all diagonal elements z;;. This is a neces-
sary condition for Z to be a positive real (p.r.) matrix. The sufficient
conditions to assure that the full Z matrix is a p.r. matrix are, how-
ever, more complicated. Failure to comply with the p.r. condition
on the full Z matrix could result in numerical instabilities in the
transient simulation. The authors comments on this issue would be
very much appreciated.

Manuscript received March 1, 1993.

Bruce A. Mork (Michigan Technological University, Houghton, MI),
Don L. Stuehm (North Dakota State University, Fargo, ND): This
paper presents a very interesting and useful three phase transformer
model which should be valid for a wide range of frequencies. The
questions asked here are in regard to low-frequency model validation.

Inrush simulations provide an excellent time-domain measure of
model performance at lower frequencies. Inrush currents depend on
winding connections and core configurations and are typically different
in each phase of the transformer. Fig. 11 shows the inrush current for
phase B. Could the authors provide the inrush current waveforms for
phase A and phase C? Were the windings connected in delta or wye?
How did simulated waveforms compare to measured waveforms? Is the
model capable of simulating residual fluxes in each of the core limbs?

At frequencies up to several kHz, magnetic saturation is
prevalent and transformer responses are nonlinear. Referring to Fig. 7,
could the authors briefly comment on the use of frequency response as
a measure of the model’s open-circuit performance in this frequency
range?

Manuscript received March 3, 1993,

Francisco de Le6én (Instituto Politecnico Nacional, México) and
Adam Semlyen (University of Toronto): We wish to thank the
discussers for their apprecidtive remarks about our paper. The following
are clarifications on the questions raised.

Regarding the positive real requirement for the matrix Z, we note
that the imaginary part X of Z is obtained first through the calculation of
the inductance matrix L of the transformer and it is simply augmented by
the real part, the matrix R, to reflect the winding losses. The way it is
calculated, the matrix R is positive definite gince it results (in addition to
terms representing the d.c. losses and skin effect in the conductors) from
the summation of terms that represent the proximity effect due to all
other conductors: these are the eddy current losses, proportional to |H |2
(and therefore definitely positive), where H is a linear function of all /.
Since the matrix R is ab ovo positive definite, so is its accurately fitted
version, and consequently no instabilities will result in numerical
simulations. For details regarding this problem, we refer to reference [41]
(equations (7a) and (6)), presented at 1993 IEEE/PES Summer (rather
than Winter) Power Meeting.

Regarding the simulation of inrush currents, we agree that these
tests serve well for the low frequency validation of the transformer
model. We note, however, that the present model, while fairly complete
in many respects, does not yet include the representation of hysteresis
(intended to be added soon). Therefore, after deenergization, no residual
fluxes will remain in a simulation and initial flux values for each leg may
have to be set for a new simulation. This, of course, would probably be
needed even if hysteresis was modeled. Certainly, its absence in the
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modeling renders the simulation less accurate and comparisons with
measurements confirm only the phenomena related to the existence of
large peaks of magnetizing currents due to high levels of saturation.

As correctly pointed out by the discussers, the inrush currents are
strongly influenced by many factors, such as transformer connections and
core configuration. In the test illustrated in Figure 11, the primary was
connected in grounded Y. Thus, essentially, the three windings were
electrically independent. Figure A shows the inrush currents in all three
phases. Phase A has almost no saturation. The inrush currents in phases
B and C show the effect of saturation comsistent with the instant of
energization. Because of the magnetic coupling of the three legs of the
iron core, the magnetizing currents show the effects of the other phases
as well. This appears clearly in Figure B which contains the first two
cycles of Figure A. For example, the saturation in phase C at around
10 ms has an effect on the currents in phases A and B.

The discussers’ remark about the significance of saturation in the
lower frequency range is well taken. Tests over a wide frequency range,
such as shown in Figure 7, are usually performed at reduced voltages and
do therefore not reflect the effect of saturation. Accordingly, simulation
results are also shown for unsaturated conditions,

We uge this opportunity to indicate two small corrections for the
paper: In Table 1 the reference should be to Figure 8 instead of Figure 5.
In the paragraph above Figure 1, the second reference should be [46]
rather than [48].
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Figure A. Inrush currents in all three phases
corresponding to the energization shown in Figure 11
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