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This paper presents an algorithm for calibrating erroneous tri-axis magnetometers in the magnetic field domain. Unlike existing
algorithms, no simplification is made on the nature of errors to ease the estimation. A complete error model, including
instrumentation errors (scale factors, nonorthogonality, and offsets) and magnetic deviations (soft and hard iron) on the host
platform, is elaborated. An adaptive least squares estimator provides a consistent solution to the ellipsoid fitting problem and
the magnetometer’s calibration parameters are derived. The calibration is experimentally assessed with two artificial magnetic
perturbations introduced close to the sensor on the host platform and without additional perturbation. In all configurations,
the algorithm successfully converges to a good estimate of the said errors. Comparing the magnetically derived headings with a
GNSS/INS reference, the results show a major improvement in terms of heading accuracy after the calibration.

1. Introduction

To navigate on Earth, knowledge of two fundamental
parameters is required: the actual position and the direction
of motion. Over the years, humans have been using a large
variety of tools to identify these parameters. They first
consisted of natural landmarks, like mountains or stones
that early men could easily recognize and remember during
their travels. Then navigators adopted celestial objects to
orient themselves. More recently, man-made orientation
tools have been added. Dedicated signage and a variety of
radio frequency (RF) signals, like satellite signals, WiFi, or RF
Identification Devices belong to this category. This list would
not be complete without considering a natural element,
specific to the Earth, the Earth’s magnetic field. Indeed it has
been used for several millennia for estimating the orientation
relative to the North and South magnetic poles.

One of the first magnetic compasses was invented by
the Chinese thousands of years ago. It was made of a bowl
filled with water, used as a leveling platform, and a magnetic
lodestone placed on a plate floating on the water [1]. With
the advancements in Integrated Circuit (IC) fabrication

and sensor technology, magnetometers are nowadays minia-
turized and integrated in handheld devices. Consequently,
their use for mobile navigation faces increasing interest. As
illustrated in Figure 1, knowing the horizontal component
of the Earth’s magnetic field and the local declination, the
geographical azimuth ϕ can be derived as follows:

ϕ = tan−1

(
hy

hx

)
±D. (1)

However, the measurements of the magnetic field
obtained with low cost sensors are corrupted by several
errors including sensor fabrication issues and the magnetic
deviations induced by the host platform. Therefore proper
calibration of the magnetometers is required to achieve high
accuracy measurements. The last is generally performed
by means of experimentation and calibration parameters
estimation techniques. Several procedures and algorithms
have been proposed to perform the calibration. However
their performances often rely on assumptions that constraint
the type of the errors in the measurements and ignore some
critical components. In general these hypotheses limit the
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Figure 1: Earth’s magnetic field in the sensor reference frame.
D is the declination angle between the geographic North and
the horizontal component. I is the inclination angle between the
horizontal plane and the magnetic field vector.

nature of the magnetic deviation to simplified models. In this
paper, a novel and full calibration in the magnetic domain
for a single tri-axis magnetometer on a host platform is
proposed. It estimates the complete error sources without
any simplification regarding the effect of magnetic deviation
on the host platform. The proposed calibration algorithm is
valid for any tri-axial vector magnetometer. Errors induced
by magnetic anomalies from the sources that are external to
the platform are changing mainly as a function of the sepa-
ration. Therefore the proposed calibration technique cannot
mitigate these varying errors, and dedicated techniques have
to be developed [2].

This paper is organized into following sections. In
Section 2, a state of the art of existing magnetometer cali-
bration techniques is explained. Magnetometer error analysis
is conducted in Sections 3 and 4. Major issues identified
with Anisotropic Magnetoresistive (AMR) magnetometers
are used to derive a proper error model for the sensor.
The novel calibration algorithm is detailed in Section 5.
Finally, Section 6 presents the results of experimental tests for
assessing the performances of the new calibration.

2. Review of Calibration Techniques

As magnetic compasses have been used for many years
to navigate, the problem of magnetometer calibration has
already been addressed in numerous researches. At the
beginning of the 19th century, the navigator Nathaniel
Bowditch published a guide dedicated to celestial navigation.
It contains the well-known swinging calibration technique
[3] that requires leveling the instrument and rotating it in
a series of known azimuths. The need for external heading
information and the constraint of leveling the platform are
the main limitations of this method. Using measurements
collected during a full rotation of the leveled sensor in the

horizontal plane [4] exploits the minimum and maximum
values to estimate the scale factors and biases of the compass.
This compensation technique is very practical but ignores
several sensor errors.

A more complete approach in the magnetic field domain
has been proposed [5]. This approach is dedicated to sensor
sensing a known linear field that remains constant. During
the procedure, the device rotates, and an iterative batch
Least Squares (LS) estimates the deviation and the combined
scale factors of the sensor. Initial conditions are provided
by a nonlinear two-step LS using a change of variables.
The limitations of this calibration lay in the hypothesis that
misalignments can be neglected and that the soft iron dete-
riorates only the measurements on the sensor’s axis aligned
with the induced magnetic field. In [6], a geometric method
based on an iterative Maximum Likelihood Estimator (MLE)
best fits the device’s measurements to an ellipsoid manifold.
A separate closed-form optimal algorithm computes the
misalignment matrix.

Instead of using software-based calibrations in the
magnetic domain, some techniques consist in using non-
magnetic platforms dedicated to the calibration of magne-
tometer. A system based on piezoelectric motors mounted
on a platform made of aluminum, brass, plastic, and glass is
proposed in [7]. The equipment has three axes of rotation
and uses motors and optical encoders to control the motion
and improve the calibration outputs.

3. Anisotropic Magnetoresistive Sensors

There are a number of magnetic field sensors available
today. These sensors can be classified in accordance with
their sensitivities as well as their physical size and power
consumption. Some applications requiring magnetic field
information can afford size, power, and cost in order to
get the desired sensitivities. When it comes to pedestrian
navigation, there is no compromise on these parameters.
As a result of this, one ends up with medium to low grade
sensors. With low grade sensors comes a Pandora’s box
full of errors. This section describes such sensors and their
associated errors.

Anisotropic Magnetoresistive (AMR) Sensors belong to
the family of miniaturized magnetic field sensors well suited
for portable navigation applications. AMR elements change
their effective resistance when they pass through a magnetic
field. As the name suggests (anisotropy means direction
dependent), their sensitivity to incident magnetic field also
depends on the angle of incidence. This property makes
them useful for sensing magnetic field vector components
for orientation estimation. Inside the sensor module, AMR
elements are used as the four primary components of a
wheatstone bridge. If no magnetic field exists, the voltage out
of the wheatstone bridge will be half of the actual voltage
applied. In the presence of a uniform magnetic field, the
AMR elements will have different resistances changing the
output voltage of the wheatstone bridge from its nominal
value (1/2 of the applied voltage). This is further elaborated
in Figure 2.



Journal of Sensors 3

II

I I

R + ∆R

R + ∆R

R− ∆R

R− ∆R

+ −

+

−

Vs

M
M

M M

Applied field direction

∆V

Figure 2: Wheatstone bridge arrangement for sensing the applied
magnetic field [8].

Thus a simple relationship between changes in voltage
to the applied magnetic field can be used for calculating
the magnetic field strength. With three orthogonal magnetic
field sensors which are required for sensing the magnetic field
in three dimensions, three wheatstone bridges are fabricated
in a sensor module.

The operating principle of AMR sensors as explained
in the preceding paragraph is possible only if all four
resistances of the wheatstone bridge have the same values
in the ideal condition (absence of magnetic field). Although
the manufacturers try to fabricate identical AMR elements,
the problem with depositing permalloy (NiFe) evenly and of
same density causes these magneto-resistive elements to have
slightly different values. These slight errors in AMR elements
cause an offset on the voltage output of the wheatstone
bridge. This voltage offset is read as a magnetic field which
does not exist in reality, thus contributing to the sensor
bias errors. Hence calibrating the AMR sensors for this
offset voltage is necessary. Other issues associated with AMR
sensors are associated with the nonlinearity and hysteresis
properties of permalloy. All of the instrumentation errors are
discussed in the following subsections.

3.1. Offset Error. The bridge offset of a particular AMR
sensor remains constant for the entire lifespan of the
sensor [8]. Thus one needs to compensate for bridge offset
just once. This offset is not like the bias associated with
accelerometers and gyroscopes that vary with time as well
as with turn on/off. The primary means to calculate this
bridge offset is accurate calibration. Often Helmholtz coils
are used for offset computation. Helmholtz coils are utilized
for offset computation because it is necessary to know the
exact information regarding the applied field. Usually the
Helmholtz coil is used to cancel the Earth’s field (nullify the
total magnetic field in the test region) and then analyze the
sensor output which will be the offset itself. An alternate
method for offset compensation is to measure the sensor
output at different orientations assuming that the applied
field is constant (a good assumption in outdoor open

Required

sensivity axis

Actual
sensivity axis

Figure 3: AMR sensor element with uneven local magnetizations
[9].

environment like a park) and use least squares approach to
solve for offset using multiple observations.

3.2. Sensitivity Error. The AMR elements are non-linear by
nature. This means that the sensitivity of the AMR sensors
varies with the variations in the magnitude of the sensed
magnetic field. This nonlinearity results in scale factor error.
In order to compensate for this error, proper calibration
of AMR sensors is necessary. For this purpose, external
field needs to be generated with known magnitudes, and
a function relating scale factor to the input is estimated.
The generated magnetic field needs to be strong enough to
cover the complete range of expected magnetic field strength.
Again in this case, the Earth’s magnetic field is chosen as the
source, and measurements are taken at different orientations
ranging from no sensed magnetic field (perpendicular to
the field vector) to maximum field strength (parallel to the
field vector). Care must be taken as this calibration is valid
only if the expected field strengths are within the calibration
region.

3.3. Cross Axis Sensitivity Errors. With time, the AMR sensors
attain uneven magnetization, which changes their sensitivity
axis orientation. This is shown in Figure 3.

This phenomenon acts as a misalignment error for a
three-axis magnetic field measurement. In order to remedy
for this error, an inductor/coil is utilized to create a magnetic
field in opposite directions that demagnetizes the AMR
sensor as shown in Figure 4. This method is similar to the
one performed for erasing the memory of magnetic tapes.
The coil is usually fabricated along with the sensor elements.
Frequent use of this coil rectifies any errors due to hysteresis.

3.4. Sensor Measurement Noise. All of the above-mentioned
errors are deterministic and can be compensated for. But the
effect of noise on sensor measurements is a stochastic process
and needs to be appropriately modeled. For this purpose
Allan variance technique is used for modeling these effects.
Figure 5 depicts the Allan deviation results for one of the
sensor axes. Based on this analysis, following noise Power
Spectral Density (PSD) parameters (Table 1) are found. Later
on, these PSDs can be utilized for modeling the sensor noise
at different sampling frequencies.

3.5. Magnetic Field Specific Errors. In addition to the instru-
mentation errors, magnetic field sensors also suffer from
errors due to magnetic perturbations. Presence of ferromag-
netic materials and electromagnetic systems in the vicinity
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Figure 4: Use of an inductor/coil to compensate for hysteresis [9].
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Figure 5: Allan deviation plot of AMR sensor.

Table 1: Noise power spectral densities for AMR sensor.

Parameter X-Axis Y-Axis Z-Axis

Wideband noise PSD
(Gauss/

√
Hz)

3.38e-4 3.24e-4 3.12e-4

Bias PSD (Gauss/
√

Hz) 3.91e-5 3.9e-5 3.91e-5

Correlation time (sec.) 70 70 70

of the sensor are the main cause of these perturbations, that
is, the host platform is responsible for these perturbations.
Even with proper compensation of instrumentation errors,
these perturbations cause artificial bias, scale factor as well as
nonorthogonality errors in the sensor measurements. These
errors are called artificial here because the instrument itself

( 0 , 0 ) 

(hhix , hhiy )

Figure 6: Effects of hard iron errors on sensed magnetic field. A
bias is caused due to presence of hard iron errors.

ϕ

ϕ
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Figure 7: Negligible effects of soft iron errors at some orientation.
The field generated by the ferrous element is parallel to that of the
Earth’s.

has nothing to do with them, rather it is the host platform
that causes these errors. They can be categorized as hard and
soft iron errors.

Hard iron errors on the platform are caused by a
magnetic source with permanent field in all orientations.
In other words, magnetic fields generated due to different
electronic subsystems in the vicinity of the sensor and that
do not have any or have negligible dependence on the Earth’s
magnetic field are called hard iron magnetic sources. These
magnetic fields cause a bias in the sensed magnetic field as
shown in Figure 6.

Soft iron errors are caused by much complex magnetic
fields that are generated by ferro-magnetic materials. These
magnetic fields have a direct relationship with the Earth’s
magnetic field. Their magnitude depends on the incident
angle of the Earth’s magnetic field on the material. Hence
it changes as the host platform changes its orientation with
respect to the Earth’s magnetic field. The general trend of this
phenomenon can be observed in Figures 7 and 8.

Thus even with proper compensation of the instrumen-
tation errors with the help of magnetic coil arrangements as
discussed earlier, the magnetic field sensor error model still
consists of bias, scale factor errors, and non-orthogonalities
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Figure 8: Maximum effect of soft iron errors when Earth’s magnetic
field is aligned with magnetic poles of perturbation source.

which need to be properly calibrated before using the sensor
data for estimating the magnetic orientation.

4. Modeling of the Magnetometer Errors

This section translates the error analysis of low cost
magnetometer conducted in the preceding section into a
mathematical model. From the analysis of AMR sensors, two
categories of errors can be distinguished. The first category
represents the instrumentation errors. It includes the scale
factor, the sensor offsets, and the nonorthogonality of the
sensor axes. These errors are due to fabrication limitations
and are common for wider variety of sensors, for example,
the Micro Electro Mechanical Systems (MEMS). The second
category is specific to magnetometers and consists of a
magnetic deviation produced by onboard hardware in the
hosting platform. Next section examines each error in the
sensor frame. It is worth mentioning that temperature
dependence is not modeled in what follows.

4.1. Instrumentation Error. Instrumentation errors can be
considered as unique and constant for one specific tri-axis
magnetometer.

4.1.1. Scale Factor. The first instrumentation error corre-
sponds to constants of proportionality relating the input to
the output. The scale factor matrix S can be modeled as

S = diag
(
sx sy sz

)
. (2)

4.1.2. Nonorthogonality. Let N be a matrix where the column
vectors give the direction of each sensor axis in the sensor
frame. The inverse of N can be used to correct for the effect
of non-orthogonality including the misalignment errors:

M = N−1 =
[
εx εy εz

]−1
, (3)

where εx, εy , and εz are vectors of size 3 that give the
directions of the sensor’s x, y, and z axes, respectively, in the
sensor frame.

4.1.3. Bias. The sensor offset introduces a bias bso in the
output that can be modeled as one scalar per axis

bso =
[

bso z
bsoy bsoz

]T
. (4)

4.2. Magnetic Deviation. The magnetic deviation is due
to surrounding ferromagnetic compounds on the host
platform. It is composed of a permanent magnetism and
an induced one. The first one is called the hard iron effect
whereas the second is the soft iron effect.

4.2.1. Hard Iron. It results from permanent magnets and
magnetic hysteresis, that is, remanence of magnetized iron
materials and is equivalent to a bias

bhi =
[
bhix bhiy bhiz

]T
. (5)

4.2.2. Soft Iron. The interaction of ferromagnetic com-
pounds with an external field induces magnetism. This
changes the intensity as well as the direction of the sensed
field. Soft iron effect can be modeled as a 3 by 3 matrix as
follows:

Asi =

⎡
⎢⎢⎢⎣

a11 a12 a13

a12 a22 a23

a13 a32 a33

⎤
⎥⎥⎥⎦. (6)

Here no simplification is made on the nature of the soft
iron to ease the calibration procedure. In existing work, often
nondiagonal components are eliminated to minimize the
model complexities.

4.3. Complete Error Modeling. Combining both instrumen-
tation errors and magnetic deviation, it is possible to derive
the complete error model for the triad of magnetometers as
follows:

ĥ = SM(Asih + bhi) + bso + ε, (7)

where h is the error-free magnetic field in the sensor frame

whereas ĥ are the readings from the triad of magnetome-
ters in the sensor frame. ε is Gaussian wideband noise
∼ N(0, σ2

ε ).

Expanding (7) and introducing two new variables A and
b, the magnetometer error modeling becomes

ĥ = Ah + b + ε, (8)

where

A = SMAsi

b = SMbhi + bso.
(9)

A is a 3 × 3 matrix combining scale factors, misalignments,
and soft iron disturbances. b is the combined bias.
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5. Calibration Algorithm

5.1. Constraint on the Magnitude of the Measured Field. In
a perturbation free-environment, the norm of the mag-
netometer vector measurement should be equal to the
magnitude of the Earth’s magnetic field. Consequently while
rotating the sensor in space, the locus described by its
readings should describe a sphere with a radius equal to the
magnitude of the local Earth’s magnetic field [5]. This norm
Hm can be extracted from a specific geomagnetic model [10].
The following equation constraints the measurements of a
perfect magnetometer in a perturbation free environment:

H2
m − ‖h‖2 = H2

m − hTh = 0. (10)

If the square transformation matrix A and the combined bias
b are known, then (8) can be rewritten as

h = A−1
(

ĥ− b− ε

)
. (11)

Substituting (11) in (10) and omitting the noise term gives

(
ĥ− b

)T(
A−1

)T
A−1

(
ĥ− b

)
−H2

m = 0. (12)

Introducing the following intermediate parameter:

Q =
(

A−1
)T

A−1, (13)

equation (12) becomes

(
ĥ− b

)T

Q
(

ĥ− b
)
= H2

m. (14)

Expanding (14), the following quadratic equation is
obtained:

ĥTQĥ + uT ĥ + k = 0, (15)

where

u = −2QTb

k = bTQb−H2
m.

(16)

This equation represents a general plane of the second order
and describes a surface, for example, a hyperboloid, a cone,
or an ellipsoid. Because Q is a positive definite matrix,
inherited from its definition, if the following condition holds
then (15) is an ellipsoid [11]:

uTQ−1u > 4k. (17)

Differencing the terms on the left and right sides of the
inequality gives

uTQ−1u− 4k = H2
m. (18)

The square of the amplitude of the Earth Magnetic field is
strictly positive, thus condition (17) holds. It implies that
(15) is the general equation of an ellipsoid. Consequently cal-
ibrating a tri-axis magnetometer corresponds to estimating

the unknown parameters of (15) knowing that this second-
order equation describes an ellipsoid.

Consequently using magnetic field measurements col-
lected in a perturbation-free environment, along several
orientations that best describe the ellipsoid, it is possible to
use the constraint on the norm of the field vector (10) to
calibrate the magnetometers for the sensor errors and the
hosting platform effect.

The proposed calibration algorithm comprises two steps.
First the parameters of the ellipsoid equation are estimated,
and then the calibration elements A and b in (11) are derived.
To our knowledge, the proposed calibration algorithm is
novel for the two following reasons. It does not require any
assumption on the magnetic deviation. It calibrates directly
the magnetic readings without estimating the geometrical
proprieties of the ellipsoid (rotation, translation, and lengths
of the semiaxes).

5.2. Limitations of Classical Ellipsoid Fitting Algorithms.
The first step consists in finding the parameters b and
Q that satisfy (15), which is an ellipsoid fitting problem
with magnetic field measurements collected along different
orientations.

Several methods have been developed. Algebraic fitting
methods try to solve an optimization problem using least
squares techniques [12, 13]. Geometric fitting approaches
try to minimize the Euclidian distance from a point to the
dataset using orthogonal regression method [14]. However
due to the quadratic form in the measurement in (10), these
techniques are statistically inconsistent. Indeed, analyzing the
derivation of the noise term ε in (10), it is shown that the
algorithm’s solution may be biased. Introducing (11) in the
quadratic equation, we have

∥∥∥A−1
(

ĥ− b
)∥∥∥2

=
∥∥h + A−1

ε
∥∥2

= ‖h‖2 + 2hTA−1
ε + ε

TQε

= ‖h‖2 + δ.

(19)

With the variable h and the noise term ε being independent
and zero mean, the new noise term δ has still undesirable
proprieties as its expectation can be strictly positive:

E(δ) = 2E
(

hTA−1
ε

)
+ E
(
ε
TQε

)
≥ 0. (20)

If the assumption that the noise term ε tends to be null holds
for the magnetometer measurements, then previous estima-
tion techniques will provide the exact parameters. However,
we consider low grade AMR sensors that have relatively
high noise level. Consequently an unbiased ellipsoid fitting
algorithm that treats the noise as an additional parameter in
the estimation process is considered.

5.3. Calibration Algorithm. The next step consists in extract-
ing the elements A and b defined in (8) and required to
calibrate the magnetometers readings.

The Adaptive Least Squares (ALS), described in [11],
estimates the solution (Q, u, k) from (15) along with
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the measurement error variance σ2
ε . Correcting for the

quadratic nature of the constraint on the norm of the
magnetic field measurements in the LS, the ALS algorithm
provides a consistent solution to the ellipsoid fitting problem.
Therefore it is adapted here for the calibration of low cost
magnetometers.

The combined bias b, corresponding to the translation of
the ellipsoid coordinate system, is computed from (16):

b = 1

2
Q−1u. (21)

Knowing the ALS estimate of Q, the matrix A can be
derived from (13). Because Q is a positive definite matrix,
an eigen-decomposition can be applied:

Q = αVDVT , (22)

where α ∈ R, V corresponds to the eigenvectors of QQT , and
D is a 3×3 diagonal matrix containing the eigenvalues λi, i ∈
{1, 2, 3}. The columns of V form the basis vector directions
for Q. Let us define

√
D =

⎡
⎢⎢⎢⎣

√
λ1 0 0

0
√
λ2 0

0 0
√
λ3

⎤
⎥⎥⎥⎦

B = V
√
αDVT .

(23)

We can then write

BTB = V
√
αDVTV

√
αDVT = αVDVT . (24)

B corresponds to the matrix square root of Q and gives the
solution for A−1.To find α, we apply constraint (18) on the
norm of the magnetic field measurement. Expanding (15)
while introducing (22) gives

ĥTVαDVT ĥ + 2bTVαDVĥ + bTVαDVb−H2
m = 0. (25)

The introduction of α changes the definition of k, and (18)
becomes

k = bTVDVb− H2
m

α
. (26)

Expanding (26) using (21) and (22), it is possible to compute
α as follows:

α = 4H2
m

4k − (VTu)TD−1(VTu)
. (27)

Finally (11) can be applied on the magnetic field measure-
ments to calibrate for the host platform influence. Calibrated
magnetic field measurements are given by

h = V
√
αDVT

(
ĥ− b− ε

)
. (28)

Figure 9: Test setup of the field data collection comprising the
multi-magnetometer platform and the SPAN HG1700 GPS/INS
system.

6. Experimental Assessment

To assess the new calibration technique, experimental tests
have been conducted in an open field on the campus of
the University of Calgary. The site’s location was chosen to
insure a clean environment in terms of artificial magnetic
field anomalies.

For these tests, the multimagnetometer platform devel-
oped for magnetic indoor surveying was used [15]. It
consists of twelve tri-axis HMC5843 AMR sensors from
Honeywell located on two perpendicular circles. The multi-
magnetometer hardware and the SPAN HG1700 GNSS/INS
system from NovAtel have been rigidly mounted on a plastic
platform, as illustrated in Figure 9. The rover GNSS/INS data
and the one from a base station have been postprocessed in
a tight coupling mode using the Inertial Explorer software
from NovAtel. The computed heading is used as a reference
to assess the performance of the proposed calibration.

The new calibration algorithm has been tested in three
different scenarios portraying different magnetic configu-
rations artificially introduced on the hardware. The first
configuration corresponds to the test setup described earlier
without any man-made perturbation on it. For the second
and third configurations, additional changes of the local
magnetic field have been introduced on the platform. The
first change consists of a screw that was placed on the
platform. This second configuration is depicted in Figure 10.
For the third configuration, illustrated in Figure 11, the screw
was removed and a nut was attached to the platform.

The calibration consists in fitting the magnetometer’s
field measurements, collected while rotating the platform
along random paths, on the sphere manifold whose radius
equals the norm of the local Earth’s magnetic field. The
local Earth’s magnetic field vector can be extracted from
geomagnetic models. The site location being in Calgary,
the Canadian Geomagnetic Reference Field was used in this
experiment.

Figures 12 and 13 depict the measurements from the
AMR sensor that is located close to the screw in Figure 10
before and after the calibration. All presented results are
computed using the same AMR sensor.
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Figure 10: Test setup configuration number 2 with a screw taped
on the multi-magnetometer device.

Figure 11: Test setup configuration number 3 with a nut taped on
the multi-magnetometer device.

The plots correspond to the magnetic pattern of the
second configuration with the screw. It is important to
notice that all results in this section are presented for this
sensor only. Similar results could have been presented for
all twelve magnetometers from the multi-magnetometer
platform. However for the conciseness of the paper, only the
results for this specific sensor, which is the most perturbed
one, are presented. As it can be visually observed in Figure 12,
noncalibrated data are strongly affected by the presence of
the screw. The readings in red are not located on the sphere
manifold, whose radius equals the norm of the local Earth’s
magnetic field. As expected after the calibration, all AMR
readings, depicted in blue in Figure 13, are relocated on the
sphere manifold providing calibrated data.

Tables 2, 3, and 4 give the calibration parameters
computed with the proposed algorithm. As described in
Section 5.2, the standard deviation of the measurement
errors is also estimated during the calibration to assess
the validity of the ellipsoid fitting. Estimated standard
deviation varies between 0.37 and 0.39 microtesla for all
three configurations. Using the power spectral density of the
wideband noise given in Table 1, it is possible to assess if
the estimation of the measurement’s noise lies in the range
of the HMC5843 sensor noise. With the 50 Hz sampling

−50

0

50

−50

0

50

0

50

Y

X

AMR measurements (µTesla)

Earth’s magnetic field reference

Z

−50

Figure 12: Non-calibrated magnetic field measurements plotted
on the sphere manifold whose radius equals the norm of the local
Earth’s magnetic field.

Table 2: Calibration parameters for configuration 1 (void).

Parameter Calibration results

σε: standard deviation of
measurement noise
[µTesla]

0.37

b: combined bias
[µTesla]

−4.64

−0.24

2.95

A: scale factors, soft iron,
and misalignments
[n.u.]

1.0192 −0.0059 −0.0089

−0.0059 1.0169 −0.0032

−0.0089 −0.0032 1.0008

rate, the expected sensor noise becomes 0.4 micro Tesla,
which is above the upper limit of estimated noise interval.
This establishes the validity of the estimated calibration
parameters.

The combined bias for configuration 2 is completely
different from the ones in the other two configurations.
The main explanation comes from the shape of the screw
that introduces larger variations in the magnetic field than
the nut due to magnetization currents, causing a hard iron
effect in the local magnetic field. It is also interesting to
notice that the off-diagonal values of the combined matrices
A vary between each different configuration. Because these
elements are unitless, it is difficult to evaluate the variation’s
gradient. However, except for the soft iron effects, all other
error types are fixed for a specific triad as described in
Section 4. Therefore any modification of the off diagonal
elements in the matrix A between the different scenarios
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Figure 13: Calibrated magnetic field measurements plotted on the
sphere manifold whose radius equals the norm of the local Earth’s
magnetic field.

Table 3: Calibration parameters for configuration 2 (screw).

Parameter Calibration results

σε: standard deviation of
measurment noise
[µTesla]

0.39

b: combined bias
[µTesla]

4.29

44.15

−27.86

A: scale factors, soft iron,
and misalignments
[n.u.]

1.0321 0.0199 −0.0241

−0.0199 1.0114 −0.0083

−0.0241 −0.0083 1.0035

Table 4: Calibration parameters for configuration 3 (nut).

Parameter Calibration results

σε: standard deviation of
measurment noise
[µTesla]

0.39

b: combined bias
[µTesla]

−5.45

−0.14

4.10

A: scale factors, soft iron,
and misalignments
[n.u.]

1.0270 −0.0097 −0.0050

−0.0097 1.0213 0.0037

−0.005 0.0037 0.9990

most probably comes from the soft iron modeling. This
comforts the importance of getting a proper modeling and
estimation, not only of the scale factors, but also of the soft
iron effect and the non-orthogonality of the sensor axes.
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Figure 14: Heading difference between the headings from the
GNSS/INS reference and the AMR magnetometer before the
calibration.
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Figure 15: Heading difference between the headings from the
GNSS/INS reference and the AMR magnetometer after the calibra-
tion.

Final assessment of the new calibration is done com-
paring the magnetically derived heading with the reference
heading from the GNSS/INS system for all three magnetic
configurations. In Figure 14, the difference between the two
previous headings is plotted using non calibrated magnetic
field measurements. In accordance with previous analysis
that uses the estimated calibration parameters, the second
configuration, with the screw fixed on the platform, shows
the maximum heading difference 239 degrees whereas the
heading error is reduced to 18 degrees for the two other
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configurations. Using calibrated magnetic field measure-
ments, this error should be strongly reduced. This can
be observed in Figure 15 where the heading errors after
calibration for all configurations are depicted. The maximum
error is still observed when the screw was introduced, but it
is greatly reduced. Indeed its absolute value after calibration
is around 5 degrees, which corresponds to a 98% reduction
of the azimuth error. Similar improvements are observed
for the two other configurations. The heading error is
significantly reduced from 18 degrees to a final value of
±2 degrees.

7. Conclusion

A calibration algorithm for calibrating low cost tri-axis mag-
netometer sensors was derived. Unlike existing algorithms
it does not require any simplification on the sensor error
modeling and estimates directly the following calibration
parameters:

(i) a combined bias including hard iron effect and sensor
offset,

(ii) a combined matrix including scale factors, non-
orthogonality, and soft iron effect.

Because the magnetometer should sense a known linear
field, the Earth’s magnetic field, which remains constant in
unperturbed environments, a constraint on raw measure-
ments can be applied leading to a quadratic form with
unknown parameters. It is demonstrated that the quadratic
form describes an ellipsoid. The calibration algorithm
uses an adaptive least squares estimator to solve for the
ellipsoid fitting problem. Because the algorithm is adapted
for non linear equation and treats the large noise level
of the measurements, it provides a consistent estimate of
the ellipsoid parameters. Once the unknowns from the
quadratic equation are known, the calibration algorithm
is terminated with the derivation of the final calibration
parameters.

As presented in this paper, the calibration algorithm
provides a complete modeling of the sensor errors and is
able to correct for strong magnetic deviation on the host
platform. Experimental results show how the calibration
parameters vary depending on the local magnetic signature
of the platform. The results also show a major improvement
in terms of heading accuracy after the calibration. While
introducing a man-made anomaly (a screw) in the sensor’s
surrounding on the host platform, the absolute heading error
is reduced from 239 to 5 degrees with the use of this new
calibration algorithm.

Acknowledgment

The financial support of Research In Motion, the Natural Sci-
ence and Engineering Research Council of Canada, Alberta
Advanced Education and Technology, and the Western
Economic Diversification Canada are acknowledged.

References

[1] A. A. Kaufman, R. L. K. Kleinberg, and R. O. Hansen,
Principles of the Magnetic Methods in Geophysics, vol. 12 of
Methods in Geochemistry and Geophysics, Elsevier Science,
New York, NY, USA, 2008.

[2] M. H. Afzal, V. Renaudin, and G. Lachapelle, “Assessment of
indoor magnetic field anomalies using multiple magnetome-
ters,” in ION GNSS, Portland, Ore, USA, 2010.

[3] N. Bowditch, The American Practical Navigator, National
Imagery and Mapping Agency, Bethesda, Md, USA, 9th
edition, 1995.

[4] M. J. Caruso, “Applications of magnetoresistive sensors in
navigation systems,” SAE Transaction, vol. 106, pp. 1092–1098,
1997.

[5] D. Gebre-Egziabher, G. H. Elkaim, J. D. Powell, and B.
W. Parkinson, “Calibration of strapdown magnetometers in
magnetic field domain,” Journal of Aerospace Engineering, vol.
19, no. 2, pp. 87–102, 2006.

[6] J. F. Vasconcelols, G. Elkaim, C. Silvester, P. Oliviera, and
B. Cardeira, “A Geometric Approach to Strapdown Mag-
netometer Calibration in Sensor Frame,” in IFAC Workshop
on Nvaigation, Guidance and Control of Underwater Vehicles,
Killaloe, Ireland, April 2008.

[7] V. Petrucha, P. Kaspar, P. Ripka, and J. M. G. Merayo,
“Automated system for the calibration of magnetometers,”
Journal of Applied Physics, vol. 105, no. 7, Article ID 07E704,
2009.

[8] Honeywell, “AN212 Handling of Sensor Bridge Offset,” Appli-
cation Notes, 2010, http://www.honeywell.com/.

[9] Honeywell, “AN215 Cross Axis Effect for AMR Magnetic Sen-
sors,” Application Notes, 2010, http://www.honeywell.com/.

[10] CGRF, “Natural Resources Canada,” Application Notes, 2010,
http://gsc.nrcan.gc.ca/geomag/field/cgrf e.php.

[11] I. Markovsky, A. Kukush, and S. Van Huffel, “Consistent least
squares fitting of ellipsoids,” Numerische Mathematik, vol. 98,
no. 1, pp. 177–194, 2004.

[12] Q. Li and J. G. Griffiths, “Least squares ellipsoid specific
fitting,” in Proceedings of Geometric Modeling and Processing,
pp. 335–340, Beijing, China, April 2004.

[13] A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square
fitting of ellipses,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 21, no. 5, pp. 476–480, 1999.

[14] C. Cheng and J. W. Van Ness, Statistical Regression with
Measurement Error, Kendall’s Library of Statistics, 6, Wiley,
London, UK, 1999.

[15] V. Renaudin, M. H. Afzal, and G. Lachapelle, “Assessment of
indoor magnetic field anomalies using multiple magnetome-
ters,” in Proceedings of ION GNSS, pp. 335–340, Oregon, USA,
April 2010.



International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014
Hindawi Publishing Corporation 

http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at

http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in

OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


