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Abstract. - We study the profile of a thin liquid film completely wetting a rough solid surface. 
The long-wavelength undulations of the liquid interface follow those of the solid surface, while 
short-wavelength undulations are strongly damped. There is Lorentzian damping of wave- 
lengths smaller than the healing length E determined by a balance between surface tension and 
disjoining pressure. Undulations with wavelength smaller than the mean film thickness e are 
exponentially damped. We study in detail the case where the binary interactions between 
molecules may be described by an inverse power law potential such as the Van der Waals 
potential. These results are relevant for recent ellipsometry and grazing incidence X-ray 
scattering experiments. 

Introduction. - Wetting of solid surfaces by liquids has many practical applications and 
consequently has been an important area of both applied and basic research for many years. 
However, many of the more complicated (<real* wetting processes are, a t  best, only partially 
understood. The main reason for this is the great sensitivity of any interfacial phenomenon 
such as wetting to roughness(') and inhomogeneity of the solid surface, and to contami- 
nations of the liquid. 

The aim of the present letter is to consider, theoretically, the effect of surface roughness 
on thin liquid films. We concentrate here on the static properties, namely the shape of a 
liquid-vapor interface and its correlation with the roughness of the underlying solid surface. 

('1 Throughout this paper, we will refer to any solid whose surface is not microscopically smooth as 
being rough, to be distinguished from the same term used for surfaces undergoing a roughening 
transition. 
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Our predictions can be compared with two recent experiments. In the first, roughness of a 
solid glass substrate was correlated with the fluctuations of a thin water film (thickness of 
the order of 100 A) using grazing incidence synchrotron X-ray diffraction [l]. In the second, 
drops of silicon oil (PDMS) spreading on etched glass, fused silica and mica were studied by 
ellipsometry [2]. 

In the case of partial wetting, i.e. when the contact angle 0, is finite, surface roughness 
(as well as chemical inhomogeneities or contaminations) has been shown to cause contact 
angle hysteresis: the advancing and receding contact angles are unequal [3-51. It is useful in 
this situation to think of the roughness as a random surface field which pins the solid1 
liquidlvapor contact line and thus causes hysteresis in the contact angle. 

In the case of complete wetting (zero contact angle) a thin liquid layer completely covers 
the solid surface. As shown below, surface roughness leads to roughening of the liquidhapor 
interface. We identify three examples of wetting films that can be treated in a similar 
fashion: i) a thin liquid film in equilibrium with its undersaturated vapor; ii) a liquid film on a 
horizontal plate located at height h above a liquid reservoir; iii) a nonvolatile liquid whose 
total volume is conserved [6]. In the last two cases the vapor phase could be instead a second 
liquid. 

We address here the structure of such wetting films on a rough solid surface[7-91 as 
shown in fig. 1. The solid surface is specified by its height rs (p )  above each two-dimensional 
vector p in a reference plane. The stable liquid-vapor interface IL(p) (called the liquid 
surface below) is determined by minimizing the free energy F. We take the bare solid-vapor 
interface as the reference state and express A F  as 

vapor 7-- Liquid 

Fig. 1. - A liquid film between a vapor and a rough solid surface. The solifliquid and liquidvapor 
interfaces are at heights &$) and CL@) above the ( x  = 0, x, y) reference plane, respectively. 

where the gradients are with respect to the vector x in the reference plane. The first two 
terms represent the change in interfacial energy with ysv, ysL and y the solid-vapor, solid- 
liquid and liquid-vapor surface tensions, respectively. These interfacial energies describe 
interfaces separating semi-infinite regions of each phase. The third term, P (CL), represents 
the interaction per unit area between liquid and solid surfaces, and vanishes as ( C L -  
- + CQ. The final term is the chemical potential difference between liquid and vapor 
phases integrated over the volume of the film. 

To find an expression for P(CL), we assume pair interactions between molecules, U&-), 
where i and j are any of the relevant phases: vapor (V), liquid (L) or solid (S). The 
contributions to P come from interactions between solid and vapor regions: 

(2) 
m CSs(x+P) 

P (CL (x)) = j d z j  d2p j dz’ w (P, 2’ - 2 )  7 

-m CLW 
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where w(r) = nt U L L  (r) - nL ns ULs (r) - nv nL ULv (r) + nv % Uvs (r), and the ni are number 
densities for each phase. The last term in w is the solid-vapor interaction. The first three 
include a finite-size correction to the liquid energy, and corrections to the interfacial 
energies. The last two terms are negligible for a low density vapor, but are important if the 
phase is a second liquid. For films with thickness CL - CS larger than molecular sizes, the 
complicated short-range structure in Uij only contributes to the surface tensions in eq. (1). P 
is determined by the long-range tails of the U,. Note that eq. (2) is a local function of the 
liquid profile, but a nonlocal function of the rough solid surface. 

The form of the chemical potential difference in (1) is different for cases i)-iii). For case i), 
Ap = - T log (p/pwt), where p is the vapor pressure and psat the saturated pressure. For case 
ii), Ap = Ap gh reflects the hydrostatic pressure where Ap is the density difference between 
liquid and vapor and g the gravitational acceleration. Finally, for case iii), Ap is the 
Lagrange multiplier associated with conservation of the total liquid volume. 

Minimizing the free-energy functional (1) and (Z), using the Euler-Lagrange equation, 
leads to an integro-differential equation for CL(x): 

where I& is the disjoining pressure: 
m 

f l d  (CL b)) = - ap (CL (&)/&CL (X) = I d2p \ dx w (p ,  x )  . (4) 
rrL w- Is dr+P)l 

Both P and 17, are positive for wetting films. 
For inverse power potentials the integral over x in eq. (4) is simplified. As an example we 

consider a nonretarded Van der Waals interaction between molecules (2), U, = - c r g 4 .  For 
simple fluids the strengths, aij, of the interactions between phases are proportional to the 
relative polarizabilities. Defining the Hamaker constants A, = x2ni nj ag and integrating 
over x ,  we find 

(5)  

(6) 

P (CL) = (3A/87r2) d2pp-4 { 1 - &L tg-' (l/&L)-(lB) (1 + <&)-') , 

f l d  (CL) = (3A/87r2> 1 d2pp-' {tg-' (l /CsL) - CSL (1 + C , ~ L ) - ~  [5/3 + C~L]) . 

Here A = ALS + ALV - ALL - Asv, p = /pJ, and for convenience a dimensionless variable 
C S L ( ~ ,  p) = [CL(X) - CS(X + p)l/p is introduced. As a check, it is easy to verify that &(e) = 
= A/6xe3 when both interfaces are planar and parallel: CL(X) - Cs(x + p) = e. 

We note that so far no assumption has been introduced except the implicit assumption of 
no overhangs (CS and CL single-valued functions of x). Thus, in principle, solving eq. (3) 
exactly will give the liquid profile CL(x). However, since eq. (3) cannot in general be solved 
analytically, we proceed by linearizing it here. A numerical solution of eq. (3) will be 
presented elsewhere [Ill. 

Linear response approximation. - We choose the reference plane so that the average 
( CL). height of the solid surface vanishes, (Cs) = 0, and define the average film thickness e 

(2) We use here the classical theory of Van der Waals forces, summing binary interactions between 
particles [lo]. A more complete treatment would require use of Lifshitz theory as has been done in 
ref. [71. 
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Equations (3) and (4) are then linearized in Cs and (CL - e )  assuming (VCL(x)/ << 1. This results 
in an equation for the mean thickness, &(e) = Ap, anchuquatio-tuations 

where the surface-tension-dependent healing length 5 is defined as 

and the kernel K@) is 

For the special case of a long-range inverse power law 
(n 3 1): 

interaction, w (r) = Anw2 r-2n-2 

The nonretarded Van der Waals interaction corresponds to n = 2, t: = e2 V F A .  
The shape of the liquid interface CL(x) is obtained by Fourier transforming eq. (7): 

t L M  = m q > m  + q2 E2> 9 (11) 

where the two-dimensional Fourier transform of f ( x )  is f (q) = 1 d2xf(x) exp [ - iq . XI and 
I?r(q), &(a) and ZL (q) are the Fourier transforms of K(p) ,  Cs(p) and [CL(p) - e ] ,  respectively. 

Equation (11) is the central result of this paper. It relates the liquid profile to the solid 
one. Experimentally, in grazing incident X-ray diffraction [ l ] ,  the scattered intensities from 
the solid and liquid surfaces I&) and IL(q) are proportional to the mean squared height 
fluctuations, (t",q)) and ( &q)) ,  respectively. The ratio of these intensities is thus 

IL(qYIS(q) a (1 + q2E2)-21f2(q) * (12) 

For inverse power law interactions, k(q) can be calculated exactly: 

R(q) = (2/r(n)) (qe/ZInKn (qe) (13) 

where K ,  is the modified Bessel function of the second kind of order-n, and r is the gamma- 
function. 

Discussion. - Our linear response approximation is a generalization of the so-called 
Deryagin approximation [lo] for interactions between smooth spheres. In our context the 
latter approximation amounts to replacing Cs(x + p) by &(x) in eqs. (2) and (4). The equation 
for CL(x) then depends only on Cs at the same x (3). In eq. (7), K ( x )  becomes a delta-function, 

(3) Wetting of rough surfaces was studied within the Deryagin approximation by P. G. de Gennes, 
College de France Lectures, 1984-85, unpublished. 
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implying K(q)  = 1. The intensity ratio, eq. (12), is reduced to a Lorentzian square function of 
the momentum transfer q. This functional form for correlations is also obtained in mean-field 
theories for other random systems [12]. 

Our more general treatment takes into account nonlocal contributions to the disjoining 
pressure. We distinguish between two limiting physical regions: i) long-wavelength 
fluctuations of the solid surface, qe << 1 and qf<< 1, are followed by the liquid interface, 
tL(q) - ts(q); ii) short-wavelength fluctuations are damped by the liquidhapor surface 
tension for qf>> 1, and by averaging of the contribution to the local disjoining pressure for 
qe >> 1. The Deryagin approximation excludes the latter effect. 

For inverse power potentials the nonlocal form of 17, leads to exponential damping of 
short wavelength fluctuations, qe >> 1. For Van der Waals interactions this also implies 
q t  >> 1 since t> e. One finds 

t L ( q ) / t s ( q )  - (qe>m(qt>-2 exp 1- q e ~  . (14) 

The X-ray intensity ratio is IJ Is  - (qe)-l 
In general, undulations of the solid surface will be followed more closely as the film 

thickness decreases (e and f become smaller), and the liquid interface will become smoother 
as the thickness increases. Numerical solutions [ll] show that this trend continues even 
when the linear approximation is no longer valid (i.e. when the r.m.s. roughness is of order 
e). Results of recent experiments on thin water [l] and PDMS [Z] films clearly show this 
behavior over the range of e studied. Quantitative comparison with our results should be 
possible for PDMS which is a good Van der Waals fluid. However, thermal fluctuations of 
the liquid interface which contribute an additional roughness (3A for water) must be 
included in a detailed comparison. 

Our predictions can be extended to two types of experimental situations where roughness 
is superimposed on films whose average thickness varies slowly with position. The 
advantage here is that (at least in principle) a whole range of thicknesses can be analyzed in 
a single experiment and compared with theory. 

The first example is complete wetting of a vertical solid plate. Above a macroscopic 
meniscus of height h = v m ,  there is a static Rollin film whose thickness, e(h), is due to 
a balance between the disjoining pressure &(e) and the drop in hydrostatic pressure Apgh. 
For Van der Waals interactions 1131: e(h) = (A/61cApgh)'". Using eq. (10) we define a local 
healing length: t (h)  = (A/ZX)"~ ~''(3 Apgh)-2/3. If the solid has a small roughness with a 
typical wavelength A, the surface of the liquid film is smooth if A << t (h)  and follows the solid 
roughness for A >> f ( h )  (because e < 5). This introduces a characteristic height h, -   AY^)''^/ 
(ApgAm) above which the film surface starts to be rough. This height is in general much 
larger than the capillary length. 

The second example is complete wetting on a horizontal solid surface where the macro- 
scopic drop is preceded by a microscopic precursor film. The profile of this precursor film is 
obtained by equilibrating the viscous forces and the long-range Van der Waals forces [14]. In  
the early stages of spreading, the profile decays as e(x) - A / ~ ~ D ; I u x ,  x being the distance 
from the macroscopic edge of the drop, 9 the viscosity, and U the advancing velocity. On a 
rough surface, comparing t ( x )  with the typical wavelength A of the roughness leads to a 
minimum thickness below which the liquid profile becomes rough: e, = (ah)'", where 
a = V w i s  a microscopic length. Thus, we predict a miggly. tip of the precursor film 
interface (4). 

exp [ - 2qel. 

(4) Viscous terms may modify this result at large U .  
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In conclusion, in this paper we present a theoretical calculation of the interplay between a 
rough solid surface and induced roughness in the liquid interface above it. We suggest a few 
experimental situations where such roughness may be of importance. Techniques such as X- 
ray diffraction E11 and ellipsometry [2] can be used to check the predictions presented here. 
Other interesting situations such as wetting on self-affine or fractal [15] surfaces as well as 
capillary rise in rough capillaries and other geometries will be addressed elsewhere. In 
addition, natural continuations of the study presented here will be to look at  the influence of 
roughness on dynamics of complete wetting [ll] and the role of roughness in rupture of thin 
liquid films. 
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