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The Fourier  algebra A(G) of  a locally compact  group G is the space of  matrix 

coefficients of  the regular representation, and is the predual of  the yon Neumann  

algebra VN(G) generated by the regular representation o f  G o n  L 2 (G) .  A multiplier 

m of  A (G) is a bounded operator  on A (G) given by pointwise multiplication by a 

function on G, also denoted m. We say m is a completely bounded multiplier o fA (G) 

if the transposed operator  on VN(G) is completely bounded (definition below). It 

may  be possible to find a net o fA (G)-functions, (m i : ie  I)  say, such that mi tends to 

1 uniformly on compacta ,  and, for some L in IR+, ][millMo<=L(l[ IIMo being the 
completely bounded operator  norm). We define A~ to be the infimum of  all values 

o f  L, as we consider all possible nets of  this type ; in particular A~ is set equal to + oo 

if there is no such net. In this paper, we calculate A~ for all non-compact  real-rank- 

one simple Lie groups with finite center: I f  G is locally isomorphic to SO(l,n) or 

S U(I,  n) (where n > 2), then A~ = 1 ; if G is locally isomorphic to Sp (1, n) (with n > 2), 

then Aa = 2n - 1, and i fG is locally isomorphic to the exceptional Lie group F4(_ 2o ), 

then AG=21.  The second-named author  [16] has shown that if G is simple and of  

real rank greater than one, then A~ = + oo ; he has also shown, that i f F i s  a lattice in 

G, then A G = Ar, and that  the von Neumann  algebras of  lattices F and F '  contained 

in the Lie groups G and G '  cannot  be isomorphic unless A~ = Aa,. Consequently,  if 

F and F '  are lattices in Sp( l ,n)  and Sp( l ,n ' )  respectively and n4:n', then the von 

Neumann algebras o f  the two lattices are not isomorphic. 

O. Notation and definition 

For  a locally compact  group, G, we let B(G) be the space o f  all coefficients of  

continuous unitary representations of  G; ueB(G) iff there exists a unitary 

representation (from now on, representation means cont inuous representation) n of  

G acting on a Hilbert space $5~, and vectors ~ and q in . ~  so that 

u(x)=(n(x)~,tl) VxeG. (0.1) 

Because the sum and tensor product  of  unitary representations is again a unitary 
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representation, B(G) is closed under sums and products (with pointwise opera- 

tions); it is easy to see that, equipped with the norm 1[ 118 

]lulls =min {ll -II II PI =(0.1) holds} 

B(G) is a Banach algebra. The closed ideal A(G) in B(G) generated by compactly 
supported B(G)-functions turns out to be just the space of coefficients of the left 
regular representation 2 of G on L 2 (G) (the usual Lebesgue space constructed using 
a left-invariant Haar measure), i. e. u e A (G) iff there are functions h and k in L 2 (G) 
so that 

u(x)=<;t(x)h,k) Vx~G,  (0.2) 
and 

IluH, =min  {llhl1211kl12 : (0.2) holds}. 

Often we write r/.[IA instead of HulIB to emphasize that usA(G). We remind the 
reader that A (G) is the predual of  VN(G), the algebra of bounded linear operators 
on LZ(G) commuting with right translations. 

If G is compact, then A (G)= B(G), but otherwise A (G)m B(G), as elements of 
A (G) vanish at infinity while I e B(G). The group G is amenable exactly when it is 
possible to find a net of A(G)-functions (ui:ieI) so that 

NuiklA_-<l 
and 

lluiv-VllA~O as i--.oo Vv~A(G). 

We refer the reader to P. Eymard [12], F. Greenleaf [15] and H. Leptin [25] for 
details of these assertions on A (G), B(G) and amenability. 

Various authors have considered some related spaces, starting with C.S. Herz 
[19]. We denote by M(G) the space of multipliers ofA (G), i.e. M(G) is the space of  
functions on G so that the pointwise product mu e A (G) whenever u e A ((7), and we 

equip M(G) with the operator norm, denoted 11 IIM. An important subspace of 
M(G) is the set Mo(G ) of  completely bounded multipliers of A (G), which can be 
defined in various ways, viz: 

(i) u e Mo(G) if u e M(G) and the induced operator on VN(G) is completely 
bounded; 

(ii) u~ Mo(G) if the function u | 1 e M(G x H), where H is the group SU(2); 
(iii) ur ) if the function u |  for any locally compact 

group H; 
(iv) u~Mo(G ) if there exist bounded continuous mappings P,Q: G ~  (9 a 

Hilbert space) so that 

u(y-~x)=<P(x), QO')> Vx, y e G ,  (0.3) 

(v) u e M 0 (G) if the function if: G x G--, C given by if(x, y) = u (y-  ~x) multiplies 
pointwise the projective tensor product L z (G) | 2 (G). 

The natural norms associated to each of these definitions coincide, so we may use 

the completely bounded norm, the maximum of the norms Ilu | 111M as H varies, the 
minimum of  the expressions 

sup{liP(x)]] I]Q(Y)N : x, yeG}  
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as different representat ions of  the sort (0.3) are considered, or the opera tor  norm on 

LZ(G) |  we denote the norm in Mo(G ) by II ]]Mo. It is known that  

B(G)  ~_ M o (G) ~_ M ( G ) ,  

and that  the inclusion maps  are norm-non-increasing.  It is also easy to see that  these 
spaces coincide (isometrically) when G is amenable.  It is very likely, that  these 

inclusions are all strict, when G is not amenable  (see M. Bozejko [4], C. Nebb ia  [28] 

and V. Losert [26]). The main  results on Mo(G ) can be found in Herz  (op. cit.), in 
unpublished works  of  J. E. Gilbert  [14], and in papers of  J. De Canniere and U. 

Haagerup  [11], M. Bozejko and G. Fendler [5] and U. Haage rup  [16]. 
We shall say that  G is weakly amenable  if there exists a net in A (G), (u i : i ~ I) say, 

such that  

/I.ill, o_-_L 
(0.4) 

u i ~ l  uniformly on compac ta .  

We let A~ be the inf imum of  all such values L, as we consider all possible such nets. 

We shall prove the following surprising result. 

Main theorem. Let  G be a connected real Lie group with f inite centre. I f  G is locally 

isomorphic to S O (  I ,n) or SU(1 ,n) then A~ = 1. I f  G is locally isomorphic to Sp (l.,n), 

then A t = 2n - J, while ~f G is the exceptional rank-one group F4r then A t = 21. 

This was known for SO(1,n)  and SU(I ,n ) ,  by results of  De Canni6re and 

Haagerup  [11] and Cowling [9]. It is curious and perhaps  significant that, for 

connected non-compac t  real semisimple Lie groups G with finite centre, A t > 1 
exactly when the group has D. A. Kazhdan ' s  Proper ty  T [22], so that  A t provides a 

measure of  the degree of  isolation of  the identity representat ion in the dual space 0 .  

This paper  contains another  six sections. In Sect. 1, we discuss briefly some 

propert ies  of  the index A t and we consider K - b i - i n v a r i a n t  approx imate  identities 
on a semisimple Lie group G. In Sect. 2, we look at the structure of  the real rank-one  

simple Lie groups,  and describe some of  their representations,  and in Sect. 3, the 

calculations begin. Section 3 contains some Fourier  t ransform computa t ions  for the 
Iwasawa nilpotent group N, while Sect. 4 involves working with the maximal  

solvable subgroup A N ;  in these two sections we prove that  A t < 2n - l (respectively 

21 ) for  the case when G = Sp (1, n) (respectively F4<_ 20~). In Sect. 5, by working on N, 

we obta in  the lower bounds  for A t for Sp (1,n) and F4{_ 20 ). Section 6 is dedicated to 
applications in the theory of  von N e u m a n n  algebras;  various non- isomorphic  H 1- 
factors are constructed.  Since the SO(1,n)  case has already been published, we shall 

not consider this case here. Further ,  the result that  A~ = 1 for SO(1,n)  follows 

readily by restriction f rom the SU(1,n)  case. 

I. Completely bounded multipliers of A (G) and K-bi-invariant functions 

In this section we set down some basic results abou t  completely bounded  multipliers 

of  A(G) ,  first for  arbi t rary  groups and then for  groups with compac t  subgroups.  
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Proposition 1.1. Suppose that G is a locally compact group, and that (ul : i ~ I) is a net 
of  A (G)-functions sati~sfyin9 conditions (0.4) above. Then there exists a net (v s : j ~ J) 
of  Ac(G ) Junctions satisfying the conditions 

Ib,'jll.,o L vj J 

Llu  -ull.--,0 Vu A(G) (1.1) 

vS~ 1 uniformly on compacta. 

Further, if  K is any compact subset of G and ~ ~ IR +, then there exists w in Ac( G ) so that 

]1WlIMo--< L +e 

w(x)= 1 V x ~ K .  (1.2) 

Finally, ~f G is a Lie group, then the functions v; and w may be chosen to have the extra 
property that vs~ C~(G) and w ~ C~(G). 

Proof. We first show how to construct the net (v s : j6  J). Take a nonnegative C~(G)- 
function f on G of integral 1, and define 

u~=f*ul V i i i .  

Because Mo(G ) is translation-invariant, and translations act isometrically 

Ilu; llflll Ilu,/iMo_-< L. 
We shall now show that 

Iluur-ull -+o Vu A<(G): 

by the boundedness of Ilu; IlMo and the density of Ar A (G), this will then hold 
for any u in A(G). Fix u in A<(G), and write S and Ds for the compact set 
supp ( f ) - I  supp (u) and its characteristic function. For x in supp(u), 

u; (x) = ~ f ( y )  u i (y-  ix) dy 
G 

= ~ f ( y ) ( I s u D ( y - ' x ) + .  
G 

because only y's in supp ( f )  contribute to the integral. Now 

(uu~)(x)=(u[f* lsUi])(x ) V x ~ G .  

since if x r supp (u), both sides are zero. Similarly 

u(x )=(u[ f*  ls])(x) V x ~ G .  

As 1 sU~-+ i s uniformly and S is compact, f *  I sUi--+f* I s in A (G) : because A (G) is a 
Banach algebra, 

uu~=u[f  * lsU~]~u[f * ls]=U 

in A(G), as claimed. 
We observe that from this property it follows that u[--+ 1 locally uniformly. For  

given any compact set K in G, there exists u in A~(G) which takes the value 1 on K. 
Since u~u-~u in A(G) and afor t ior i  uniformly, U~IK--+IK uniformly. 
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The net (u~) has the required properties (1.1), except that  u~ may not have 

compact  support.  So now for each n in IN (IN= {1,2, 3 .... }), we choose an element 

Ug., of  A~(G) so that 

llui-ui,ollA < n 1. 

Since A(G)~_Mo(G ) and Ilu]l o  Ilull  for every u in A(G), 

Ilui,.llMo L+n-1. 

We define vi, . by the formula 

vi, .=[L/(L +n-X)]ui,. Vi~I,  Vn~iN. 

It is now easy to check that, if the net I • IN is given the product  ordering, then (vl, . : 

i~L  nciN) is a net of  Ac(G)-functions with properties 0.1) .  

Next, we take a compact  subset K of  G and e in IR +. Then there is an Ac(G )- 
function u which takes the value 1 on K. Take a net of  Ac(G)-functions (vj : j~I )  
satisfying (1.1), and c h o o s e j  so that  

Ilu ,j- ullA < 

Write w for v j - ( u v j - u ) .  Then w~Ac(G) and has properties (1.2). 

Finally, if G is a Lie group, we may ensure that the functions vj and w are C ~ 

by convolving then with a Cf (G) - func t ion  of  small compact  support,  and 

integral 1. [] 

Corollary 1.2. In the d@'nition of  A a, it is equivalent to consider nets satisfying 
properties (0.4) or (1.1), and (f G is Lie we may in addition require the functions to be 
smooth. Further, ~f U is open and relatively compact in G, then, setting 

Av=inf{llWllMo :W~A~(G),w(x)=l  V x ~ U }  

we have that 

A a = sup {Au: U open and relatively compact}, 

where the net of such subsets of G is ordered by inclusion. 

Proof It is clear f rom Proposi t ion 1.1 that, in the definition of  A G, it makes no 

difference whether we consider nets satisfying conditions (0.4) or only nets 

satisfying the stronger conditions (1.1). We shall, rather loosely, refer to both types 

of  nets as approximate  identities, a l though the terminology might be more properly 

used for the latter type only. 

It is easy to see that A v < ~ for any relatively compact  open set U, and that 

A v < A v if U_~ V. F rom (1.2), At: < Aa for any U, so that lim u A v < A G . On the other 
hand, if sup {Au} < A a, then we can construct an approximate  identity (vj : j  e J )  o f  

A~(G)-functions with Hvj]lMo bounded by a constant  less than Aa, which is absurd. 

Thus Aa=l imvA v, as required. [] 

Our  next results concern the computa t ion  of  A a, for general locally compact  

groups G. 
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Proposition 1.3. (a) I f  G & a locally compact group, and H & a closed subgroup 
of G, then the restriction Uln of any Mo(G) function u to H belongs to Mo(G), and 
]IUIHNMo< ]lultMo : consequently A H < A 6. 

(b) I f  (Gi :i �9 I) is the net of" compactly generated open subgroups of the locally 
compact group G, ordered by inclusion, then A G = lim A~. 

i 

(c) I f  H is" a compact normal subgroup of the locally compact group G, then the 
space Mo(G/H ) may be canonically and isometrically identified with the subspace of 
Mo(G ) of functions constant on the cosets of H in G; further AG= AGm. 

Proof From condition (iv) that a function belong to Mo(G ) (0.3), (a) follows 
immediately; (b) follows from (a) and Corollary 1.2. It is also clear that any 
M o (G/H)-function gives rise to an M o (G)-function which is constant on cosets of H 
in (c). The rest follows by averaging over H. [] 

We are now going to consider direct products of groups, and shall prove that 
AG• for arbitrary locally compact groups G and H. We shall need the 
following definitions and a preliminary lemma. First, we define A(G) to be the norm 
closure o f A ( G ) i n  Mo(G ). Next, we define the norms II lip and 1[ []Q on LI(G) as 
follows : 

I[f[lQ:sup { ! f (x)u(x)dx "u~Mo(G), I[ul[Mo_- < 1}, 

and 

Ilsll, =sup { !S(x)u(x)dx: u�9 IlullMo< 1 }, 

and we denote by P(G) and Q (G) the corresponding completions of L 1 (G). We may 
think of P(G) and Q(G) as analogues of the group C*-algebras C*(G) and C*(G) 
respectively, though the second-named author has shown that, in general, they are 
not algebras under convolution. It is known that Mo(G ) can be identified with the 
dual space of Q(G) (see Herz [20] or De Canni&e and Haagerup [11]). It can also be 
shown that the dual space of P(G) is the space of locally uniform limits of bounded 
nets of sT(G)-functions (see Cowling [9]). 

Lemma 1.4. Suppose that G and H are locally compact groups. 
(a) I f  uemo(G ) (respectively A(G)) and v � 9  ) (re~sp. 

u |  �9 M o(G x H) (resp. A(G x H)) and ][u | = I[U[IMo ]IUl[Mo. 
(b) I f  g e P(H) and h �9 P(H), then g | �9 P(G x H) and 

A(H)), then 

I[g | = ]lgLI, }[h I[, �9 

Proof. By duality, it will suffice to prove only the inequalities IluodlMo 
__<[lul[MollV[[Mo, [Ig| Q, and Ilg| for the con- 
verse inequalities then follow quickly. From the characterisation (iv) of Mo(G), 
it is clear that if ueMo(G ) and veMo(H),  then u |  and 
[lu IlUh, o h,o= Since further u |  �9 A (G x H) if u �9 A (G) and v �9 A(H), 
u | 1 4 9  x H) if u � 9  and v � 9  
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The main ingredient of the proof of(b) is Herz' result [20] that Q(G) is the image 

of the tensor product space T(G) - 

T(G) = (L2 (G) | (G)) | (G) | (G)), 

where 7 and 2 denote the greatest and least cross norms respectively - under the 
linear mapping ~ (Herz' "contraction lin6aire bizarre") which is defined on simple 
tensors by the formula 

zr(f | | | =(Jh)  �9 (gk )* , 

�9 denoting the usual involution of L 1 (G). In fact, g 6 Q (G) if and only if there exists s 

in T(G) so that zr(s)=g, and 

II gll~=inf{llSllT : s~ T(G), 7t(s) =g} ,  

Now we claim that if seT(G) and tET(H), then s|  and 

II'| II,H, I1'11~ Indeed, it suffices to consider tensors s and /o f  the form 

, =  I f |  | h, |  

t = [ o |  q j |  , 
J 

then s |  may be identified with 

[(f Q~174174174 ~1 (hi|174 

in 
[LZ(G • H) @~LZ(G • H)] | [L2(G x H) | x H)],  

and 

m ~ | " ~=1 (hi | | II,| llfll= iloN~ llgll~llpll= 

Now the least cross norm , Z  - -  h, |  ~ is exactly the operator norm ilLlio,, of the 

linear map L on L2(G)sending f to ~ (f, hi)k ,, and IlL | Mllop= ]lLltop IIM Ilop for 
i = !  

operators L and M on L2(G) and LZ(H); it follows that, as required, 

I/s |  IIr =< ][Slit IIt II r" 

Since Tc(s|174 it follows immediately from Herz' result that, if 
geQ(G) and hr then g | x H) and 

Jig |  [la---< llgll~ llhll~ �9 

To prove (c), we argue from (b). Given g in P(G), which we may assume by 
density lies in LI(G), we have a linear functional, L say, o n / t ( G )  - 

L(u)=J" g(x)u(x)dx VUe3(C)-- 
G 



514 M. Cowling and U. Haagerup 

which, by the Hahn-Banach theorem, extends to a linear functional on M o (G) of the 
same norm, still denoted L. Since the unit ball of  Q(G), the predual of M0(G), is 

weak-star dense in the unit ball of  Mo(G)*o there exists a net (gi:i~l) of L~(G) - 
functions such that 

IIg, lt  llgll, vi i 
and 

L(u)-- l im ~ gi(x)u(x)dx VucMo(G ). 
i G 

In particular, we have that 

g(x)u(x)dx=lim ~ gi(x)u(x)dx Vu~/ I (G) .  
G i G 

Similarly, we can find a net (h i :j~J) of L~(H)-functions such that 

IIhiltQ<=l[hl[p Vj6J 
and 

h(y)v(y)dy=lim ~ hi(y)v(y)dy VvEA(H) .  
H J H 

Consequently, by (b), 

and 

[Ig~Qhille~llg]l,]lhll, Vii i ,  Vj~J, 

lim ~ ~ gi(x)hj(y)u(x)v(y)dxdy= ~ ~ g(x)h(y)u(x)v(y)dxdy 
i j  H G  H G 

Vu ~A(G), Vv e ,4 (H) ,  

where the net (g | hj : i ~ I, j e J )  has the product order on I x J. Since M o (G x H)* is 

a dual space, there is a subnet (gik | : k ~ K) of the product net with a weak-star 
limit point in Mo(G x H)*, L say, i.e. there exists L in Mo(G x H)* of norm at most 

Ilgll,llhll, such that 

L (w)= l im ~ ~ gi~(x)hi,(y)w(x,y)dxdy VwEMo(G x H) 
k H G 

If w lies in the algebraic tensor product A ( G ) |  (H), then clearly 

L(w)=  ~ ~ g(x)h(y)w(x,y)dxdy. 
H G 

However, A (G) |  (H) is dense in A (G x H)  and hence in / I (G • H)  ; it follows that 

gQh~P(G • H) and 

LIg | II gql, qlh II,, 
as required. [] 

We can now prove our main general result about A a. 

Corollary 1.5. Let G and H be locally compact groups. Then A~• AH. 

Proof. It follows from Lemma 1.4(a) that A~• we must prove the 

converse inequality. 
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Take relatively compact open sets U and V in G and H respectively. By applying 
the Hahn-Banach theorem to A(G)/I  v, where I v is the subspace of ,4(G) of 
functions which vanish on U, it can be seen that there is L in .4(G)* with the 

properties that tl L]I =< j and L(u) = A v ifu takes the value one on U. As A (G)is dense 
in / I (G)  and A(G)* = VN(G), L is implemented by an element T of VN(G). By 
convolving T with an A~(G)-function of compact support K and integral 1, it can be 
seen that there exists a Cc(G)-function g, support in K/I, with the properties that 

IIgll,_-<  
and 

g(x)u(x)dx= Av 

if u~A ( G)  and u takes the value I on K(~'. Equivalently, supp(g)__KU, 

II llp_-<l 
and 

g (x)dx = Ao. 
G 

Analogously, there is a Cc(H)-function h supported in L V, where L is a compact set, 
with the properties that Nhl]e<=l and 

h(y)dy=Av. 
H 

Now if w e J ( G  x H) and w takes the value 1 on KU x  LV, then 

~ g ( x ) h ( y ) w ( x , y ) d x d y = A v A v .  
H G  

As II g | h lie < l by Lemma 1.4(c), we deduce that A~c • L~7 > m v Av,  and by letting 
U and V grow, it follows that A~ • >AGAu,  as required. [] 

Our next result concerns groups with large compact subgroups, and alternative 
definitions of A~. Before we state it, let us denote by A~ the infimum of all positive 
real numbers L for which there exists a net (u i : i6 I )  of A(G)-functions such that 

Ilu, tlM__<L V i i i  

ui-*l uniformly on compacta,  

where ]lu, liM denotes the norm of the multiplier ui of A(G). Since flu, JIM< I[ui[[~to, 

Proposition 1.6. Let G be a locally compact group and K a compact subgroup of  G. 
Suppose that S is an amenable closed subgroup of  G so that, set-theoretically, G = SK. 

Then 
(a) if  u ~ Mo(G ) (or M(G))  and ~ denotes the Junction obtained by averaging u 

over the double cosets K x  K (xeG) ,  then t ieMo(G ) and II ll o=:-Ilult ,o (or the 
corresponding result for M ( G ) ). Consequently, G is weakly amenable iff  there exists a 

K-bi-invariant approximate identity of completely bounded multipliers, and A G 
(or A ; ) i s  the infimum of the numbers L where (0.4) (or (1.1)) holds and the 
approximate identity is K-bi-invariant ; 
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(b) I f  u is K-bi-invariant, then u~Mo(G ) iff u~M(G) iff uls~B(S), and 

41uqlM = IlullMo-- Ilut ll.. 

Consequently, the existence of an approximate identity in Mo(G ) is equivalent to the 
existence of an approximate identity in M(G), and A~=Ab. 

Proof We observe that Mo(G ) (M(G)) is closed under left and right translations, 
and that these act isometrically; (a) then follows. To see (b), we note that u ~ Mo(G ) 
implies u~ M(G) trivially, and that u~ M(G) implies Uls~ M(S) because A (G)[ s 
=A(S)  (see C.S. Herz [19]), whence ulsEB(S), S being amenable. There are also 
norm inequalities corresponding to these implications: 

IlutlM_-<Hull~o, and ]lu]s]l,<=l]ul]M. 

It therefore suffices to show that, if Uls~B(S), then ueMo(G), and prove an 
appropriate norm inequality. Now ifu]s ~ B(S), there are a unitary representation 
and vectors ~ and r/in SS~ so that 

u(y -  ~x) = (~ (y -  ~x) ~, ~) 

=(rc(x)~,~(y)q) Vx, y e S ,  
and 

l iurs]l .= II 14.11 �9 

We assume, without loss of generality, that ~ and r/are cyclic vectors, and then, if 

z ~ S c~ K, we see that, for all x, y in S, 

( 7~(XZ) ~, 7E(y) ~ ) = u ( y  - 1XZ ) 

= u ( y -  ~ x)  

= ( ~ ( x ) ~ ,  ~ ( y ) ~ ) ,  

so that ~(xz)~=g(x)r for all x in S. Consequently, we may define P:G--*~ by 
requiring that 

P(xk)=g(x)~ VxeS,  Vk~K;  

similarly, we may define Q : G ~ . ~  by requiring that 

Q(yk')=~(y-1)rl Vy~S, Vk' ~K. 

Now it is straightforward to check that 

u (y -  ix) = <P(x), Q(y)> 

for any choice of x ,y  in G; the proposition follows. [] 

It is probably worth remarking explicitly that, for connected semisimple Lie 
groups G with finite centres, A 6 depends only on the local isomorphism class of G, 
by Proposition 1.3 (c); also, if S is a Borel or minimal parabolic subgroup of G, then 
the convolution algebra of K-bi-invariant functions on G is isomorphic to the 
convolution algebra on S of restrictions of  K-bi-invariant functions to S. Our 

strategy is going to be to work with such restrictions. 
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2. Some real-rank-one simple Lie groups 

In this section, we describe the class-one principal series of the simple Lie groups 

SU(1,n), Sp(1,n), and F41_20 >. General references for this are S. Helgason's texts 

[17, 18]. 
Let G be a connected real-rank-one simple Lie group with finite centre, not 

locally isomorphic to SO o (1 ,n). We denote by K a maximal compact subgroup, by 0 
the corresponding Cartan involution of G and its Lie algebra g, and by B the Killing 

form on g • g. Given a connected subgroup H of G, we normally denote its Lie 

algebra by b, and vice versa. We let a be a maximal abelian subalgebra of p, the 
complement of  f in .q, and decompose g into root spaces: 

g = m + a +  ~ g~ 

where m is the centraliser of a in 1~, and Z" is the sets of roots. Then a is one 

dimensional and X = { - 2 ~ , - ~ , c ~ ,  2a}, since G is real-rank-one but not locally 

isomorphic to SOo(1,n). We write n for g=+g2=, ~t for On, 2p for d img,  and q for 

dim g2~. Then we have the following direct sum decompositions of  the Lie algebra g: 

and 
g = f + a + u  

g = h + m + a + n ;  

at the group level, we have the Iwasawa decomposition G = KANand the Bruhat big 

cell decomposition (} = NMAN, where (~ is a dense open submanifold of G whose 
complement is a lower-dimensional submanifold. There is a unique element H= of a 
with the property that 

ad(H~)[g = I  ; 

we write/~+ for {exp(tH=): t>0},  where exp denotes the exponential map. Then 

tr (ad (H,)I,) = dim g= + 2 dim .q2= 

= 2 p + 2 q  

= 2 r ,  

say. The Cartan decomposition of G - G = KA + K -  holds, though not uniquely, and 
any K-bi-invariant function on G is determined by its values on .4+. 

We equip fi with the inner product 

B[X Y X' Y'~ (X+ Y,X'+ Y')=  - ( 2 p + 4 q )  -1 ~ , ~ + ~ , - ~ - + ~ )  

for all X,X' in g_= and all Y, Y' in g-2=, which makes Nin to  a H-type group (see 
Sect. 3). The following formulae relate the Iwasawa, Bruhat, and Cartan 

decompositions. 
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Proposition 2.1. Suppose that X ~ 9-~ and Y ~ g-2~. Then there exist k, k ' and k" in K, 
n in N, s in IR and t in [0, oc) so that 

exp X +  =kexp(sH~)n 

e x p ( X + Y ) = k ' e x p ( t H ~ ) k ' ;  

k, and n, s, and t are unique, and 

e s = ((1 --}-IXI2) 2 q- I YIz) '/2 

and 
4 sinhet = 4 [X[ 2 + LXI 4 + I YL 2. 

Proof. This follows f rom Helgason 's  [17] Theorem IX.3.8, once the different 

normalisat ions are taken into account.  Indeed, if we write ( . I . )o for the inner 

product  - B ( - ,  0-), then Helgason proves that  

and 

2"~1/2 
e~=((l  +c'XI2)2 + 4 ]Y'o ) 

C 
2 cosh (2 t) = 2 + 4 clXI 2 + c 21XIg + ~ I YI g 

(y) where c - l = 4 ( 2 p + 4 q )  (note that  we deal with exp X + ~  while Helgason 

considers e x p ( X + Y ) ) .  We have normalised things so that  c[XIZ=IXI 2 and 

c[yI2=4[Y[ 2, and the desired conclusion follows. [] 

Corollary 2.2. The space C~J(KkG/K)[N of  restrictions to N of K-bi-invariant 
C~-functions on G coincides with the space of  functions of  the Jorm 

exp( +4)  4X,2+ Y2, 
where f is' a C~ (IR)-Junction. 

Proof The space of  restrictions to A of  K-bi-invariant  functions on G is exactly 

the space of even functions on A, and a K-bi-invariant  function u on G is C ~ if 
and only if ulA is C ~ The set of  functions ~_,f(Q2) obtained as f varies over  all 

Cff(lR)-functions is exactly the space of  even C~(lR)-functions.  [] 

We now describe the class-one principal series of  representat ions of  G. I f  2 ~ 112, 

then the mapp ing  )~a : MAN~IE ,  given by the rule 

)~ : m exp (sH,)n--*exp (2s) 

is a character  o f  the parabol ic  subgroup M A N  of  G, uni tary  when 2 is purely 

imaginary.  We induce this character  to give a representat ion r~a of  G as follows. Let 

,~a be the complet ion of  the space of  all cont inuous functions ~ : G--,IE which satisfy 
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the condit ion 

~(xman)=(~Z~)(man) - l~(x)  VxeG,  V m e M ,  V a e A ,  V n e N  

in the norm IIg II 

dk denoting normalised Haar  measure  on K, and ~ denoting the character  Z,. We let 

G act on . ~  by left t ranslat ions:  

[zc~(x)~]O')=~(x-ty) Vx, y e G .  

Then for k in K, ~ ( k )  is unitary,  but for general x in G, this is not so unless Xx is 
uni tary;  nevertheless ~x(x) is a bounded opera tor  for each x in G. The spherical 

function O). is defined by the formula  

Ox(x) = ~ (~a(x)~ x)(k)dk 
K 

= ~ ( ~ ( x ) ~ ) ( k ) ~  _~(k)dk 
K 

where ~ ~ is the unit K-fixed vector in ~a:  

l z (kan)=(eZx)- t (an)  V k e K ,  VaeA ,  V n e N .  

By Proposi t ion 2.1, ( ('1)) 
~a exp X + ~  =((l+[Xl2)z§ -r V X e g _ ~ , V Y s g _ 2 , .  (2.1) 

The main facts abou t  the representat ions ~z and the spherical functions ~b x are 

summarised in the following result. 

Theorem 2.3. For ~ in ~ x and q in ~ -  ~, 

~(k)q(k)dk= ~,(~)d~ ~ g(~)q(fi)dfi, (2.2) 
K N 

Jbr any 2 in C. Consequently, for all x in G, 

(nx (x)~, n_ ,~(x) q)  = (~, r /) ,  (2.3) 

and in particular nx is unitary when 2 is purely imaginary. Further, 

4)x(kxk')=Oz(x ) Vx~G,  Vk, k' e K ,  

and 2--'4)z is an entire Junction with values in C(G) with the topology of  locally 
uniform convergenee. Finally, ~[" [Re (2)1 < r, then [I dPz[I oo = 1, and q~_~(x) = 0,(x)  = 1 

Jor all x in G. 

ProoJi For  simplicity, we assume that  H a a r  measure  on .g is normalised so that  

~_ ~,(ti)dfi= 1, and we take ~ in ~a and r / in  ~ - ;  which are cont inuous  in G. The 
N 
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formula  (2.2) is proved in Theorem I 5 2 0  of  Hetgason [t 8]. Since tt~e inner product  

( ,  > is expressed in terms of  Haa r  measure  on K. 

(rc~(k)~, ~_~(k)~>=C,~>  v k s g ;  

By (2.2), the inner product  can also be expressed as an integral over PT, so 

(n~.(~)~, n _ ~ ( n ) q ) = ( ~ , , )  vne~7. 

Together,  K and 2r generate G, so (2.3) holds. N o w  we can see that  

(a x (kxk ' )  = (no (kxk')1 ~, 1 _ 2) 

= (n~(x) n~(k')l  ~, ~z_ ~(k-1)12)  

= <~,~(x)la,1 _;)  

= 4 ' ~ ( x ) .  

That  )---'q~z is entire is easy. It is obvious that  qS_r=l ,  and, f rom above,  

qSr(x) = 4 ' - r ( x -  1) for any x in G, so (b r = 1 also. It is routine to check that ]~ba(x)[ < 1 

for any x in G if Re (2) = _+ r; the three lines theorem then implies that  [I q~* 11 oo < 1 for 
2 with R e ( 2 ) i n  [ - r , r ] .  As ~ba(e)=l,  we have HqbaH~o=l for such 2. [] 

Proposition 2.4. The spherical function (a, # given on A N  by 

4)z (ar~) = (~oza) (a) ~_ 1~ ~,l,q (r~- l a -  1 ~'a)1] _ a]~ (n')d~'.  
N 

ProoJ: This follows straight f rom the definitions. [] 

It is notat ional ly  more  convenient  to work  on N r a t h e r  than  on 32. We equip the 

Lie algebra n with the inner product  ( , ) ,  where 

/ x  Y / x  Y \ \  

VX, X ' e g , ,  VY, Y 'eg2~ ,  (2.4) 

and define ux:N--,ll~ by the rule 

( u.~ exp X + ~  =((1 +IX12) ~ vx~g~,, V Y~gz, -  (2.5) 

We denote by a, the element exp( log(s )H, /2)  of  A; then 

a, e x p ( X +  Y)a2? 1 = e x p ( s l / 2 X + s Y )  VselR +, VXeg , ,  V Y ~ g z , .  

Theorem 2.5. (a) On AN,  the spherical function cbx is given by the Jormula 

(o z (a,n) = s -  ix + r)/2 ~ u;, (n-  I a[  1 n' as) u_ ~ (n') dn' , 
N 

provided that Haar measure on N, dn', is" normalised so that 

,,,(n)d,' = i .  
N 
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(b) The space of restrictions to N of K-bi-invariant C,~ :['unctions on G is' exactly 
the space o[functions o[  ̀the Jbrm (,1) 

exp X + ~  ~J(4IXI2 +[XI4+IY]2), 

where f is a C~~ 

Proof. We could rewrite all this section interchanging ~ with - ~ ,  taking ft to be 

g~ + g2,, n to be Off, and N t o  be 2r Mutatis mutandis,  Theorem 2.5(a) is Proposi t ion 

2.4 and 2.5(b) is Corollary 2.2. [] 

3. Harmonic analysis on groups of Heisenberg type 

In this section, we consider groups of  type H, which are a family of  two step 

nilpotent groups which include the nilpotent components  of  the Iwasawa decom- 

positions of  the groups SU(I,n), Sp( l ,n )  and F4i_2o ~. We describe briefly their 

representations, and the Plancherel formula (which are already known). Finally, we 

calculate some Fourier  t ransforms on H-type groups. 

A group of  type H is a connected simply connected real Lie group whose Lie 

algebra is of  type H;  following A. Kaplan [21], we say that the Lie algebra 11 is of  

type H if it is the direct sum o 0  3 o f  real Euclidean spaces, with a Lie algebra 

structure such that 3 is the centre of  u and, for all V in ~ of  length one, the map ad (V) 

is a surjective isometry of  the or thogonal  complement  u @ kerad (V) onto 3. For  

such an algebra, we define a linear m a p j : 3 ~ E n d ( o  ) by the formula 

( i ( z ) v ,  v ' } = ( z , [ v , v ' ] )  vzes, vv, v' eo.  

It can be readily shown that (see e.g. [21]) 

b(z)vl=lZllVl vwv ,  vz~3 
and 

.i(Z) 2=-lZI2I, VZ~3; 

in particular, if IZI = l ,  then j ( Z )  defines a complex structure on ~. For  co in 3 of  

length l, we denote by {, }~o the corresponding Hermitean inner product ,  i.e. 

v, w}~= ( v, w )  + i @(co) v, w )  

= ( V , W ) + i ( [ V , W ] , c o )  VV, WeD. 

It will be convement  to denote by go the space o equipped with the complex struc- 

ture fie)), by 2p and q the (real) dimensions o f  o and 3 respectively, and by r the 

integer p + q. Hereafter, for a group N of  type H with Lie algebra u = u + 3, we write, 

using lower case rather than upper case letters, 

(v,z)=exp(v+z/4) Vv~o, Vz~ 8. 

We note that the Iwasawa N-groups from SU(I,n), Sp(1,n) and F4~_zo ) are H- 

type groups, with the Euclidean structure (2.4) used above - see [10] for example. 
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We define the H a a r  measure  on N by the formula  

S f(n)dn =k(p, q)-i ~ ~.f(v, z)dzdv 
N o 3 

where 
T~(2p+q+l)/221 2p-q  

k (p, q) = 

This normal isa t ion is appropr ia te  since, if ux : N ~ C  is the function defined by the 
formula  

u,~ (v, z )  = ((1 + [v12) 2 + Izl 2 ) -  (~ + r)/2 v (v, z )  e N (3. l )  

(as in (2.5) above),  we have the following result. 

Lemma  3.1. With the definitions just made, 

k(p,q) -1 ~ ~ ur(v,z)dzdv =1 �9 

Proof. This is a s t ra ighforward integration:  by putt ing t = (1 + sZ)u, 

27t v 2 re q/2 
S Ur(V,z)dzdv= I ~ ( ( ] + S 2 ) 2 + t  2) rtq-Xdts2p 'ds 

o ~ F(p) F(q/2) ~+ ~+ 

4 gp + q/2 
- (1 + s2) q-2~(I + u 2) "u q- 1 dus 2 p- 1 ds 

F(p)F(q/2) ~+ ~+ 

~p + q/2 

- F(p)F(q/2) j+ (1 + w ) q - 2 r w p - l d w  N§ (l + v ) - r v q / 2 - 1 d v ,  

where w = s  2 and v = u  2. Since 

w ~- 1 r ( a ) r ( b  -a) 
(I + w) - - ~  d w -  ~+ r ( b )  

and 

2 + 2p+q 2p 1~, 
2~X/2F(2p+q)=2 P q F ( ~ ) F ( -  +q+2 / 

(see E.C. T i tchmarsh  [31], 1.86), we are done. [] 

The irreducible uni tary representat ions of  a group of  type H fall into two classes. 

Some are trivial on the centre of  the group, and factor to characters  of  v. These 

representat ions do not appear  in the Plancherel formula,  and we shall not need to 

discuss them further. The other are parametr ised by IR + x Sa, where S a is the unit 

sphere in 3. We define H(oo,) to be the space of  entire functions on go,, and let ~ , ,o  

(ve lR  +, meSa)  be the following Hilbert  space: 

11r I~ (v)12 exp ( - 2 vlvle)dv < oo } " 
la 

here dv denotes Lebesgue measure  on ~, and N I{~ is, of  course, the no rm on S3~, ~. The 

unitary representat ion a,,,o of  N acts on -~ .o  - 
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[a,,,~,(v,z)~ l ( w ) = e x p ( -  v[Ivl2 + 2 {w,v}o, + i (z, co) ])r + v) 

for any v, w in o and z in 3. It is well known that  a~,o, is the only irreducible uni tary 
representat ion (up to unitary equivalence) of  N whose central character  is 

(0, z ) ~ e x p  ( -  iv(z,  co)); indeed cr~,,o is essentially the Ba rgmann-Fock  model  of  the 

Heisenberg group representations.  
The representat ion a~,r extends to a representat ion of  L~(N) - for u in L~(N), 

one sets 

a~,~,(u)~=k(p,q) 1 ~ ~ a,,,~,(v,z)~u(v,z)dzdv. (3.2) 
o 3 

It is known that, i f u e  C{~(N), then cr ...... (u) is of  trace class; the Plancherel formula  

for Nis  also known.  So that  this paper  is self-contained, we offer a brief sketch of  the 

proofs  of  traceability and of  the calculation of  the Plancherel measure.  
First, we choose an o r thonormal  basis for -Sv,~ ' we identify u~ with ~v, and then 

for m in No p, where N o = { 0 , 1 , 2 , 3  ...}, we let em=e  . . . . . .  in 5,,,~ be 

e . . . . .  (w)=e,,(w)=(2v/~)l'/2(2v)lml/Z(m!) 1/2w" V w e ~  p, (3.3) 

- . .  ~ m l  m 2  . where ]mI=ml +m2 + .... m ! = m l  !m2! and WIn=W1 W 2 ... I f A  is the usual 
Laplacean on o, with sign chosen to be a positive operator ,  then 

a,, o~(A)e,,=(4vp+8vlmI)e,, ; 

consequently,  if k e N o, and u ~ C~~ (N), 

11(4 vp + 8vlml)%,,o(U)eml]~ = Ib,~,~,(u. A~)e,.ll~ 
< C(u, k ) ,  

SO 

I[~,, ~,(u)e,,H,,=O(Iml -k) as I m l ~ + o o .  

More generally, for such k and u 

I(~,,,,o(u) e~,, e,)l  = 0((Iml + Inl)-k), 

and so av,,o(u ) is indeed of  trace class. 
Next,  if ueC,,~176 

Since 

( a,, ~(u)e,,, era) = ~ (a,,,,~(U)em) (V)e,,(v) exp ( - 2  v(v)2)dv 
D 

= lira S (cr~,,~ (u) 6,)  (v) era(v) exp ( - (6 + 2 v)Iv[ z) dr. 
6 ~ 0  + o 

! (~ (u) 6,)  (v) e,,(t,) exp ( - (6 + 2 v) Ivl 2) dv 

--< le,.(v)12exp(-R(6+v)lvlZ) dv 
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for any k in tNo, uniformly for  6 in IR +, we have that  

tr(a~,o,(U))= ~ lira ~(~,,o(u)e=)(v)em(v)exp(-(6+2v)[v[Z)dv 

= lira ~ ~ (a~,o,(u)e,.)(v)e,.(v)exp(-(6+2v)tvlZ)dv. 

Now 

k(p,q) ~ S (a~,~,(u)em)(v)e,.(v)exp(-(6+ 2v)]vlZ) dv 
m~N~ D 

=~ ~ ~ u(w,z) ~ (a.,~,(w,z)e,.)(v)em(v)exp(-(f+ 2v)lvl2)dzdwdv 
t~ . 3 m e N ~  

= ~ S S exp ( - ,~ I vl 2 - v f wl ~ - iv ( z ,  ~o) + 4 iv Im { w, v} o,) (2 ~/~)P u (w,  z)  d zdwdv  

exp ( - 4  v21w12/~) exp ( - vlwl2)dw. 

and therefore 

tr(a~,~o(u))=(~/2v)Vk(p, q)-i ~ u(O, z)exp(  - iv(z ,  o)))dz. 

Now, by Fourier  inversion, we find that  the Plancherel measure  of  N is given by the 

following result: 

u(O, O) = 2P-qn-q-Pk(p, q) ~ vPtr(a~,~,(u))d(v~o) 

2 2 - 2 q - p  
= ~ ~ V-ltr(a~,,~(u)) dvd~, 

where d~o denotes normalised surface measure on the sphere S 3. We define 

2 2 -  2 q -  pl~l/2 

c(p, q) = - t/q5 ~ t/2p + q + 1 "~" (3.4) 

) 

We now come to the new results on harmonic  analysis on groups of  type H of  

this paper .  These involve some Fourier  t rans form calculations, on radial functions 

on a nilpotent g roup  N o f t y p e  H ;  more  precisely, we call a funct ion u on N v-radial if 

u(v, z) = u(v', z) whenever  [vl = [v'[, 3-radial if u(v, z) = u(v, z') whenever Iz[ : [z'l, and 

bi-radial if it is both  u-radial and 3-radial. We shall compute  explicitly the Fourier  

t ransforms of  a certain family of  o-radial measures,  namely, ~b R, R > 0, where 

4)R(u)= ~ u(v,O)exp(-RTvlZ)dv VueCo(N), (3.5) 
13 

and then of  the family of  bi-radial functions u~, defined by (3.1) above,  where 2 ~ ~ ,  

with Re (~) sufficiently positive. The techniques we use could readily be applied to 
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c o m p u t e  Four ie r  t r ans fo rms  o f  o ther  o-radial  functions.  The first step, ca lcula t ing 

the Four ie r  t r ans fo rm of  q~R, relies on a simple calcula t ion of  an integral  in IR 2, 

L e m m a  3.2 below. In P ropos i t ion  3.3, we compu te  rr~,o,(q~g). R a d o n  and  Laplace  

t r ans fo rm me thods  are then used to c o m p u t e  a~,o,(u).). 

L e m m a  3.2. Given v,R in IR +, r, s in IR, and k in No, 

~ (x + iy) k exp ( - v (x 2 + y2)) e xp ( - R ((x - r) 2 + (y - s) 2)) e xp (2 iv (yr - xs)) dxdy 

= 7z (r + is) k (R - v) k (R + v)- k-1 exp ( -- v (r e + s2)). (3.6) 

ProQ[i We first show that ,  if/~ e IR +, u, v ~ IR, and  k E N o, then 

55 (x + iy)a exp ( - /~  (x 2 + y2)) exp (2 ill(yu -- xv)) dxdv 

TC 
= - ( - /~  (u + iv)) k exp ( - # (u 2 + t,z)). (3.7) 

To  see this, take 9 in S(lR 2) and  define ~ in SOR e) by the rule 

~(u, t,) = yy ,q (x, y) exp (2 il~ O'u - xv)) dxdy.  

Then 

I 
(O/~u + i~3/~,v) ~](u, v) = # ~ (x + iy) 9 (x, y) exp (2 il~ O'u - xv)) dxdy ; 

by induct ion,  

(~/(')u + i(?/Ov) 6(u, v) = gk ~[ (x + iy)kg (X, y )exp  (2 ig (yu - -xv) )dxdy .  

I f  # (x, y) = exp ( - /~  (x z + y2)), then 

~(u, v) = (re//0 exp ( - p (u 2 + v2)) = (re//0 exp ( - l~(u + iv) (u - iv)), 

and  (3.7) follows. By analyt ic  con t i nua t i on  (3.7) is also valid for  complex  p, with 

Re (/~)> 0, and  complex  u and  v. 

N o w  the left hand  side o f  (3.6) is equal  to 

exp ( - R(r e + s2)) ~ exp ( - ( v  + R)  (x 2 +yZ)) exp (2R(xr  +ys) + 2iv(yr - x s ) ) d x d y  

= exp ( - R( r  2 + s2)) ~S (x + 0 ' )%xp  ( - / ~ ( x  2 +yZ))  exp (2 i# (yu  - x v ) ) d x d y ,  

where /~ = v + R, u = (vr - iRs)/(v + R)  and  v = (vs + iRr)/(v + R). By apply ing  the 

analyt ical ly  con t inued  version o f  (Y7), we ob ta in  the desired result. []  

Proposi t ion 3.3. Let cb R be as in (3.5) above, and suppose v e IR + a n d  ~o e S 3. I f  ~ is  a 

homogeneous polynomial o f  de#ree d in ~ . . . .  then 

~r,,,o(~R) ~ = ~p(R - v)d(R + v) - d -  P~.  
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ProoJ: By definition, for any w in g, and ~ in ~ . . . .  

a~, ~,((bR) ~ (w) = ~ exp ( -- R Iv[ 2) exp ( - v []vl 2 + 2 {w, v} ~,]) ~ (v + w)dr.  
o 

By changing the variable of  integration to v + w, we obtain that 

~,,,~o(~R)~(w) 

= ~ ~ (v) exp ( - R (v - w) 2) exp ( - v {v + w, v - w}~,)dv 
D 

= exp (v[ w[ 2) ~ ~ (v) exp ( - v]v[ 2 ) exp ( - R (v - w) 2 ) exp (2 iv Im {v, w}~,)dr. 
D 

Now go, may be identified with C p, and ~ is a sum of  homogeneous  monomials  o f  

degree d. For  each monomial ,  the integral splits into a product  o fp  integrals, each of  

which is of  the type dealt with in Lemma 3.2. The proposi t ion follows 

immediately. [] 

One can use this result to calculate the Fourier  transforms of  many g-radial 

functions on N. For  instance, Laplace t ransform methods enable one to calculate 

the Fourier  t ransforms of  other g-radial measures supported in g. We first calculate 

a Radon  transform. 

L e m m a  3.4. Let  u;. be as above (3.1), with Re(2) > - p  - 1. Then, given v in g, o in S~ 
and t in 1R, 

[( S u~(v , t~+z ' )  dz'=~q/2-1[2 r ~ ' + P +  c .~_q+ ~,~ ~ 2 " 2 - -  l ( V , t ~ ~  

where dz' denotes Lebesgue measure on the orthogonal complement to o3 in 3. 

Proo f  This is routine:  

ff ((l + Iv12) 2 + I"~' + z'l 2)- r 
CD • 

-- ff ((a + Ivf2) 2 + t 2 + Iz'l 2 ) -  ~ +r'/Zdz' 
09 • 

= ~ ( ( j  ..~ [U12)2 _~_ t 2 )  - (A + p + 1)/2 ( 1  ~-  IZttl 2) -(A + r)/2 dz" 

OA • 

We recall a Laplace t ransform formula:  i f f ,  g e C ( I R  § are such that 

I f ( x ) l + l e ( x ) l = O ( x  ~-~/z) as x ~ 0 +  

and 

] f (x ) l+ lg (x ) l - -0 (exp(ax) )  as x-~ + 
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for some e in lR + and all a in IR +, then, setting 

F(a+ib)= ~ e x p ( - ( a + i b ) x ) f ( x ) d x  

and 

G(a+ib)= ~ exp( - (a+ib)x )g (x )dx  
~+ 

for a in IR + and b in IR, we have, for all a and v in IR +, 

F(a+ib)G(a+ib)e-i~bdb=2n ~ f ( x ) g ( x + v ) e x p ( - a ( 2 x + v ) ) d x ,  
~+ 

(3.8) 

where both integrals converge absolutely. To check this formula,  it suffices to use 
the Plancherel formula - 

fi(b)[fi(bl]-db=2n ~ h(x)F~(x)dx Vh, keL2(IR) 
ffr fR 

where the Fourier  t ransform n ~ of  h is given by 

t~(b) = ~ h(x)e-i~bdx. 

For  fix a in IR +" if 

h (x) = I e "Xf(x) Vx > 0 
0 J" " Vx<O 

and 

k ( x ) = f e  a'x+~)g(x+v ) V x > - v  

l0 V x <  - v '  

then it is immediate that/~(b) = F(a + ib) and ~'(b) = G(a + ib)e i'+ for all b in IR, and 

(3.8) follows. 
We now define an integral expression which we shall need: for a,b in IR + and 

c in IR, 

L(a, b, c) = ~ exp ( - a ( 2 x  + 1))x b- 1 (x + l ) -Cdx.  (3.9) 

Theorem 3.5. Suppose that Re (2) > 0. Then u z e L 1 ( N), and Jor v in IR +, ~o in $3, and 
Jor any homogeneous ~ of  degree d in ~3 ..... 

a~,,~(u~)~ = T(v, 2, d)~, (3.10) 
where 

r - / / 2 p + q  + 1 )  

2 t ~  ~ L(v ,  2 d + 2 + p + l  2 d _ 2 + p + !  ) 

This formula continues to hold when R e ( 2 ) >  - ( r /2 ) .  

Proof The function 2--*uz is an analytic Ll(N)-valued function in { 2 e C  Re(2) 
>0}. Consequently the Fourier  t ransform is analytic there;  it suffices to prove 
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(3.10) for 2 in IR +, and then it will follow that (3.10) holds for 2 with Re(2) > 0 by 
analytic continuation. Now in {2e IF:Re (2)> -(r/2)}, the function 2--,u~ is also 
analytic in L 2 (N), and its Fourier transform will be analytic in L 2 (/V). Certainly 
then, if (3.10) holds for 2 in IR +, it holds for all 2 with Re(2)> -(r/2). 

Now we take 
f l = ( 2 + p + l ) / 2 ,  y=(2+r ) /2  

and set 

f ( x ) = g ( x ) = { F O ( f l ) - l x ~ - ~ e x p ( - x )  Vx~- ,  + 
Vx ~ 1R\~ + 

so that the Laplace transforms F and G of f and g are given by 

F ( a + i b ) = G ( a + i b ) = ( l  + a + i b )  -~ Va~IR +,vb61R.  

Now, by Lemma 3.4, Fubini's theorem, and Proposition 3.3, for r in .~,o, of 
degree d, 

S ~ u~(v, z)a~,o(v, z)r 
t~ 3 

= ~q/2 - 1/2 r ( f l ) / r ( ~ )  

i) 

= 2 ~12 + ~ 12 r ( f l ) / r  (~) 

U z_ q + l (v, tco)a~,~,(v, tog) ~ dtdv 

F(lvl 2 + it) G(Ivl 2 + it) exp ( -ivt)dtav,,o(v, O) ~ dv 
gl 

~ f ( x ) g ( x  + v)exp ( - ( 2 x  + v)lvlZ)dxc%.,o(v, O)~dv 
t~ IR + 

=2~q/2+'/:r(fl)/r(7) S f(x)g(x + v) ~ exp(-(Zx+ v)lvlZ)cr~,~,(v, O)~dvdx 
~.+ D 

= 2 n q/2 + 1/2 F (fl)/F (?) ~ f ( x )  g (x + v) rtP(2 x) ~ (2 x + 2 v) - n- p ~ dx 
~ +  

=21 -Prt ~2p+q+l)/2 [F(fl)F(7)] -1 ~ exp( - ( 2 x +  v))x a+a-I (x + v)a-a-P- l  dxr  
~ +  

=2 ~ -pTt~2p+q+ ~/2 [F(fl)F(7)]-  ~ vZL(v, [3+d, - f l + d + p  + 1)~, 
and 

cr~,~(u~)~=z t ~ -  ~ v~L(v ,  2 d + 2 + p + l  
r ( e ) r ( ~ )  2 ' - ~ 

as required. [] 

Later progress will depend on knowing the functional equation for the function 
T defined above (3.10). 

Proposition 3.6. Suppose a > 1/2 and b > 1/2. Then for  any # in ]R +, 

#a t a - -  1 e - l t t  # b  S b - 1 e - t~s 

r ( a )  ~ (1 +t) b d t = r ( b )  S (1 +s)" ds. 
0 0 

(3.11) 
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These expressions continue analytically to entire junctions of a and b. Consequently, 

and 

- -  b (2 v) b 
(2v)a L(v,a, L(v,b,a) Va, b ~ .  
r(~) )= r~b5 

F F 

(v/2)z/2 2 T(v, - 2, d) 

- T(v, 2, d) (3.12) 
=(v/2)-~/z F (  2d+2+p+l- 2 ) 

for all v in IR + and d in No, as an identity of entire functions. 

Proof The equality (3.11) is known ([1 ], 6.5(2) and 6.5(6)), but we offer a proof for 
completeness. We shall first prove (3.11)  for a, b > l /2 .  For  a fixed small positive e, 

we define functions f , g :  I R + C  by the formulae 

{~a-le (~+i)U'/F(a) Vs~IR+ 
f(s) = Vs ~ IR\IR +' 

{ ~ - t e - ' / V ( b )  Viz iR + 
g(t) = vt ~ F . \ ~ .  + " 

By Plancherel's theorem, 

f(s) ~ (s)ds = ~ f ( t )  g (t)dt, 

SO 

1 sa-le -(e+i)#s 1 tb-le -t 
F(a) J~+ ( l+ i s )  b dS=F(b) ~+ ((e+i)l~+it)" dt. 

We multiply both sides by ((e + i)#)a, and change variables- in the left hand integral, 
we use contour integration, and in the right hand integral we put t = #s - to obtain 
the equality 

ira t a - 1 e - ut l~b S b - 1 e -  us 
F(a) ~+ ( l + i t / ( e+ i ) )  b dt=v(b) ~+ (1+is/(g+i))"  ds. 

We now let e tend to 0 to finish the proof  of (3.1 l). 
To see the analytic continuation of the left hand side of (3.11), we write 

~a~ta--le--ltt ]~at~ta--le-/at ~(a)_~la-le  -l~t 
F(a) o ( l + t )  ~ d t = F ( a )  o ( l + t )  ~ d t +  1/z ( l + t )  b dt. 

The last integral continues analytically to an entire function of a and b; by writing 

the integrand of the second as a convergent series of the form ~' cm(b)t "+m-~, it is 
m~Na 
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clear that this integral continues meromorphicatly with simple poles wizen a ~ - No, 
which are cancelled by the zeros of F(a) -~. The other functional equations follow 
immediately~ [] 

It is worthwhile pointing out that, if we define ua,o by theJormula 

u,,a(v, z) = ((6 -I-Ivle) a + Izl e) ~*+'1/2 V(v, z) e N 

for 6 in IR + and 2 in I~, then a calculation like the proof of Theorem 3.5, or an 
applicatmn of homogeneity arguments, shows that, for homogeneous ~ of degree d 

in ~v,r ~ 

2 d + 2 + p + l  
v~L 6v, 2 

2 d - 2 + p + l )  

2 4. 

When 6 tends to 0, u~, ~ tends distributionally to the distribution n-  ix + r), given by the 
locally integrable function (v, z)~([v[4+ [z]2) -~+~)/2 for 2 with Re (2)<0, and by 
meromorphic continuation otherwise. When Nis the nilpotent component of a real 
rank one Lie group G, this distribution is the kernel of the so-called intertwining 
operator of A.W. Knapp and E.M. Stein [23]; its Fourier transform, at least 
formally, should be given by the rule 

2rrf2p+q+ l'~ 
2 d + 2 + p + 1  

v~L 0, 2 
2 d - 2 + p + l ) ~ ,  

' 2 J 

_ 2 v Z ~ ,  

for homogeneous 4 of degree din -~v, o,. This formula agrees with that of Cowling [8], 
after the different definitions of p, r and 2, and the different normalisation of Haar 
measure are taken into account. Moreover, if we define the meromorphic function c 
by the rule 

F(2)F( 2p+q+ 
c(2)=2 ~,-~) 

2 ! ) '  

then, formally, we see that, for homogeneous 4 in ~v,~ of degree d, 

" l T ) ' l  4. 
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From Theorem 3.5 and Proposi t ion 3.6, we would expect that  

c ( 2 ) - l n ~ - ' *  u~=u_~. (3.13) 

On the other hand, the general theory of  intertwining opera tors  implies that,  for a 
suitable normal isa t ion factor c, (3.13) holds, and that  the Plancherel measure/~(,~) 

associated to the class one principal series representat ion ~ of G is given, up to a 

constant,  by Ic()L)1-2. We would therefore predict that the Plancherel measure 

should be given by 

I: 
This agrees with the results of  Har i sh-Chandra .  See S. Helgason [18] (Chapter  IV) 

for more on c-functions and the Plancherel measure.  
Our  later development  depends on a careful study of  the function T. Most  of  the 

facts we shall need are summarised  in the following result. 

Propsoition 3.7. Fix v in IR + and d in No. The Junction 2-~T(v, 2, d) is entire. 
Furthermore, if  2 = [~ + i7, where 0 < ~ < r and ? ~ IR, then 

where CI(P, q) depends only on p and q, and 

lim (r -~q) t/2 Iv-~12T(v,B,d)12v'-~dv = 1 .  (3.15) 
/ /~r--  + 

ProoJl It is easy to see that e-,T(v,c~,d) is ho lomorphic  if R e ( 2 ) >  - p - 1 .  The 

functional equat ion (3.12) then implies that  Tis ho lomorphic  if Re ()L) < p + 1, which 

establishes that  T is entire. 

To  prove (3.14), we shall first prove the following inequality: 

IT(v, 2, d)l < C2 (p, q) [v I~- ' ~/2 + (v + I )u~- 1~/2 ] e - " e  I~'1 . (3.16) 

T(v, 2 ,d)=Q(2)  ~ exp(-2x-v)x~2d+~+P-l)/2 
~.+ (X_~_ V)(2d_.2.+p+ I)/2 dx, 

where 

2rF(  2 p + q +  

Because x ~a d + p)/2 < (x + v) ~2e § pl/2, then, if 0 __< • __< r, 

exp ( - 2 x  - v)x ~-  t)12 

Ill 4 

Write 
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If 0 < fl < 1, then (x + v) Ca- t~/2 < v<a- n/z, so 

IT(v, 2, d)l <lQ(2)lCa-l)/2e -~ ~ exp( -2x)x{a-1) /2dx  

<=C3(p,q)v (0 1)/2e- ~e21yl, 

from the known asymptotic behaviour of  the F-function (see, e.g. Ti tchmarsh [31 ], 
1.87). If l < f l < r ,  then, because (x+v)~a-l)/2<[(x+l)(v+l)]~a-l)/2,  we have 

similarly 

IT(v, 2, d)l<lQ(A)l(v+ l)(a-l~/2e-" ~ e x p ( - 2 x ) ( x ( x  + l))(t~-l)/2dx 

<C, , (p ,q) (v+ 1) (t~ ll/2e-~e2h'[. 

We therefore have the estimate (3.16); (3.14) follows immediately. 

To prove (3.15), we first show that, i f f i > 0 ,  then 

IT(Y, ~, d)[~C5(P, q)( ]  --t-J~-1), 

I t(v,  ,~, a )  - r (~ ,  r, a)l _-< G (p, q) (1 + f l -  ~)I~ - r[. 
and 

(3.17) 

(3.18) 

(3.19) 

Therefore 

IT(v, 2, d)[ < [I u,  [11 = k (p, q) - '  5 5 ((1 + (v[2) 2 + [z[ 2) - Cp + r)/2 dzdv 
D8 

by a calculation like Lemma 3.1; (3.17) follows. The inequality (3.18) is obtained 
using Cauchy 's  integral formula to  estimate c3T(v, )~, d)/c3)., and then estimating the 
difference in terms o f  the derivative. More  precisely, by integrating along the line 

segment 7 joining 2 to r, we see that 

T(v, 2, d) - T(v, r, d) = ~ ~?T(v, 12, d)/~312d12 , 

whence 

IT(v, 2, d) - T(v, r, d)[ <12 - r [  sup {[c~T(v, p, d)/012[ : p e 7} ; 

by integrating around the circle x of  centre/1 and radius fl/2, we see that  

OT(v, 12, d)/c312 = (2n i ) - t  ~ T(v, (, d) (~ -12) -2d( ,  

lim T(v,  r, d)  = 1. 
v~O+ 

To obtain (3.17), it is easiest to remember that, if ~ is homogeneous  of degree d in 

. . . .  then 

o~,~(ua){ = T(v, 2, d ){ .  
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whence 
I~T(v, t,, d)/~l_-< (2//~) sup {IT(v, ~, d)l' ~ ~ ~}. 

The points ~ which arise as we consider different circles ~c corresponding to different 
centres ~ all have real part at least fi/2, and (3.18) follows from the last two 

inequalities and (3.17). Finally, 

r _//2p + q + 1.) 

T(v , r ,d ) -  2 t ~  ~ ~ exp(-2x-v)xI2a+2P+q-1)12 dx. 

V ( r ) v ( 2 p T + l  ) ~,+ (x+v) ad-q+''/2 

tf  0 < v < 1, the integrand is dominated by the integrable function 

x-+exp( - 2 x ) x  ~2~'+q- I)/2(x+ 1) ~q i)/2 

so by the dominated convergence theorem, 

2 r 
lira T(v,r,d)= ~ exp(-2x)xP+q-ldx  

v~O+ ~ 7 )  ~+ 

= 1 .  

Now we prove (3.15). By (3.16), if 6>0,  then 

(r--fl) ,I t v-1~/2 T()L'~'d)12vr l dv-'+O 
0 

as f l ~ r - ,  and by (3.18) 

a 

(r-l~) ~ Iv e/2[r(v,l~,a)- r(v,r,d)l?r av--,o, 
o 

a s / r  Further, 

6 

limsup (r - fl ) ~ Iv- ale [ T( v, r, d) - l ]12 v'- l dv 
I ~ r  - 0 

<=sup{IT(v,r,d)-ll2:O< v<~},  

and by (3.19) we can make this arbitrarily small by choosing 6 small. Finally, 

6 

lim ( r - f i )  5 Iv-a/212v~-ldv=l ; 

hence (3.15) follows. [] 

4. Harmonic analysis on A N  

The group S = AN is the semidirect product of the vector group A with the normal 
nilpotent H-type group N. The elements of the group S may be written in the form 
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as(v,z ), where a~EA ( s e n  +) and (v , z )eN.  These multiply according to the rule 

as,(v' , z')a~(v, z) = a~,sa s ~ (v', z')a~(v, z) 

=a~,~(s- '/2v ', s -  lz ' )  (v, z ) .  

=as,~(s-I/2v'+v,s l z ' + z + 2 s  1/z[t,',v]). 

Mackey  theory may  be applied to describe the unitary dual S of  S. The irreducible 

unitary representat ions of  S fall into two classes: those which are trivial on the 

centre of  N, of  no interest to us here, and those which are nontrivial  on the centre of  
N, which are parametr i sed  by the A-orbits  in 3*. Because these involve integrals of  

the representat ions a~,o, of  N as v runs over lR +, it will be convenient  to use 
equivalent representat ions %,~, of  N which all act on the same Hilbert  space, as v 

runs over  IR +. 

For  v in IR +, define Iv : S31,o,--+~3,. o, by the formula  

( / v ~ ) ( U ) :  vP/2~(V1/2U) V ~ e ~ l , o , ,  r U e D  ; 

I,. is an invertible isometry  of  Hilbert  spaces (whose inverse is effectively I,.- ,). Let 

%,o, be the uni tary  representation/~71~rv, o,I~. Define, for s in lR +, the isometric 

i somorphism 6 s : L I ( N ) ~ L I ( N )  by 

(6sJ ' ) (v ,z)=s- ' f (s -~/Zv,  s-~z) Vv~o,  VzEa.  

Lemma 4.1. Fix s and v in IR +, v in o, z in 3, (o in Sa, a n d / i n  LI(N).  Then 

..... (s ~/~ v, sz) = ~ . . . .  (v, ~) 
and 

, , .  , , (6, ,f)  = ~ ..... ( f ) .  

Proof. These results follow by changes of  variable:  first, one shows 

r~,~(v, ~)=~,,o(v'/ev, vz), 

then we deduce that  r~,,o(s~/2v, s z )=r  . . . .  (v,z). Finally, we note that  

(6, f )  (n)%.,o(n)dn = ~ f(n)%,o,(n~)dn, 
N N 

= ~ .f(n) r ..... (n)dn 
N 

where (v,z),=(sl/2v, sz). [] 

For  co in Sa, we define the Hilbert  space -~o,, to be L 2 (IR + ; ~31, o,); more  precisely, 
~o, is the space of(equivalence  classes of) measurable  functions E : Ill + --+~1 ,~,, with 

the proper ty  that  I[EII~, 

2 r -1  1/2 HZll,o={c(p,q) I II=(v)tl~,. v dv} (4.1) 
~.+ 

is finite (where the equivalence is equality a lmost  everywhere);  here c(p, q) is given 

by (3.4): 2 2 -2q-p~l/2 

c ( p ' q ) - l . ( q ) v C P T + ~ )  
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We define the un i t a ry  r ep re sen t a t i on  % o f  S on  -~o by  the  f o r m u l a  

[%,(a.~(v,z))~](v) =srr ..... (v,z)(~-(sv)) V S E - ~ ,  V v ~ I R  + (4.2) 

for  any  e l emen t  as(r, z) of  S. It  is rou t ine  to check  tha t  r,,~ is indeed a un i t a ry  
r ep resen ta t ion ,  us ing L e m m a  4.1. 

We  deno te  by  ~u, ~., o~ : IR ~ -~1 ,~ a n d / / j ,  ),, ,, : IR -,.~1, ~o (J ~ N~, 2 ~ ~ )  the  func t ions  

Sj,~,,o(v ) = v- z/2 T(v, 2, [/'1)e~, 1,~ (4.3) 

and  

Hi, )., o) (v) = Iv ~/2 T(v, - 2, ]j[)] - e j, 1, ~,  (4.4) 

where  the e j, 1,~, are the basis  e l ements  of .~ l ,  o~ given by  no rma l i sed  m o n o m i a l s ,  as in 
(3.3). 

Propos i t ion  4.2. Fix j in N~, and let 4)j,a : S-- ,r  be the function given by 

4j,~(as(v, z)) = ~ (r,o(a~(v, z))~,j, x .... ttj, z,~)de). 
Ss 

Then (f 2ei lR,  (oj, xEB(S); moreover, the fimction 2--*(aj, a extends" to an analytic 
B(S)-valued funetion in the strip { 2 ~ :  I R e ( 2 ) l < r } ,  and, (f 2=f l+i7 ,  with fl in 
[ - R, R ] and 7 in IR, where p < R < r, 

II%~ll.<=C7(p,q)(1 +k/I) e ( r - R )  le6b'l,  (4.5) 
while 

II q5 i,/~ lib < Ca(p, q)(I + ]j])-I~1, (4.6) 
and, 

21-qTrl/2F(r)F(~-) 
l im ]14~j, all~ = 

ProoJl By def in i t ion  o f  r,o, (o j ,~eB(S)and 

S~ 

==_ Y Ilz , ,,oll IIH ,,,o, lld,o 
S 3 

Sa + 

as long  as the last express ion  is finite. Let Nj  be def ined thus :  

{JR )'11/2 N j ( 2 ) =  Iv-*/ZT(v,  2 , 1 j l ) l Z r  V 2 e r  ; (4.7) 
+ 

then  our  inequa l i ty  m a y  be m o r e  br ief ly  wr i t t en  

l[ q~j,z II, --< e (p,  q ) N j ( 2 ) U j (  - 2 ) .  
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Further when these integrals converge, qSj, x will be holomorphic as 2 ~ j ,  a, o, is then 
a holomorphic .~o,-valued function and 2 ~/ / j ,  x,,o is anti-holomorphic. By definition 
of E j, x,,o and/-/j, z, ~,, this boils down to the question of when 2 ~ v-2/2 T(Y, 2, [] I) is a 
holomorphic L2(lR+;v"-ldv)-valued function, and when Nj(2)Nj(-2)  is finite. 
Since e ~  T(v, 2, IJ]) is entire for each v in IR + and j  in N~, by Proposition 3.7, it will 
suffice to find good norm estimates for Nj(2)Nj(-2).  Clearly we may suppose 
Re(2)>0.  According to (3.14), if 2=/~+i),, with 0< /3<r ,  then 

Nj (2) =< C 1 (p, q) (r - / /)-1/2 e21rl ; 

further, from (3.12) 

, / / 2 + r ' ~  ~ / / 2 + p +  1'~ ~ t /2 [ j '1 -2+p+ 1"~ 

r(2 

\ - - /  

so we have established that 

k=l 2 k ~ + p - 1  Cl(p'q)Z(r-B)-Xe41~l" 

(4.9) 

Certainly, then if 2=f l+ i7 ,  and -r<tq<r,  then 

Nj(2)Nj( - 2) < C9( p, q) (r -]/~l)- 1 e6M. 

Thus (gj.26B(S), and 

I[(pj,~lln<Clo(p,q)(r -[/~1)- 1 e61~l, 

for 2,p and 7 as above. However, we may improve on this estimate by working with 
(4.9) and using the Banach-space valued version of the three lines theorem. 

We claim that, if 2 =/~ + i7, with/~ in [p, r], then 

1~I 2 k - 2 + p - 1  <G~(P, 
k : l  2 k + 2 + p - 1  q)(1 +[TI)ad -"  VdelN, (4.10) 

for some constant C H (p, q) depending only on p and q. This can be seen by noting 
first that if k > p  + q + I% then 

, ] 2 k - 2 + p + l  = R e  log 1-~ - l o g  1-~ 
log ~ ~ 1  2k 2k 

( - 1 )  m+~ (--2+p--l)m--(2+p--1) " 
~ R e  

,,=IL' m (2k) m ' 
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SO 

log 2 d - 2 + p - 1  

k=do 2 k + 2 + p - 1  

= Re ~ + [ R e ( ( - 2 + p - 1 ) m - ( 2 + P - 1 ) " ) ]  Z ( 2 k ) " '  
k=do 2 m k=do 

where d o is an integer between p + q + [7] and p + q + [TJ + 1. The first of  these sums is 
equal to 

- fi [log(d/do) + El, 

for some E with [E[ < 1, while the double sum can be dominated by 

,.=2 r e ( m - l )  ( [ - 2 + P - l I " + I i ~ + P - l I m ) ( 2 d ~  r e ( m - l )  2 ,  

(4.10) follows. 

By using (4.10), we improve (4.9). First, ifp<=fl<=r, we have the estimate 

I1 ~bj, xilB< C12 (P, q) (r - f l ) - '  (1 + [j'[)-/~e6 i'l, 

and similarly, when - r < f l <  -p ,  we have that 

]l qSJ, x II ~ --< G2  (P, q) (r + f l ) - '  (1 + [j'])- t~e6 I'll. 

Consider the analytic B(S)-valued function 0 :2~cos(2 / r ) -6 rqSj ,  a on the strip 
{2el l2:]Re(2) l<r}.  This is bounded in B(S)-norm on each closed substrip 
{2 e r : IRe (2)1 < R }, when p < R < r, and satisfies the conditions 

]I~(2)]]8 <=C13(P,q)(r-R)- '(  1 +[/1) R, 

when Re (2) = _+ R. By the three lines theorem for Banach spaces, this estimate also 

holds inside the strip, and so, if p__< R < r,and 2 = fi + i7 with fl in [ -  R, R ], 

]](aj, x[lB<-_CT(p,q)(r-R) 1(1 +]j ' l ) -ge 6N, 

as required. 

The rest of  the p roof  requires us to study the behaviour ofN2(fl)N2(-fl)  for fl in 
( - r , r ) .  From (3.14) and (4.8) we have, for fi in (0, r), 

N j(fl ) N j( - fl ) 

V - f i + p + l  V 2[ / l+f l+p+l  ~+ 
2 2 

< C x (p, q) (r - f l ) - '  
r ( ~ - _ f )  k=l + f l + p - I  

\ - -  / 

<C14(p,q)(1 +tj]) -t~ 
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from (4.10), whence 

]14J.p I1~ < Cs(P, q)(1 + [/'l) -~ , 

as required. Finally, from (3.15), and the preceding equality, 

lim Ns(fl)Ns(-B)= lim 2 ~ F { ~ )  [ ~j] / \ 
2 k - f l + p -  I 

3 ~ r -  f l~r-  F k=l 

I,I _ 2 k - q 7 1  [ 
=2  r - lF ( r )  k=~H 2 k + 2 p + q - l [ '  

whence 

lira sup [I ~b;,~ [[a =< 21-q=l/2F(r) Isl 2 k - q - I  

~ r -  F(q )  F ( 2 P T + l  ) k~=, 2 k + 2 p + q - 1  

=21-qltl/ZF(r)T(~-~)-)/[F(q2)F(2P+q21+2[J[- ) 

It should be noted that, since q is an odd integer, the limit is 0 if [/[>__(q+ 1)/2. 
We may now prove the key estimates for the spherical functions. 

Theorem 4.3. Suppose that G is SU(1,n), Sp(l,n), or F4(_eo ~. When Re(2)=0,  
dp~[s ~ B(S), and 1] ~b~l s [I n = 1. The family q~ls 4"B(S)-funetions continues' analytically 
into the strip {2 e I1~ : Re (2) ~ ( - r, r)} and, when 2 = fl + iy, with fl in ( - r, r) and 7 in IR, 
satisfies 

II ~O x[sll B < Cl s ( p, q ) (r -- lfl [)-1e6 M ; 
further 

{ ! ~  when G=SU(1,n) 

limsup IIq  lsll.__< - 1  when G=Sp0,n). 

~ r -  when G = F4(_2o ) 

ProoJi When Re (2)= 0, the principal series representation rc~ of G is unitary, so the 
spherical function ~ba is in B(G), and a fortiori, ~b~] s is in B(S). We shall now Fourier 
analyse qSz[ s. 

We recall that the dimension D(p, d) of the space of complex homogeneous 
polynomials on II;P of  degree d is given by 

D ( p , d ) = ( P + d - l ) .  

It may be helpful to recall the definition of as : 

(6J')(v,z)=s-rf(s-t/2v, s-lz) Vv~o, VzE3. 
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By Theorem 2.5(a), and a change of  variables, 

(ax(a~n)=s iz+,l/z ~ uj~ (n- l  a~an,a~)u_ a(n,)dn, 
N 

=s  I-~+"'/2 ~ uz (n - in" )u - z (a~n"a[ l )d  n'' 
N 

= s  -~a+')/: J ua(n-ln")6,  ,u_~.(n")dn". 
N 

By the Plancherel formula for N, we deduce that 

qSx(a~n)=s-<a+~VZ c(p,q) ~ ~ tr(r~,~,(n)%,,o(uz)%,o,(a~-*u- ).)) v ' - t  dvd~176 
S~ ~,+ 

=s ~z+')/2c(p,q) ~ ~ tr(%.o,(n)%,o,(ua)z.~-,~,o,(u-z))r 
S 3 ~ +  

=s-~'-~)/2c(p,q) ~ ~ t r(z  ..... (n)~ ..... (u~)r~,o,(u_z))v ~ ldv&o. 
S,~ ~+ 

With the basis {ea, l,o, : j eN~}  of  (3.3) we have, from Theorem 3.5, that 

tr(~ ...... (n)z ....... (u~)%,,~(u_ a)) 

= Y. <~ . . . . .  (n)T . . . .  (u,)z~.,o(u_~)q,,  .... ej.,,,~> 

ie~g 

= y, <z . . . .  (n)ej.,,~, ei.,.,~> :r(sv, ~, IJl) T(v, - ~ ,  bl), 
.iciNg 

and now it is a matter  of  chasing through Proposit ion 4.2 and the preceding 

definitions to see that 
0a(a~n)= ~, ~ba,j(asn), (4.11) 

at least formally;  the estimate (4.5)justifies the convergence. Indeed, f rom above, 

on one hand, 
~ba(a.,n)= ~. s -{a ~)/2C(p,q) 

/~ Nf~ 

~ ('ca .... (~)ei,, .... e~, ,. ~,5 T(sv, 2, l/l) T(v, - 2, ljl) v"-' dvdm ; 
5',1 IR + 

on the other hand, from the definition of  ~bj, z (Proposit ion 4.2), of  .19,~ (4.1) of  z~o 
(4.2), and of  Ej, z,,o (4.3)and Hj.a,,o (4.4), 

Oj, a(asn) = .f (zr a,o,, HJ, a,,o>dc~ 
S 3 

= ~ c(p,q)  
S,~ ~,+ 

= ~ c(p,q)  
S a ~, + 

= c ( p , e )  ,~'''-*>/2 ~ 5 
S a ~,+ 

<(Tto (as  F/) ~ j ,  2, 09) (V) , n j .  ~,, e, (v)> i~r- 1 dvdr 

sr/2 ~ r -  1 ((z . . . .  (n)(~j,a,,,(sv)),Hj,~,o,(v)>v d doo 

((zs~.~(n)ej.I,~,, ej,~,o,> 

T(sv, 2, [/'1) T(v, - 2 ,  [/[)v'- l dvdoo. 
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When 2 is allowed to vary with Re(2)  in ( - r ,  r), both  sides of  this expression 

extend analytically;  the est imate (4.5) shows that  the sum ~ ~bz.~ converges in 

B(S), as J ~ o  ~ 

E ll4~,,Jl[.<C~(p,q) E (I+[I'[)-R(r--R) -'e6b'l, 
j e N o  ~ jeNg 

when 2 = fl + i v, with fl in [ - R, R ], and R in (p, r) : 

( l + l j l )  - n =  ~ D(p,d)(l+d) -R<~176 
j~  Ng d~ N O 

as D (p, d) < (p + d -  1)0 - 1. Then equality (4.11 ) holds for  2 with Re (2) in ( - r, r), 

and the norm est imate for I/q  ls[IB follows. 
When  2 is real, est imate (4.6) holds, so ifp<b<r and b<fl<r, 

]ld~,; I],<= C8(p, q)(1 + [/[)-b. 
Since 

(i+[]'1) - b =  ~ D(p,d)(l+d)-b<oo. 
jeN8 dEN o 

Lebesgue 's  domina ted  convergence theorem implies that  

l imsup  I I~ l s l l a~  lim E I1~,,11. 

= E lim llq~,,,[I, 
ieN8 ~ r -  

D(p, d)2' - q)z'/2 F (r) r (q@ I) 

= E 
as~o F(q)F(2p+q21 +2d)F(q+122d ) 

1 q = l  

= 2 n - 1  q = 3 ,  p = 2 n - 2 .  [] 

21 q = 7 ,  p = 4  

Remarks." (a) The above sum indexed by d e  N O contains only ( q +  1)/2 non-zero 

terms. For  q = 3 ,  p=2n-2 these terms are n (for d = 0 )  and n - 1  (for d =  1). For  

q = 7, p = 4 the non-zero terms are 6, 9, 5, 1 for d = 0 ,  1, 2, 3 respectively. 

It is worthwhile  to mention,  that  the sum can be expressed in closed form for 

arbi t rary  integers p, q > 0, namely : 
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Indeed, the sum can be rewritten in the form 

F ( q ) F ( 2 P T + I  ) de~o d ! [ 2 P T + l ] a  

1 - q .  2 p + q + l  = 2i-qnl/2F(p+q) F p, -,) 

where [a], = a(a + 1) (a + 2) �9 ... " (a + n - 1) and F(a, b; c; z) is the hypergeometric 

function. Since 2 p + q  + 1 ( l - q )  yields 2 - 1  + p -  ~ we can appiy [1, Sect. 2.8 (47)]. This 

2 p + q + l \  1,2 ( ) 2-~r - 5 -  
1 - q .  2 p + q + l  

F P' 2 ' 2 ; - I  = - ~ - ] T P ~ ] F  p +  +1 F 

\ - / x , - /  

Applying now Legendre's formula for the F-function 

F(s)=nl/22"~-l F F 

in the case s=p+q we get the stated equality. 
(b) It would make the proof  of Proposition 4.2 and thus of Theorem 4.3 much 

easier if we could evaluate Ns(2 ) (see 4,7)). This boils down to having to calculate 

x" y~ 1 
I ( l + x )  b ( l + y )  b (x+y+l) cdxdy" 

~.~ IR ~ 

Indeed, 

Nj(2 )  = {~+ ,v-'Z/2T(v..~.ij,)i2vr-'dv} 1/2 . 

and there is a known meromorphic function, P ,ay, so that 

where 

2 1 j l + 2 + p + l  v-a/2T(v,,,t,]jl)=P(2)va/2 L v, 2 2 1 j l - A + p +  1 "~ 
2 J 

L(c,a,b)= ~ exp(-c(2x+l))x" l ( x + l ) - h d x ,  
p.+ 

by Theorem 3.5 and (3.9). Taking a = (2 [jl + 2 +p  + 1 )/2, b = (2 [Jl - 2 +p  + 1)/2, and 
c = r + R e ( 2 ) ,  and then performing one integration, we see that 
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_ \ )~ /2  

(~§ e x p ( - - v ( 2 y +  1 ) ) y ~ - l ( y +  1)-bdy)dv~ 

{j ? :le(2)[ ~ xa-I(x+I)-bYff-I(Y+J)-K2-C(x+Y+ l) CF(c)dxdy �9 
+ ~ +  

We conclude this section by proving one half of  the main theorem. 

Corollary 4.4. I f  G is either SU( I ,n), Sp(1 ,n) or F,(_ 2o), then G is weakly amenable, 
and 

t l for SU(l,n) 
A 6 ~  2 n - I  for Sp(1,n). 

~21 for F41-2o) 

Proof. The calculations of  Theorem 3.7 of De Canni6re and Haagerup [11 ] can be 

easily modified to treat the groups SU(I,n), Sp (1, n) or F4<_2o ) rather than SOo(l,n) 
(see also [9], Theorem 1.3). We leave the details to the reader. Note that the 

arguments of [I 1, p. 484,1.1-9] do not apply to Sp (1, n) and F41_ 2o~. However by the 
definition ofA a it is sufficient to know, that q g ~  1 uniformly on compacta for a-~r  

(0 < o'< r). [] 

5. The lower bound for a G 

We have now established that A~ = 1 when G = SO(l ,  n) or SU(1, n), and that A~ 

< 2 n - 1  (respectively 21) when G = S p ( l , n )  (n>2)  (respectively Fa~_2o I. In this 
section we shall prove that A G > 2n - l (respectively 21) for these same groups, and 

thereby establish the main theorem. 
We shall work in the context of H-type groups again. Throughout this section, 

a denotesp/2, which we assume to be a integer. I f N i s  an H-type group, let A~ be the 

Laplace operator on N given by the formula 

q 

A~u(v,z)= - ~ ~2/(~t2u(v,z+togk )It=0 V(v,z)~N,  
k = l  

where {(ok} is an orthonormal basis of 3. Then it is obvious from (3.2) that, for any v 

in IR + and ~o in $3, 

Proposition 5.1. Consider the tempereddistribution q) R * A~ on N, where 4) R is as above 
(3.5). Then if R, v~IR +, o3ES3, and ~ is homoyeneous of  degree d in ~0 . . . .  

a~, ,~(~R,A~)~=(nv)P(R-v)a(R+v) ~ ;~. 

Consequently, i f  u ~ C~ (N), then 

f 
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Proof The Fourier transform formula follows from Proposition 3.3; then 

I[ I] here being the norm of operators on 5~,~. Therefore 

1< , A;  u>I <=  IluII . 

But (C~,*A~,u)=(ChR,A~)=~ exp(-R[vl2)AO(v,O)dv; letting R tend 

proves (5.1). [] 

to 0 

It is worth remarking that these distributions combining differentiation in the ,3- 
variable and integration in the o-variable have cropped up in the study of boundary 
value problems associated to pseudo-convex domains, and it was certainly known 
that such operators can have bounded Fourier transforms (see, e .g.D.  Geller and 
E.M. Stein [13]). However, we have not seen any exact calculations of their 
transforms published. 

Proposition 5.2. Suppose that f is a function in Q5 (IR), and that u : N--*C is de[i'ned by 

u(v,z)=f(41vl2+lvl4+lzl 2) V(v,z)cN.  
Then 

2P+bzVF(r/2) ~ f~")(4tz +t4)&V-idt. 
~(A~)(v '0)d*'=(-1)~o F(p)F(q/2) ~ 

Proof Write s for 41v[2+ [vl 4. By Taylor's theorem, with the integral form of the 
remainder, for any H in N. 

./~h~(s)lzl~ 11~t ~ 
u(v,z)= ~ hi § ~ (]z12-t)ufm+l'(s+t2)dt' 

h=0 �9 �9 0 

SO 

H 

h=0 

�9 f~h~(s) , 2h 1 tzl~ 
h! A~tzl +-~. A~ o ~ (Izl2-t)'* fIH+'~(s+tZ)dt" 

It is easy to check that 

A~lz[2~,= _ 2h(2h +q_2)[zlZh 2 
whence 

F(h+ 1)F(h+q/2) 
~;t-12h=(--1)a2. 

F(h+ 1 -a)  F(h+q/2-a)  

moreover, if H is at least p. then 

i=12 Iz? 
A~ ~ (Izl2-t)n fm+l)(s'+t2)dt= 

0 0 

where P is a polynomial. Consequently, 

Iz] 2h-z" ; 

(Iz[ 2 - t  ) P(z, t ) fm+l)(s + t2)dt, 

(A ~u)(v, 0 )= ( - l )~  

Substituting this in the integral over u and using polar coordinates finishes the 
proof. [] 
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Propos i t ion  5.3. Suppose that ji ~ Cr (IR ), that 1] J111 L, and that l im ./i = 1 locally 
i ~ cJc, 

unformly. Then 

ji(a)(4t2 +t4)t2p_, dt=~2)"l-1 l'(a). lira 
i ~ o e  ~ +  

Proq[i W e  c h a n g e  va r iab les ,  p u t t i n g  s = 4 + 4 t 2 +  t 4, and  in tegra te  by  p a r t s  to  get 

] oc, 

j" f~.~(4t  2 +t4)tg"-l dt=~ ! ]i ~"l(s-4)(sl/2 _2)p-ls-1/2ds 
N + 

_ ( - 1 )  ~ ~( 
f i(s-4) g'(s)ds, 

4 4 J 

where  g ( s ) =  (d/ds) a- ~ [(s ~/2 _ 2) p- ~s-1/z]-note t ha t  there  are  no b o u n d a r y  t e rms  as 

f~ has  c o m p a c t  s u p p o r t ,  and  as the first  p - 2  de r iva t ives  of  s~(s ~/2 - 2 ) V - i s  -~/2 

van i sh  when  s = 4. 

C lea r ly  g ' e  C ~ ( I R + ) ;  m o r e o v e r  

= Z [ ( h  - l ) / 2 ] . s ( h - P - 1 ) / 2 ( - 2 )  p-1 - h ,  
h=O 

where  ( p ; l ) i s  the u sua l  b i n o m i a l  coeff ic ient  and  [b],=b(b-l) . . . (b-a+l) .  
\ , , /  

W h e n  h = p  - 1, [(h - 1)/2],  = 0, and  when  h < p  - 1, s (h-p 1)/2 van ishes  at  least  as fast  

as s -3/2 at  inf ini ty.  C o n s e q u e n t l y ,  

[g'(s)l&'<~ ; 
4 

we m a y  the re fo re  a p p l y  the d o m i n a t e d  convergence  t h e o r e m  to deduce  t ha t  

lira ~ j y ( 4 t  z + t 4 ) t 2 v - l d t  - ( -1 )a  S g'(s)ds 
i ~  N+ 4 4 

- ( - : ) " [ J i m  g(s)-g(4) 1 

( - 1 ) "  
- l i r a  g(s). 

.s~c ~ 

W e  c o n c l u d e  b y  o b s e r v i n g  t ha t  

g (s) = ~ [(h - 1)/2]._ i s  (h- p + 1~/2 ( _ 2) p-  J - h, 
h=O 

and  as s tends  to  + 0% all t e rms  where  h<p-1  t ends  to  zero ,  whence  

lira O (s) = [a - 1 ]a_ 1 "  

s~oo 
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Theorem 5.4. Suppose that G is isomorphic to S p ( 1 , n ) ( n > 2 )  or to F~  2o), and that 

(vi) is a net oJ'C,, ~ (G)-fimctions so that II vi [] Mo < L andv i ~ 1 uniformly on compacta as' 
i ~ .  Then L > 2 n - i  (f  G = S p ( 1 , n )  and L > 2 1  i f  G=F4~_2o I. 

Proo f  As argued in Sect. ~, the existence of  such a net o f  funtions implies the 

existence of  a net (u~) of  C ~  (K\G/K)lN-functions satisfying llu~ 11B < L and tending to 

I uniformly on compacta .  By Theorem 2.5(b) and Proposi t ions 5.1, 5.2 and 5.3, 
and by Legendre 's  formula  for the F-function,  

F(r /2)F(p/2)  
lim~sup ]lu~l],>2v-~ F(q /2 )F(p )  

~ ' 2 n - 1  if p = 2 n - 2 ,  q = 3  

= [ 2 1  if p = 4 ,  q = 7  [] 

6. Applications to yon Neumann algebras 

Let 96 be a C*-algebra.  Fol lowing Haagerup  [16], we say that  ~,~I has the 

completely bounded approximat ion  proper ty  if there exists C in IR + and a net of  
finite-rank operators ,  ( T / : i c l )  say, on ~2l such that 

IIr, llcb <=c V i e I  
and 

lira I[T~x-xll=0 VxE~21, 
i 

where H ]bcb denotes the completely bounded operator norm. We denote by A(~a) 
the inf imum of  all values of  C for which there exist such nets. Similarly, a von 

N e u m a n n  algebra ~ is said to have the weak* completely bounded approx imat ion  

proper ty  if there exists C in IR + and a net of  ~r-weakly cont inuous finite-rank 
operators ,  (T~: i~I )  say, on ~.ll such that  

LIv, llcb__<c vi 1 
and (6.1) 

lira ( T ~ x , y ) = ( x , y )  Vxe~Jl,  Vye~JJ~,. 
i 

and we denote A (~JJl) the inf imum of  all values of  C for which such nets exist. It  is 

p robab ly  worth pointing out that, in both  cases, the inf imum is at tained,  but  we 

shall not need this here. 
It is convenient  to write A (~21) = oo or A (~JJ/) = ~ to indicate that  the C*-algebra  

~l or the von N e u m a n n  algebra ~)Jl does not have the corresponding approx imat ion  

property .  
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We may now rephrase two results from [16]: 

Proposition 6.1 [16]. Let  F be a discrete group. Then the following conditions are 

equivalent: 

(a) C * ( F )  has the completely bounded approximation property;  

(b) V N ( F )  has the weak* completely bounded approximation property;  

(c) F is weakly  amenable. 

Moreover,  A (C* (F)) = A ( V N ( F ) )  = A r. 

Proposition 6.2 [16]. Let  F be a lattice in a second countable locally compact group G. 

Then A r = A G. 

By virtue of  Proposition 1.3, this holds for lattices in arbitrary groups, but we 

shall not need this. We shall, however, need the following result. 

Proposition 6.3. Let 92l be a yon Neumann algebra with a f ini te  fa i th ful  trace z. Then 

Jor any yon Neumann subalgebra 9l o f  92l, 

A (91) < A (92l) . 

Proo f  We may and shall assume that A(92/) < oo. 

Let 91 be a v o n  Neumann subalgebra of  92l. Then there exists a weak* 

continuous trace-preserving completely positive conditional expectation E of 

onto 91 (in the sense o fH.  Umegaki [320, with the property that [I E lick = lIE(I)II = 1 
(see M. Nakamura,  M. Takesaki, and H. Umegaki [27]). 

Now i f (T i : i E I) is a net of a-weakly continuous finite-rank operators on M such 

that (6.1) holds, then 

and 

lim ( E T ~ x , y ) = ( E x ,  y ) = @ , y )  Vx~N,  V y ~ M , ,  
i 

from which the desired conclusion follows. [] 

We now come to the first of  our applications in the theory of yon Neumann 

algebras. 

Theorem 6.4. Let  F 1 and f f  2 be lattices in Sp (1, nl) and Sp (1,//2), where n 1 < n z . Then 

C*(F1) and C*(Fz) are not isomorphic as C*-alyebras, and VN(F1) and VN(F2) are 

not isomorphic as yon Neumann algebras; indeed, VN(F2) cannot be embedded in 

VN(Ft)  as a yon Neumann subalgebra. 

ProoJ~ By our main theorem, and Propositions 6.1 and 6.2, 

A(C*(F1)  ) = A(VN(F1)  ) = At1 = 2n 1 - 1 

< 2n 2 - 1 = At2 = A (VN(F2)) = A (C* (El)),  

so neither the two C*-algebras nor the two von Neumann algebras can be 

isomorphic. The rest of  the theorem follows from Proposition 6.3. [] 

It is well known that, if F is an infinite discrete group, then V N ( F )  is a factor 

(necessarily of type II~) it and only if all the conjugacy classes of F except {e} are 
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infinite (see, for instance, S. Sakai [30], p. 182). We write ICC for the class of  such 

groups. The following lemma shows that lattices in Sp (1, n) are "a lmos t"  ICC- 
groups. 

Lemma 6.5. Let G be a connected semisimple Lie group with finite centre, and let F be 
a lattice in G. Then {y ~xy : y~F}  has cardinality 1 i f x  is in the centre of G and 
is infinite otherwise. 

Proof. By factoring out the centre of  G, we may assume that G is algebraic. 

We shall show that x is central in G if its F-conjugacy class is finite. Indeed, if the 

conjugacy class is finite - 

b' ..... x.}- 
then the set 

0/g a:g-lxg--x,/ 
i = 1  

is a Zariski-closed subset o f G  containg F, and hence is all of  G, by the Borel density 

theorem (which states that F is Zariski dense in G - see [2]). As G is connected, 

g - l x g = x  for all g in G, as required. [] 

We shall now construct  our examples. 

As was proved by A Borel and Har ish-Chandra  [3], every arithmetic sub- 

group of  Sp (1, n) (n ~ IN) is a lattice. In particular, we denote by IHin t the quater- 

nionic integers 7 / + 7 Z i + 7 l j + Z k ;  then the subgroup F, of  Sp (1, n) consisting of  

(n + 1)x (n + 1) matrices with entries in 1Hin t which preserve the bilinear form Q - 

Q(x ,y )=yoXo-  ~ f,,xm. 
m = l  

where x = (x 0 , x x . . . . .  x,)  and y = (Yo,)'1 . . . . .  y , )  lie in IH" + 1 _ is a lattice in Sp (1, n). 

The centre o f  Sp(1,n)  consists o f  two elements (_+I). 

Corollary 6.6. Let F ~ = F,\( + I), n > 2. Then fOl, = VN ( F ~ ) is a 111 -factor and A (~1,) 
= 2 n - 1 .  

Proof. Lemma 6.5 applied to G = Sp(1, n)/( + I) shows that F ~ is ICC, so ~Jl, is a H 1- 

factor. Moreover  A OJl,) = 2n - 1, because At ,  = Aro by Proposi t ion 1.3 (c). [] 

N o w  we write ~Jl for t he / / z - f ac to r  VN(F2~ and 9Jl@" for the n-fold spatial 

tensor product  ~JlQgJl(~...~)~Jl, which is isomorphic to VN(F{,)), the yon 

Neumann  algebra o f  the n-fold product  F ~ x F2 ~ x . . .  F2 ~ 

Corollary 6.7. I f  ~ @ "  is as just deigned, then A(gJl(~")=3",  and ?0~, ~Jl@~Jl, 
?0~ @?0~ @?iJl . . . . .  are all non-isomorphic H 1-factors. 

Proof. By Proposit ion 6.2 and Corol lary 1.5, 

A(gJI@')=Ar~,=3". [] 
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Remarks. (a) A.  C o n n e s  f o u n d  in 1975 a n o t h e r  e x a m p l e  o f a  l l l - f a c t o r ,  such tha t  its 

t ensor  p o w e r s  are  all n o n - i s o m o r p h i c  (cf. [6], Co ro l l a i r e  5). 

(b) B. K o s t a n t  [24] showed  that ,  i fn  > 2, then  Sp (1, n) has  D. A. K a z h d a n ' s  [22] 

" p r o p e r t y  T " ;  it fo l lows  tha t  F,  and F ~ also have  this p roper ty .  The  von  N e u m a n n  

a lgebras  9J~, ( n > 2 )  o f  C o r o l l a r y  6.6 and  ~J~(~" ( n >  l)  o f  C o r o l l a r y  6.7 the re fo re  

have  P r o p e r t y  T, in the  sense o f  A.  C o n n e s  and  V. F. R.  Jones  [7]. 

(c) We  do  no t  k n o w  w h e t h e r  A(gJ~@9I)=AOJ~)A(~) for  all v o n  N e u m a n n  

a lgebras  ~J~ and  9L By C o r o l l a r y  1.5 the f o r m u l a  ho lds  w h e n  M and  N are  von  

N e u m a n n  a lgebras  a s soc ia t ed  wi th  two  discrete  groups .  

(d) By P r a s a d ' s  ex t ens ion  o f  M o s t o w ' s  r ig id i ty  t h e o r e m  [29], lat t ices in 

Sp (1, ! 1) and  F~_20  ) c a n n o t  be i somorph ic .  We  do  no t  k n o w  if the i r  v o n  N e u m a n n  

a lgebras  are  n o n - i s o m o r p h i c .  S imi la r  c o m m e n t s  app ly  a b o u t  la t t ices  in any  two  

semis imple  Lie g r o u p s  G1 and  G2, where  A~l = A62. See, for  ins tance,  R. J. Z i m m e r  

[33] for  m o r e  i n f o r m a t i o n  on  r igidity.  
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