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COMPLETELY MONOTONIC FUNCTIONS INVOLVING
THE GAMMA AND q-GAMMA FUNCTIONS

ARCADII Z. GRINSHPAN AND MOURAD E. H. ISMAIL

(Communicated by Carmen C. Chicone)

Abstract. We give an infinite family of functions involving the gamma func-
tion whose logarithmic derivatives are completely monotonic. Each such func-
tion gives rise to an infinitely divisible probability distribution. Other similar
results are also obtained for specific combinations of the gamma and q-gamma
functions.

1. Introduction

We first recall some definitions and basic facts. A function f is completely
monotonic if for all n, (−1)nf (n)(x) ≥ 0 on (0,∞); see Feller [12] and Widder [27]
for properties of completely monotonic functions. Bernstein’s theorem asserts that
f is completely monotonic if and only if f(x) =

∫
R

e−xtdµ(t) where µ is a positive
measure supported on a subset of [0,∞). A probability measure is called infinitely
divisible if for every n, n = 1, 2, . . . , there exists a probability measure µn such
that µ is an n-fold convolution of µn. The Lévy-Khinchin theorem characterizes
infinitely divisible measures supported on a subset of [0,∞) as those measures whose
Laplace transform is of the form f(x) = e−h(x) and h′ is completely monotonic.
This holds in a wider sense without the standard normalization f(0) = 1, and also
for f(0) = ∞ (cf. [8]). We remind the reader that any function f(x) = e−h(x) is
completely monotonic if h′ is completely monotonic. We call such functions f(x)
logarithmically completely monotonic [8, 24, 25]. Berg [8] points out that these
functions are the same as those studied by Horn [20] under the name infinitely
divisible completely monotonic functions. The subject of deriving inequalities for
combinations of gamma functions is an old subject and some of the early works
are by Kazarinoff [23], Watson [26], and Gautschi [14], [15]. These papers provide
bounds for quotients of products of gamma functions. In the 1980s Ismail et al.,
[21], [9], realized that some of the inequalities are consequences of the complete
monotonicity of functions of similar structure. We continue to witness progress in
this area as can be seen from the more recent works [1, 2, 3, 4, 6, 22] (see also [5]).
This paper is a further contribution to the subject.
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In Section 2 we prove Theorems 1.1 and 1.2 below. Before stating them we need
some notation. Let Sn be the symmetric group over n symbols, a1, a2, . . . , an. Let
On and En be the sets of odd and even permutations over n symbols, respectively.
Finally, let Pn,k (k = 1, . . . , n) be the set of all vectors m = (m1, . . . , mk) whose
components are natural numbers such that 1 ≤ mν < mµ ≤ n for 1 ≤ ν < µ ≤ k;
and let Pn,0 be the empty set.

Theorem 1.1. Let a1 > a2 > · · · > an > 0 and define

F (x) =

∏
σ∈En

[
Γ(x + aσ(2) + 2aσ(3) + · · · + (n − 1)aσ(n))

]
∏

σ∈On

[
Γ(x + aσ(2) + 2aσ(3) + · · · + (n − 1)aσ(n))

] .(1.1)

Then F (x − a2 − 2a3 − · · · − (n − 1)an) is logarithmically completely monotonic.

Observe that
n∑

k=1

(k − 1)(aσ(k) − ak) ≥ 0

holds for any permutation σ when a1 > a2 > · · · > an > 0. This follows from
Theorem 368 of Section 10.2 in Hardy, Littlewood, and Pólya [19]. Therefore
F (x − a2 − 2a3 − · · · − (n − 1)an) is defined for x > 0.

Theorem 1.2 below is more general than Theorem 1.1. It is also a generalization
of a result in Bustoz and Ismail [9] which corresponds to the case n = 2 in Theorem
1.2. The Ismail-Bustoz result is that the function

g(x) =
Γ(x)Γ(x + a + b)
Γ(x + a)Γ(x + b)

(1.2)

is completely monotonic for any a, b ≥ 0.

Theorem 1.2. For any ak > 0 (k = 1, . . . , n), define

Fn(x) =
Γ(x)

∏[n/2]
k=1

[∏
m∈Pn,2k

Γ(x +
∑2k

j=1 amj
)
]

∏[(n+1)/2]
k=1

[∏
m∈Pn,2k−1

Γ(x +
∑2k−1

j=1 amj
)
] .(1.3)

Then Fn(x) is logarithmically completely monotonic. Any product of functions of
the type (1.3) with different parameters ak is logarithmically completely monotonic
as well.

In addition, note that Fn(x) = Fn−1(x)/Fn−1(x+an) if Fn and Fn−1 are defined
in (1.3) by the same parameters ak. Also limFn(x)an→∞ = Fn−1(x), n > 2.

Here are some consequences of Theorem 1.2.

Corollary 1.3. For a > 0 and n = 1, 2, . . . , let

Ln(x) =
∏[n/2]

k=0 Γ( n
2k)(x + 2ka)∏[(n+1)/2]

k=1 Γ( n
2k−1)(x + (2k − 1)a)

.(1.4)

Then Ln(x) is logarithmically completely monotonic.

Corollary 1.4. The function

Γ(x)Γ(x + α + β)Γ(x + λ + α)Γ(x + λ + β)
Γ(x + α)Γ(x + β)Γ(x + λ)Γ(x + λ + α + β)

(1.5)

with nonnegative parameters α, β, λ is logarithmically completely monotonic.
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Corollary 1.5. Let

f(x) =
Γ(x) Γ(x + α + β + γ + δ)

Γ(x + λ + α + β + γ + δ)Γ(x + λ)

×Γ(x + λ + α + γ)Γ(x + λ + β + δ)
Γ(x + α + δ) Γ(x + β + γ)

.

(1.6)

Then f(x) is logarithmically completely monotonic when min{λ, α, β, γ, δ} ≥ 0 and
(β − α)(δ − γ) > 0.

Note that the function Fn(x) reduces to Ln(x) when ak = a (k = 1, . . . , n).
Function (1.5) is a function of the type (1.3) for n = 3. According to our observa-
tion, the limiting case λ → ∞ of the function appearing in (1.5) is function (1.3) for
n = 2, i.e. function (1.2) of Bustoz and Ismail [9]. Function (1.6) is a product of two
functions of the type (1.3), namely: F2(x + α + γ) with a1 = δ − γ and a2 = β − α
(if δ > γ and β > α), and F3(x) with a1 = α + γ, a2 = β + δ, and a3 = λ. There is
an interesting connection between function (1.6) and the bi-Hermitian form of the
general inequalities for fractional integrals and some values of the gamma function
[17] (see also [16, 18] for related results).

The q-gamma function is, [13],

Γq(z) := (1 − q)1−z
∞∏

n=0

1 − qn+1

1 − qn+z
, 0 < q < 1.(1.7)

The q-gamma function extends the gamma function in the sense that

lim
q→1−

Γq(z) = Γ(z).(1.8)

There are few known monotonicity properties of the q-gamma function; see [21] and
[22]. One of the results proved in Ismail and Muldoon’s work [22] is that both

∏n
k=1 Γq(x + ak)
Γn

q (x + a)
, a :=

1
n

n∑
k=1

ak,(1.9)

and

Γn−1
q (x) Γq(x + a1 + a2 + · · · + an)∏n

k=1 Γq(x + ak)
(1.10)

are logarithmically completely monotonic for 0 < q ≤ 1 and ak > 0. In Section 3
we extend Theorems 1.1 and 1.2 to the q-gamma function and generalize the results
from [22].

2. Proofs of Theorems 1.1 and 1.2

A basic tool used in the proofs of Theorems 1.1 and 1.2 is the integral represen-
tation

Γ′(z)
Γ(z)

= −γ +
∫ 1

0

1 − tz−1

1 − t
dt, � z > 0,(2.1)

where γ is the Euler constant, [11, p. 16].
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Lemma 2.1. Let αk and βk (k = 1, . . . , n) be real numbers such that
∑n

k=1 αk = 0
and βk ≥ 0 for all k. Then

u(x) =
n∏

k=1

Γαk(x + βk)(2.2)

is logarithmically completely monotonic if and only if

v(t) =
n∑

k=1

αktβk ≥ 0(2.3)

for all t ∈ (0, 1].

Note that functions of the form (2.3) are called Müntz polynomials. Also note
that Lemma 2.1 can be generalized for functions of the type

u(x) = exp
{∫

E

log Γ[x + β(y)]dα(y)
}

,

where α(y) is a finite measure on a set E, α(E) = 0, and a nonnegative-valued
function β(y) satisfies the following condition:

∫
E

tβ(y)dα(y) ≥ 0 for all t ∈ (0, 1].
In the next section a similar remark can be made on a generalization of Lemma
3.1.

Proof of Lemma 2.1. Since u(x) > 0 on (0,∞) we let h(x) = − log u(x). Clearly
the integral representation (2.1) implies

h′(x) =
∫ 1

0

tx−1

1 − t
v(t) dt.(2.4)

�

Proof of Theorem 1.1. We use Lemma 2.1. The function v(t) defined by (2.3) equals∑
σ∈En

taσ(2)+2aσ(3)+···+(n−1)aσ(n) −
∑

σ∈On

taσ(2)+2aσ(3)+···+(n−1)aσ(n) .

Hence

v(t) =
∑

σ∈Sn

sign(σ)taσ(2)t2aσ(3) . . . t(n−1)aσ(n)

or

v(t) = V(ta1 , ta2 , . . . , tan),

where V stands for a Vandermonde determinant. Therefore

v(t) =
∏

1≤j<k≤n

[tak − taj ] ≥ 0

for t ∈ (0, 1]. �

Proof of Theorem 1.2. In this case

v(t) =
n∑

k=0

(−1)k
∑

m∈Pn,k

t
∑k

j=1 amj .
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Thus

v(t) = 1 −
n∑

j=1

taj +
∑

m∈Pn,2

tam1+am2 − · · · + (−1)nt
∑n

j=1 aj ,

and we have v(t) =
∏n

k=1(1 − tak) ≥ 0. �

3. q-gamma function results

In Lemma 3.1 we use functions of the form (2.3) as they have already been used
in Lemma 2.1.

Lemma 3.1. Let αk and βk (k = 1, . . . , n) be real numbers such that
∑n

k=1 αk = 0
and βk ≥ 0 for all k. Then

u(x, q) =
n∏

k=1

Γαk
q (x + βk)(3.1)

is logarithmically completely monotonic in x (q ∈ (0, 1)) if

v(t) =
n∑

k=1

αktβk ≥ 0

for all t ∈ (0, 1].

The analogue of (2.1) to be used here is

∂xΓq(x)
Γq(x)

= − log(1 − q) + log q

∞∑
m=0

qm+x

1 − qm+x
,(3.2)

which follows from (1.7).

Proof of Lemma 3.1. Clearly

∂xu(x, q)
u(x, q)

=
n∑

k=1

αk
∂xΓq(x + βk)
Γq(x + βk)

= log q

n∑
k=1

αk

∞∑
m=0

qm+x+βk

1 − qm+x+βk

= log q

∞∑
m=0

∞∑
l=1

q(m+x)lv(ql) ≤ 0,

which is a discrete analogue of the integral representation arising in the proof of
Lemma 2.1. The rest of the proof is obvious. �

The functions in (1.9) and (1.10) satisfy the condition of Lemma 3.1. Indeed, in
the first case v(t) =

∑n
k=1 tak−nta, and one can use the arithmetic mean–geometric

mean inequality to show that v(t) is not negative on t ∈ (0, 1]. In the second case
v(t) = n− 1 + t

∑n
k=1 ak −

∑n
k=1 tak . The nonnegativity of this function on t ∈ (0, 1]

is a consequence of two facts: v′(t) < 0 and v(1) = 0.

Theorem 3.2. Let a1 > a2 > · · · > an > 0 and define

F (x, q) =

∏
σ∈En

[
Γq(x + aσ(2) + 2aσ(3) + · · · + (n − 1)aσ(n))

]
∏

σ∈On

[
Γq(x + aσ(2) + 2aσ(3) + · · · + (n − 1)aσ(n))

] .(3.3)
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Then F (x− a2 − 2a3 − · · ·− (n− 1)an, q) is a logarithmically completely monotonic
function of x.

Proof of Theorem 3.2. The proof is similar to the proof of Theorem 1.1, but now
we use Lemma 3.1. Clearly the function v(t) in this case equals the Vandermonde
determinant V(ta1 , ta2 , . . . , tan). Thus

v(t) =
∏

1≤j<k≤n

[tak − taj ] ≥ 0. �

Theorem 3.3. Let ak > 0 (k = 1, . . . , n). Define

Fn(x, q) =
Γq(x)

∏[n/2]
k=1

[∏
m∈Pn,2k

Γq(x +
∑2k

j=1 amj
)
]

∏[(n+1)/2]
k=1

[∏
m∈Pn,2k−1

Γq(x +
∑2k−1

j=1 amj
)
] .(3.4)

Then Fn(x, q) is a logarithmically completely monotonic function of x. Any prod-
uct of functions (3.4) with different parameters ak is a logarithmically completely
monotonic function of x.

Proof of Theorem 3.3. The proof is similar to the proof of Theorem 1.2. We use
Lemma 3.1. The function v(t) =

∏n
k=1(1 − tak) ≥ 0. �

Corollary 3.4. For a > 0 and n = 1, 2, . . . , let

Ln(x, q) =
∏[n/2]

k=0 Γ( n
2k)

q (x + 2ka)∏[(n+1)/2]
k=1 Γ( n

2k−1)
q (x + (2k − 1)a)

.(3.5)

Then Ln(x, q) is a logarithmically completely monotonic function of x.

Corollary 3.5. The function

Γq(x)Γq(x + α + β)Γq(x + λ + α)Γq(x + λ + β)
Γq(x + α)Γq(x + β)Γq(x + λ)Γq(x + λ + α + β)

(3.6)

with nonnegative parameters α, β, λ is logarithmically completely monotonic in x.

Corollary 3.6. Let

f(x, q) =
Γq(x) Γq(x + α + β + γ + δ)

Γq(x + λ + α + β + γ + δ)Γq(x + λ)

×Γq(x + λ + α + γ)Γq(x + λ + β + δ)
Γq(x + α + δ) Γq(x + β + γ)

.

(3.7)

Then f(x, q) is logarithmically completely monotonic in x when min{λ, α, β, γ, δ} ≥
0 and (β − α)(δ − γ) > 0.
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