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Let $M_{i}$ and $N_{i}$ be von Neumann algebras and $\tau_{i}$ be completely positive maps
from $M_{i}$ to $N_{i}(i=1,2)$ . Then there exists a completely positive map $\tau_{1}\otimes\tau_{2}$

(called the product map of $\tau_{1}$ and $\tau_{2}$) from the spatial $C^{*}$-tensor product $M_{1}\otimes_{a}M_{2}$

to the spatial $C^{*}$-tensor product $N_{1}\otimes_{\alpha}N_{2}$ such that $\tau_{1}\otimes\tau_{2}(a\otimes b)=\tau_{1}(a)\otimes\tau_{2}(b)$ .
Moreover, when $N_{1}$ and $N_{2}$ are von Neumann subalgebras of $M_{1}$ and $M_{2}$ and
both $\tau_{1}$ and $\tau_{2}$ are projections of norm one to $N_{1}$ and $N_{2}$ it is known ([6], [9])

that the map $\tau_{1}\otimes\tau_{2}$ can further be extended, without the normality of $\tau_{1}$ and $\tau_{2}$ ,

to the von Neumann tensor product $M_{1}\otimes M_{2}-$ so that the resulting extension $\tau$

becomes a projection of norm one of $M_{1}\otimes M_{2}-$ to the von Neumann subalgebra
$N_{1}\otimes N_{:}-$ . This result is used to show a basic fact for injective von Neumann
algebras; if $M$ and $N$ are injective von Neumann algebras, then $M\otimes N-$ is in-
jective ([6], [9]).

In Section 2 we shall show that the completely positive extension of $\tau_{1}\otimes\tau_{2}$

to the algebra $M_{1}\otimes M_{2}-$ always exists for a couple of completely positive maps
$(\tau_{1}, \tau_{2})$ . In the proof, regarding the positive elements of $M_{1}\overline{\otimes}M_{2}$ as completely
positive maps from $M_{1*}$ to $M_{2}$ , we construct it.

Next in Section 3, we determine the normal part (a-weakly continuous part)

of the above extention in terms of the normal part of $\tau_{1}$ and $\tau_{2}$ . The correspond-
ing result for projections of norm one ([11; Theorem 3.1]) is used to classify
certain types of maximal abelian subalgebras.

1. Preliminaries.

Let $M$ and $N$ be von Neumann algebras. We denote by $M^{*}$ and $M_{*}$ , the
dual of $M$ and the predual of $M$, and by $M\otimes N$ and $M\otimes N-$, the algebraic tensor
product of $M$ and $N$ and the von Neumann tensor product of $M$ and $N$ respec-
tively. For each $\phi\in M_{*}$ (resp. $\psi\in N_{*}$ ) we can define a a-weakly continuous
linear map $R_{\phi}$ of $M\overline{\otimes}N$ to $N$ (resp. $L_{\psi}$ of $M\otimes N-$ to $M$ ) which we call the right
slice map (resp. left slice map) such that

$R_{\phi}(a\otimes b)=\langle a, \phi\rangle b$

(resp. $L_{\psi}(a\otimes b)=\langle b,$ $\psi\rangle a$).
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These two kinds of maps are related in the following way,

$\langle x, \phi\otimes\psi\rangle=\langle R_{\phi}(x), \psi\rangle=\langle L_{\psi}(x), \phi\rangle$ .
As we shall often use this relation we call this the Fubini type principle of
slice maps. Using the right slice map (resp. left slice map), for an element $x$

of $M\overline{\otimes}N$ we define a linear map $r(x):M_{*}\rightarrow N$ (resp. l(x): $N_{*}\rightarrow M$ ) such that

$r(x)(\phi)=R_{\phi}(x)$ (resp. $1(x)(\psi)=L_{\psi}(x)$).

Furthermore for each $\phi\in M^{*}$ , we can define a bounded linear map $R_{\phi}$ of $M\otimes N-$

to $N$ :
$\langle R_{\phi}(x), \psi\rangle=\langle L_{\psi}(x), \phi\rangle$ for all $\psi\in N_{*}$ ,

which we call the generalized right slice map. Similarly we can define the
generalized left slice map for each $\psi\in N^{*}$ . Using them, for each $x\in M\otimes N-$ we
can also define a linear map $r_{g}(x):M^{*}\rightarrow N$ (resp. $l_{g}(x):N^{*}\rightarrow M$ ) such that

$r_{g}(x)(\phi)=R_{\phi}(x)$ (resp. $l_{g}(x)(\psi)=L_{\psi}(x)$).

We note that $r_{g}(x)$ (resp. $l.(x)$) is an extension of $r(x)$ (resp. $l(x)$ ), which is
continuous for the weak* and a-weak topologies in $M^{*}$ and $N$.

LEMMA 1. The transposed map ${}^{t}(r(x))$ of $r(x)$ is equal to $l_{g}(x)$ . Similarly
${}^{t}(l(x))$ is equal to $r_{g}(x)$ .

PROOF. For $\phi\in M_{*}$ and $\psi\in N^{*}$ , we have

$\langle l_{g}(x)(\psi), \phi\rangle=\langle L_{\varphi^{\prime}}(x), \phi\rangle=\langle R_{\phi}(x), \psi\rangle$

$=\langle r(x)(\phi), \psi\rangle=\langle{}^{t}(r(x))(\psi), \phi\rangle$ ,
hence $l_{g}(x)={}^{t}(r(x))$ .

Let $E$ and $F$ be either $c*$-algebras or closed subspaces of duals of $C^{*}-$

algebras. We denote by $M_{n}(E)$ the $n\times n$ matrix space over $E$ . A map $\tau$ of $E$

to $F$ is said to be completely positive if the map $\tau_{n}$ ; $[a_{i.j}]\in M_{n}(E)\rightarrow[\tau(a_{i.j})]$

$\in M_{n}(F)$ is positive for every positive integer $n$ . Let $L(M_{*}, N)$ (resp. $L(M^{*},$ $N)$)

be the space of all linear maps of $M_{*}$ to $N$ (resp. $M^{*}$ to $N$) in which we
consider the order induced by the cone $L(M_{*}, N)^{\oplus}$ (resp. $L(M^{*},$ $N)^{\oplus}$) of all
completely positive maps. We can regard that $r$ (resp. $r_{g}$ ) is a linear map from
$M\otimes N-$ into $L(M_{*}, N)$ (resp. $L(M^{*},$ $N)$). The following characterization of the
von Neumann tensor product $M\otimes N-$ is proved by E. G. Effros in [4]. We
includes here the proof for readers’ convenience.

THEOREM 2. Set
$(M\otimes N)_{1}^{+}=-\{x\in M\otimes N:0\leqq x\leqq 1\otimes 1\}-$ ,

then the map $r$ is an order isomorphjsm between the set $(M\overline{\otimes}N)_{1}^{+}$ and the set of
completely Positive maps $\{\tau\in L(M_{*}, N):0\leqq\tau\leqq r(1\otimes 1)\}$ . Similar result also holds
for the map $l$.
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Moreover, the map $r_{g}$ and $l_{g}$ are order isomorphisms from $(M\otimes N)_{1}^{+}-$ into
the sets $\{\tau\in L(M^{*}, N):0\leqq\tau\leqq r_{g}(1\otimes 1)\}$ and $\{\rho\in L(N^{*}, M):0\leqq\rho\leqq l_{g}(1\otimes 1)\}$

respectively.
PROOF. Assume that the von Neumann algebras $M$ and $N$ act standardly

on the space $H$ and $K$ (cf. [5]), then one easily verifies that the algebras
$M_{n}(M)$ and $M_{n}(N)$ act also standardly on the $n^{2}$-fold copy spaces $H^{n^{2}}$ and $K^{n^{2}}$

of $H$ and $K$. Let $\phi$ and $\psi$ be normal states of $M_{n}(M)$ and $M_{n}(N)$ , then by [5;

Lemma 2.10] they are vector states $i$ . $e$ . $\phi=\omega(\xi),$ $\psi=\omega(\eta)$ for unit vectors
$\xi=(\xi_{i.j})\in H^{n^{2}}$ and $\eta=(\eta_{i.j})\in K^{n^{2}}$ . Write $\phi=[\phi_{i.j}]$ and $\psi=[\psi_{i,j}]$ , then
$\phi_{i.j}=\sum_{s}\omega(\xi_{j,s}, \xi_{i,s})$ and $\psi_{i.j}=\sum_{s}\omega(\eta_{j.s}, \eta_{i,s})(i, j, s=1, \cdots , n)$ . For every element

$x$ in $M\overline{\otimes}N$ we have

$\langle r(x)_{n}(\phi), \psi\rangle=\langle[r(x)(\phi_{i.j})], [\psi_{i,j}]\rangle=\sum_{i.j}\langle R_{\phi_{i,j}}(x), \psi_{l,j}\rangle$

$=\sum_{i.j}\langle x, \phi_{i,j}\otimes\psi_{i.j}\rangle=\sum_{i.js}\sum_{t}(x(\xi_{j.t}\otimes\eta_{j,s})|\xi_{i,t}\otimes\eta_{i,s})$

$=\sum_{s,t}(x(\sum_{i}\xi_{i.t}\otimes\eta_{i,s})|\sum_{i}\xi_{i.t}\otimes\eta_{i,s})$ .

Hence, $x\geqq 0$ if and only if $r(x)_{n}$ is a positive map for every positive integer
$n$ , that is, $r(x)\geqq 0$ in $L(M_{*}, N)$ . It follows that $0\leqq x\leqq 1\otimes 1$ is equivalent to
$0\leqq r(x)\leqq r(1\otimes 1)$ in $L(M_{*}, N)$ .

We assert next that the map $r$ is an onto map. Let $\tau$ be a map in $L(M_{*}, N)$

such that $0\leqq\tau\leqq r(1\otimes 1)$ in $L(M_{*},N)$ . Then the product form $[$ $]$ . on the
algebraic tensor product $H\otimes K$

$[\sum_{i=1}^{n}\xi_{i}\otimes\eta_{i}|\sum_{i=1}^{n}\xi_{i}^{\prime}\otimes\eta_{i}^{\prime}]_{\tau}=\sum_{i,\prime}\langle\tau(\omega(\xi_{i}, \xi_{j}^{\prime})), \omega(\eta_{i}, \eta_{j}^{\prime})\rangle$

$=\langle\tau_{n}([\omega(\xi_{i}, \xi_{j}^{\prime})]), [\omega(\eta_{i}, \eta_{j}^{\prime})]\rangle$

is well-defined and positive definite by the assumption for $\tau$ . Moreover, we get
the inequality;

$0\leqq[\sum_{i=1}^{n}\xi_{i}\otimes\eta_{i}|\sum_{i\subset 1}^{n}\xi_{i}\otimes\eta_{i}]_{\tau}$

$=\langle\tau_{n}([\omega(\xi_{i}, \xi_{j})]), [\omega(\eta_{i}, \eta_{j})]\rangle$

$\leqq\langle r(1\otimes 1)_{n}([\omega(\xi_{i}, \xi_{j})]), [\omega(\eta_{i}, \eta_{j})]\rangle$

$=\sum_{i,j}\langle R_{\omega(\xi_{i},\xi_{j})}(1\otimes 1), \omega(\eta_{i}, \eta_{j})\rangle$

$=\sum_{i,j}(\xi_{i}|\xi_{j})(\eta_{i}|\eta_{j})$
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$=\Vert\sum_{i=1}^{n}\xi_{i}\otimes\eta_{i}\int^{2}$

Then the form $[|]_{\tau}$ can be extended to the completion $H\otimes_{\sigma}K$ of $H\otimes K$ and
there exists an operator $a\in B(H\otimes_{\sigma}K)$ such that $0\leqq a\leqq 1$ and $[\zeta|\kappa]_{\tau}=(a\zeta|\kappa)$ for
every $\zeta,$ $\kappa\in H\otimes_{\sigma}K$. It follows that we have,

$(\tau(\omega(\xi, \xi^{\prime})|M)\eta|\eta^{\prime})=[\xi\otimes\eta|\xi^{\prime}\otimes\eta^{\prime}]_{\tau}$

$=(a(\xi\otimes\eta)|\xi^{\prime}\otimes\eta^{\prime})$

$=(R_{\omega(\xi.\xi^{\prime})}(a)\eta|\eta^{\prime})$

where $R_{\omega(\xi,\xi^{\prime})}$ is the right slice map in $B(H)\overline{\otimes}B(K)$ with respect to the vector
functional $\omega(\xi, \xi^{\prime})$ on $B(H)$ . Hence, $R_{\omega(\xi.\xi^{i})}(a)=\tau(\omega(\xi, \xi^{\prime})|M)\in N$.

Next let $\phi$ be a $\sigma$ -weakly continuous functional on $M$ and let $\phi=|\phi|v$ be
the polar decomposition of $\phi$ (cf. [3; Chap. 1 \S 4.7]). There is a vector $\xi$ in
$H$ such that $|\phi|=\omega(\xi)|M$, then $\phi=\omega(\xi, v^{*}\xi)|M$ and

$\Vert\phi\Vert=\Vert|\phi|\Vert=\Vert\xi\Vert^{2}=\Vert\xi\Vert\Vert v^{*}\xi\Vert$ .
Therefore,

$\Vert\tau(\phi)\Vert=\Vert\tau(\omega(\xi, v^{*}\xi)|M)\Vert$

$=\Vert R_{\omega(\xi.v^{*}\xi)}(a)\Vert$

$\leqq\Vert\xi\Vert\Vert v^{*}\xi\Vert$

$\leqq\Vert\phi\Vert$

$i$ . $e$ . $\Vert\tau\Vert\leqq 1$ .
Thus, $\tau$ is norm continuous and we see that $\tau(\phi|M)=R_{\phi}(a)\in N$ for every

$\phi\in B(H)_{*}$ . Moreover, if we consider the transposed map ${}^{t}\tau$ from $N^{*}$ to $M$, we
have, for every vector state $\omega(\eta)$ on $B(K)$ ,

$(L_{\omega()}\eta(a)\xi|\xi)=(a(\xi\otimes\eta)|\xi\otimes\eta)$

$=\langle\tau(\omega(\xi)|M), \omega(\eta)|N\rangle=\langle{}^{t}\tau(\omega(\eta)|N), \omega(\xi)|M\rangle$

$=(t\tau(\omega(\eta)|N)\xi|\xi)$

where we distinguish the state $\omega(\eta)$ from its restriction $\omega(\eta)|N$ to the von
Neumann algebra $N$. Thus, $L_{\omega()}\eta(a)={}^{t}\tau(\omega(\eta)|N)$ and, by the norm continuity
of both members, $L_{\psi}(a)={}^{t}\tau(\psi|N)\in M$ for every $\psi\in B(K)_{*}$ . It follows from [10;

Theorem 2.1] that the operator $a$ belongs to $M\otimes N-$ and apparently we have
$ r(a)=\tau$ . This completes the proof.

For the assertions for the maps $r_{g}$ and $l_{g}$ , they are immediate consequences
of Lemma 1.1 and the fact that the transposed map of a completely positive
map is also completely positive.
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It is noticed that the image of $(M\otimes N)_{1}^{+}-$ by the map $r_{g}$ is the set of com-
pletely positive map $\tau’ s$ which are continuous for the weak* and a-weak
topology and satisfy $0\leqq\tau\leqq r_{g}(1\otimes 1)$ . Hence, $r_{g}$ may not be an onto map to the
set $\{\tau : M^{*}\rightarrow N:0\leqq\tau\leqq r_{g}(1\otimes 1)\}$ in general.

2. Product maps of completely positive maps in the tensor product of
von Neumann algebras.

In this section we prove the existence theorem of product completely
positive maps by using Theorem 2.

Let $M_{i}$ and $N_{l}(i=1,2)$ be von Neumann algebras and $\tau_{i}$ : $M_{i}\rightarrow N_{i}$ be com-
pletely positive maps. In order to avoid rather complicated notations such as
$r_{M_{1}\overline{\otimes}M_{2}},$ $r_{M_{1}\overline{\otimes}N_{2}}$ etc., we use, in the following arguments, the same notation of
the map $r$ (also 1, $r_{g}$ and $l_{g}$ ) to mean the canonical representation of the tensor
product algebras in Theorem 2. We also employ the same way to denote
identities of various von Neumann algebras, $i$ . $e$ . just writing as 1 in place of
$l_{M_{1}},$ $l_{N_{1}}$ etc.

THEOREM 3. In the above setting there exists a comPletely Positive maP $\tau$

from $M_{1}\overline{\otimes}M_{2}$ to $N_{1}\overline{\otimes}N_{2}$ such that

$\tau(a\otimes b)=\tau_{1}(a)\otimes\tau_{2}(b)$

for every $a\in M_{1}$ and $b\in M_{2}$ .
PROOF. We assume first that $\tau_{1}$ and $\tau_{2}$ are unital. We shall show that

there exists a completely positive map $\rho_{2}$ from $M_{1}\otimes M_{2}-$ to $M_{1}\overline{\otimes}N_{2}$ such that

$\rho_{2}(a\otimes b)=a\otimes\tau_{2}(b)$ .
Take an element $x$ of $(M_{1}\otimes M_{2})_{1}^{+}-$ , then by Theorem 2, $\tau_{2}\circ r(x)$ is a completely
positive map of $M_{1*}$ to $N_{2}$ and we have

$0\leqq\tau_{2}\circ r(x)\leqq\tau_{2}\circ r(1\otimes 1)=r(1\otimes 1)$ (in $M_{1}\otimes N_{2}$)
$-$

in the order of completely positive maps. Hence by Theorem 2, there exists
a unique element $\rho_{2}(x)$ of $(M_{1}\otimes N_{2})_{1}^{+}-$ such that $r(\rho_{2}(x))=\tau_{2^{\circ}}r(x)$ . Let $x$ be an

element of $M_{1}\overline{\otimes}M_{2}$ and write $x=\sum_{j=1}^{4}i^{j}x_{j}$ where $x_{j}\in(M_{1}\otimes M_{2})^{+}-$ and $i=\sqrt{-1}$ .
We put

$\rho_{2}(x)=\sum_{j=1}^{4}i^{j}\rho_{2}(x_{j})$ .

If $x$ is written in another form $\sum_{j=1}^{4}i^{j}x_{j}^{\prime}(x_{j}^{\prime}\in(M_{1}\otimes M_{2})^{+})-$ , we have

$r(\sum_{j=1}^{4}i^{j}\rho_{2}(x_{j}))=\sum_{j=1}^{4}i^{j}r(\rho_{2}(x_{j}))=\sum_{j=1}^{4}i^{j}\tau_{2}\circ r(x_{j})$
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$=\tau_{2}\circ r(\sum_{j=1}^{4}i^{j}x_{j})=\tau_{2}\circ r(\sum_{j=1}^{4}i^{J_{X_{j}^{\prime}}})$

$=\sum_{j=1}^{4}i^{j}\tau_{2}\circ r(x_{j}^{\prime})=\sum_{j=1}^{4}i^{j}r(\rho_{2}(x_{j}^{\prime}))$

$=r(\sum_{j=1}^{4}i^{j}\rho_{2}(x_{j}^{\prime}))$ .

Hence, $\sum_{j=1}^{4}i^{j}\rho_{2}(x_{j})=\sum_{j=1}^{4}i^{j}\rho_{2}(x_{j}^{\prime})$ and the above map $\rho_{2}$ is well defined. The map

$\rho_{2}$ is clearly linear and since we have the relation $r(\rho_{2}(x))=\tau_{2}\circ r(x)$ for $x\in M_{1}\otimes M_{2}-$ ,
one may easily verify that

$\rho_{2}(a\otimes b)=a\otimes\tau_{2}(b)$

for every $a\in M_{1}$ and $b\in M_{2}$ .
Let $x=[x_{i.j}]$ be a positive element of $M_{n}(M_{1}\otimes M_{2})-$ . We note first that under

the canonical identiPcation of $M_{n}(M_{1}\otimes M_{2})-$ with $M_{1}\otimes M_{n}\otimes M_{2}=M_{1}\otimes(M_{n}(M_{2}))---$

we have
$r(x)(\phi)=R_{\phi}([x_{i.j}])=[R_{\phi}(x_{t,j})]$ for $\phi\in(M_{1})_{*}$ .

Now in order to show that $\rho_{2}$ is completely positive it suffices to prove that
the map $r([\rho_{2}(x_{i.j})])$ is a completely positive map of $M_{1*}$ to $M_{n}(N_{2})$ for every
positive integer $n$ . Thus, let $[\phi_{k.l}]$ be a positive element in $M_{m}(M_{1*})$ . Then

$(r((\rho_{2})_{n}(x))_{m}([\phi_{k.l}])=[r((\rho_{2})_{n}(x))(\phi_{k,l})]$

$=[R_{\phi_{k,l}}((\rho_{2})_{n}(x))]=[R_{\phi_{k\cdot l}}(\rho_{2}(x_{i,j}))]$

(regarding as a matrix with respect to the indexes $i,$ $j,$ $k$ and l)

$=[\tau_{2}(R_{\phi_{k,l}}(x_{i.j}))]=(\tau_{2})_{mn}[r(x)(\phi_{k,l})]$

$=((\tau_{2})_{n})_{m^{o}}(r(x))_{m}([\phi_{k.l}])\geqq 0$

where we use the same notation $R_{\phi_{k}}$

, , applying different algebras, $M_{n}(M_{1}\overline{\otimes}M_{2})$ ,
$M_{1}\overline{\otimes}N_{2}$ and $M_{1}\overline{\otimes}M_{2}$ . Therefore, the map $r((\rho_{2})_{n}(x))=r([\rho_{2}(x_{i,j})])$ is completely
positive.

Similarly we can define a completely positive map $\rho_{1}$ from $M_{1}\otimes N_{2}-$ to
$N_{1}\otimes N_{2}-$ satisfying $l(\rho_{1}(x))=\tau_{1}\circ l(x)$ for every $x\in M_{1}\overline{\otimes}M_{2}$ with the property,
$\rho_{1}(a\otimes b)=\tau_{1}(a)\otimes b$ for every $a\in M_{1}$ and $b\in N_{2}$ . Then the map $\tau=p_{1}\circ\rho_{2}$ is a
required extension.

When $\tau_{1}$ and $\tau_{2}$ are not necessarily unital, we Put $\tau_{1}(1)=h$ and $\tau_{2}(1)=k$ . By
[2, Lemma 2.2], there exist unital completely positive maps $\tau_{1}^{\prime}$ and $\tau_{2}^{\prime}$ such that

$\tau_{1}(x)=h^{1/2}\tau_{1}^{\prime}(x)h^{1/2}$ and $\tau_{2}(x)=k^{1/2}\tau_{2}^{\prime}(x)k^{1/2}$ .
Then there is a unital completely positive map $\tau^{\prime}$ satisfying
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$\tau^{\prime}(a\otimes b)=\tau_{1}^{\prime}(a)\otimes\tau_{2}^{\prime}(b)$

for every $a\in M_{1}$ and $b\in M_{2}$ . Therefore the map $\tau(x)=(h\otimes k)^{1/2}\tau^{\prime}(x)(h\otimes k)^{1/2}$ is
a completely positive map satisfying

$\tau(a\otimes b)=\tau_{1}(a)\otimes\tau_{2}(b)$

for every $a\in M_{1}$ and $b\in M_{2}$ . This completes the proof.
In the above construction, if we take $\phi\in M_{1*},$ $\psi\in N_{2*}$ and an element

$x\in M_{1}\overline{\otimes}M_{2}$ , we have by the Fubini type principle

$\langle l(\rho_{2}(x))(\psi), \phi\rangle=\langle r(\rho_{2}(x))(\phi), \psi\rangle=\langle\tau_{2}\circ r(x)(\phi), \psi\rangle$

$=\langle r(x)(\phi),{}^{t}\tau_{2}(\psi)\rangle=\langle l_{g}(x)({}^{t}\tau_{2}(\psi)), \phi\rangle$ ,

whence $l(\rho_{2}(x))=l_{g}(x)\circ{}^{t}\tau_{2}|N_{2*}$ . Therefore

$l(\tau(x))=l(\rho_{1}\circ\rho_{2}(x))=\tau_{1}\circ l(\rho_{2}(x))=\tau_{1}\circ l_{g}(x)\circ{}^{t}\tau_{2}|N_{2*}$ .
Thus we denote this map $\tau$ by $\tau_{1}\bigotimes_{l}^{-}\tau_{2}$ and call the left product map of $\tau_{1}$ and

$\tau_{2}$ . On the other hand there is another similar way to get a completely positive
map of $M_{1}\otimes M_{2}-$ to $N_{1}\otimes N_{2}-$ for the pair $(\tau_{1}, \tau_{2})$ . Namely, we define completely
positive maps $\rho_{1}^{\prime}$ : $M_{1}\overline{\otimes}M_{2}\rightarrow N_{1}\otimes M_{2}-$ and $\rho_{2}^{\prime}$ : $N_{1}\otimes M_{2}\rightarrow N_{1}\otimes N_{2}--$ in a similar way
as above and put $\tau^{\prime}=p_{2}^{\prime}\circ p_{1}^{\prime}$ Then the map $\tau^{\prime}$ satisfies the relation;

$r(\tau^{\prime}(x))=\tau_{2}\circ r(\rho_{1}^{\prime}(x))=\tau_{2}\circ r_{g}(x)^{t}\circ\tau_{1}|N_{1*}$ .
Write this map as $\tau^{\prime}=\tau_{1}\bigotimes_{r}^{-}\tau_{2}$ and we call the right product maP of $\tau_{1}$ and $\tau_{2}$ .
These two maps might be different in general but we have

PROPOSITION 4. With the same notation as above,

$\tau_{1}\bigotimes_{r}^{-}\tau_{2}=\tau_{1}\overline{\bigotimes_{\iota}}\tau_{2}$

if $\tau_{1}$ or $\tau_{2}$ is normal.
PROOF. We assume that $\tau_{1}$ is normal, then for $\phi\in N_{1*}$ we get ${}^{t}\tau_{1}(\phi)\in M_{1*}$

and
$r(\tau_{1}\bigotimes_{r}^{-}\tau_{2}(x))(\phi)=\tau_{2}\circ r_{g}(x)\circ{}^{t}\tau_{1}(\phi)$

$=\tau_{2}\circ r(x)\circ t\tau_{1}(\phi)$ .
Hence, $r(\tau_{1}\overline{\bigotimes_{r}}\tau_{2}(x))=\tau_{2}\circ r(x)\circ{}^{t}\tau_{1}|N_{1*}$ . Using Lemma 1,

$l(\tau_{1}\overline{\bigotimes_{r}}\tau_{2}(x))=l_{g}(\tau_{1}\overline{\bigotimes_{r}}\tau_{2}(x))|N_{2*}$

$={}^{t}(r(\tau_{1}\overline{\bigotimes_{r}}\tau_{2}(x))|N_{2*}$

$=\tau_{1}\circ l_{g}(x)\circ t\tau_{2}|N_{2*}$
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$=l(\tau_{1}\bigotimes_{l}^{-}\tau_{2}(x))$ .
Hence, $\tau_{1}\bigotimes_{r}^{-}\tau_{2}=\tau_{1}\bigotimes_{l}^{-}\tau_{2}$ .

PROPOSITION 5. Let $M_{i},$ $N_{i}$ and $R_{i}$ be von Neumann algebras and $\sigma_{i}$ ; $M_{i}\rightarrow N_{i}$

and $\tau_{i}$ ; $N_{i}\rightarrow R_{i}$ be completely positive maps $(i=1,2)$ . Then

$(\tau_{1}\bigotimes_{l}^{-}\tau_{2})o(\sigma_{1}\bigotimes_{l}^{-}\sigma_{2})=(\tau_{1}\circ\sigma_{1})\bigotimes_{l}^{-}(\tau_{2}\circ\sigma_{2})$

if $\tau_{2}$ is normal. Similar assertion holds for right slice maps if $\tau_{1}$ is normal.
PROOF. For $x\in M_{1}\otimes M_{2}-$ , by the normality of $\tau_{2}$

$l((\tau_{1}\bigotimes_{l}^{-}\tau_{2})\circ(\sigma_{1}\bigotimes_{l}^{-}\sigma_{2})(x))=\tau_{1}\circ l_{g}(\sigma_{1}\overline{\bigotimes_{l}}\sigma_{2}(x))\circ t\tau_{2}|R_{2*}$

$=\tau_{1}\circ l(\sigma_{1}\bigotimes_{l}^{-}\sigma_{2}(x))\circ\tau_{2}|R_{2*}=\tau_{1}\circ\sigma_{1}\circ l_{g}(x)\circ\iota\sigma_{2}\circ t\tau_{2}|R_{2*}$

$=(\tau_{1}\circ\sigma_{1})\circ l_{g}(x)\circ{}^{t}(\tau_{2}\circ\sigma_{2})|R_{2*}=l((\tau_{1}\circ\sigma_{1})\bigotimes_{l}^{-}(\tau_{2}\circ\sigma_{2})(x))$ .

Hence, $(\tau_{1}\bigotimes_{l}^{-}\tau_{2})\circ(\sigma_{1}\bigotimes_{l}^{-}\sigma_{2})=(\tau_{1}\circ\sigma_{1})\bigotimes_{l}^{-}(\tau_{2}\circ\sigma_{2})$ .
It is worth to notice that Theorem 3 and the method cover well-known

results of product maps of completely positive maps. For instance, one may
conclude the existence of the product maps of completely positive maps on the
$c*$-tensor products once we apply the theorem to the von Neumann tensor
product of the universal enveloping von Neumann algebras of relevant $C^{*}-$

algebras for a couple of double transposed maps of starting completely positive
maps and restrict the result to the $C^{*}$-tensor product. One can also easily
recognize that if $N_{i}$ are von Neumann subalgebras of $M_{i}$ and $\tau_{i}$ are projections
of norm one from $M_{i}$ to $N_{i}(i=1,2)$ , then for $x\in N_{1}\otimes N_{2}-$ , we have

$l(\tau_{1}\overline{\bigotimes_{l}}\tau_{2}(x))=\tau_{1}\circ l_{g}(x)\circ t\tau_{2}|N_{2*}=l(x)$

so that $\tau_{1}\bigotimes_{l}^{-}\tau_{2}(x)=xi$ . $e$ . $\tau_{1}\overline{\bigotimes_{l}}\tau_{2}$ is a projection of norm one, too. Next we con-

sider the case that $\tau_{1}$ and $\tau_{2}$ are normal with the same notations of Proposition
4. Then there exists a unique normal product map of completely positive maps
$\tau$ , which is equal to $\tau_{1}\bigotimes_{l}^{-}\tau_{2}$ and $\tau_{1}\overline{\bigotimes_{r}}\tau_{2}$ . It suffices to see that $\tau_{1}\bigotimes_{l}^{-}\tau_{2}$ is normal.

For $x\in M_{1}\otimes M_{2}-,$ $\phi\in N_{1*}$ and $\psi\in N_{2*}$ by the normalities of $\tau_{1}$ and $\tau_{2}$ ,

$\langle\tau_{1}\overline{\bigotimes_{l}}\tau_{2}(x), \phi\otimes\psi\rangle=\langle l(\tau_{1}\overline{\bigotimes_{l}}\tau_{2}(x))(\psi), \phi\rangle$

$=\langle\tau_{1}\circ l_{g}(x)\circ{}^{t}\tau_{2}(\psi), \phi\rangle=\langle l(x)\circ{}^{t}\tau_{2}(\psi),{}^{t}\tau_{1}(\phi)\rangle$

$=\langle x,$ $t_{T_{1}(\phi)\otimes\tau_{2}(\psi)\rangle}$

Hence we have ${}^{t}(\tau_{1}\bigotimes_{l}^{-}\tau_{2})={}^{t}\tau_{1}\otimes^{t}\tau_{2}$ on the algebraic tensor product $N_{1*}\otimes N_{2*}$ .
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Since $(\tau_{1}\bigotimes_{l}^{-}\tau_{2})(N_{1*}\otimes N_{2*})$ is contained in the algebraic tensor product $M_{1*}\otimes M_{2*}$

and ${}^{t}(\tau_{1}\bigotimes_{l}^{-}\tau_{2})$ is continuous, ${}^{t}(\tau_{1}\bigotimes_{l}^{-}\tau_{2})(N_{1}\otimes N_{2})_{*}$ is contained in $(M_{1}\otimes M_{2})_{*}$ , that is,

$\tau_{1}\bigotimes_{t}^{-}\tau_{2}$ is normal. Then we write $\tau=\tau_{1}\otimes\tau_{2}-$ .

3. Normality and singularity of completely positive product maps.

Let $M$ be a von Neumann algebra on a Hilbert space $H$ and let $M^{*}=M_{*}\oplus M_{*}^{\perp}$

( $l^{1}$-sum) be the decomposition of the conjugate space $M^{*}$ into the predual (normal
part) $M_{*}$ and the singular part $M_{*}^{\perp}$ . The subspace $M_{*}^{\perp}$ of singular functionals
is linearly spanned by positive linear functionals and a positive functional $\phi$

belongs to $M_{*}^{\perp}$ if and only if for any non-zero projection $p$ of $M$ there exists
a non-zero projection $q$ such that $q\leqq P$ and $\phi(q)=0$ (cf. [7]). Let $\tau$ be a bounded
linear map from $M$ to a von Neumann algebra $N$ on a space $K$. Then $\tau$ is
uniquely decomposed into the a-weakly continuous map $\tau_{nor}$ (normal part of $\tau$)

and the singular map $\tau_{\sin}$ (singular part of $\tau$ ) (cf. [8]). Let $\tau$ be a completely
positive map from $M$ to $N$. By the theorem of Stinespring, there exist a
representation $\pi$ of $M$ on a Hilbert space $K_{1}$ and a bounded linear operator $v$

from $K$ into $K_{1}$ such that $\tau(x)=v^{*}\pi(x)v$ for $x\in M$.
PROPOSITION 6. Let $\pi=\pi_{nor}+\pi_{\sin}$ be the decomp0siti0n of $\pi$ into the normal

and singular part of $\pi$ , then
$\tau=v^{*}\pi_{nor}v+v^{*}\pi_{\sin}v$

is the canonical decomp0siti0n of $\tau$ , that is, $\tau_{nor}=v^{*}\pi_{nor}v,$ $\tau_{\sin}=v^{*}\pi_{\sin}v$ . Both
normal and singular parts of $\tau$ are completely positive.

PROOF. Let $\omega(\xi)$ be a vector state of $B(K)$ for a unit vector $\xi$ in $K$. Then,
as functionals on $M$, we have

$\omega(\xi)\circ v^{*}\pi_{nor}v=\omega(v\xi)\circ\pi_{nor}\in M_{*}$

and $\omega(\xi)\circ v^{*}\pi_{\sin}v=\omega(v\xi)\circ\pi_{\sin}\in M^{*}$ .

Hence, $v^{*}\pi_{nor}v$ and $v^{*}\pi_{\sin}v$ are normal and singular maps respectively, and

$\tau=v^{*}\pi_{nor}v+v^{*}\pi_{\sin}v$

is the canonical decomposition of $\tau$ as a bounded map of $M$ into $B(K)$ . Since
the decomposition of $\tau$ does not depend on those von Neumann algebras which
include $N$, we have $\tau_{nor}=v^{*}\pi_{nor}v,$ $\tau_{\sin}=v^{*}\pi_{\sin}v$ , and they are completely positive.

THEOREM 7. Keep the same notations in Theorem 3 and let $\tau$ be another
completely positive map from $M_{1}\otimes M_{2}-$ to $N_{1}\otimes N_{2}-$ such that $\tau(a\otimes b)=\tau_{1}(a)\otimes\tau_{2}(b)$ .
Then we have;

$(\tau_{1})_{n}\circ r^{-}\otimes(\tau_{2})_{nor}\geqq\tau_{nor}$
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in the order of completely positive maps. In particular $(\tau_{1})_{n}\circ r^{-}\otimes(\tau_{2})_{nor}=(\tau_{1}\bigotimes_{l}^{-}\tau_{2})_{nor}$

$=(\tau_{1}\overline{\bigotimes_{r}}\tau_{2})_{nor}$ . Hence, if either $\tau_{1}$ or $\tau_{2}$ is a singular map then $\tau$ is singular.

PROOF. Let $\phi$ and $\psi$ be normal states on $N_{1}$ and $N_{2}$ and let $y=\sum_{i=1}^{n}a_{i}\otimes b_{i}$

be a fixed element of $N_{1}\otimes N_{2}$ . We use the notation $a\phi_{b}$ for the functional
$\langle x, a\phi_{b}\rangle=\langle bxa, \phi\rangle$ . Now consider two families of singular functionals,

$(\tau_{1\sin})(a_{i}\phi_{a_{f}^{*}})=_{a_{i}}\phi_{a}j\circ\tau_{1\sin}$
$i,$ $j=1,2,$ $\cdots$ $n$

and
${}^{t}(\tau_{2\sin})(b_{i}\psi_{b_{J}^{*}})=_{b_{i}}\psi_{b_{j}^{*}}\circ\tau_{2\sin}$ $i,$ $j=1,2,$ $\cdots$ $n$ .

They are expressed as linear combinations of finitely many positive singular
functionals of $M_{1}$ and $M_{2}$ respectively. Hence, by Takesaki’s theorem mentioned
before ([7]), we can find the families of orthogonal projections $\{p_{\alpha}\}$ in $M_{1}$ and

$\{q_{\beta}\}$ in $M_{2}$ such that $\sum_{\alpha}p_{a}=1_{H_{1}}$ and $\sum_{\beta}q_{\beta}=1_{H_{2}}$ with

$\langle p_{a},{}^{t}\tau_{1\sin}(a_{i}\phi_{a_{j}^{*}})\rangle=\langle q_{\beta}, \tau_{2\sin}(b_{i}\psi_{b}j)\rangle=0$

for every pair $(i, j),$ $\alpha$ and $\beta$ . Thus,

$\langle p_{\alpha}\otimes q_{\beta}, (\tau_{1s\ln}\otimes\tau_{2})(y\phi\otimes\psi_{y^{*}})\rangle$

$=\sum_{i.j=1}^{n}\langle p_{\alpha}, t\tau_{13\ln}(a\ell\phi_{a};)\rangle\langle q_{\beta}, \tau_{2}(b_{i}\psi_{b}j)\rangle=0$

for an arbitrary pair $(p_{\alpha}, q_{\beta})$ . Therefore, we have

$\langle xp_{\alpha}\otimes q_{\beta}, (\tau_{1\sin}\otimes\tau_{2})(y(\phi\otimes\psi)_{y^{*}})\rangle=0$

for every element $x$ in $M_{1}\otimes M_{2}$ . Similarly we have

$\langle xp_{\alpha}\otimes q_{\beta},{}^{t}(\tau_{1}\otimes\tau_{2\sin})(y(\phi\otimes\psi)_{y^{*}})\rangle=0$ .
It follows that for an element $x$ in $M_{1}\otimes M_{2}$

$\langle\tau(xp_{a}\otimes q_{\beta}), y\phi\otimes\psi_{y^{*}}\rangle$

$=\langle xp_{\alpha}\otimes q_{\beta}, (\tau_{1}\otimes\tau_{2})(y\phi\otimes\psi_{y^{*}})\rangle$

$=\langle xp_{\alpha}\otimes q_{\beta}, (\tau_{1nor}\otimes\tau_{2nor})(y\phi\otimes\psi_{y^{*}})\rangle$

$=\langle\tau_{1nor}\overline{\otimes}\tau_{2nor}(xp_{\alpha}\otimes q_{\beta}), y\phi\otimes\psi_{y^{*}}\rangle$ .
Let $J_{1}$ and $J_{2}$ be finite subsets of the index set $\{\alpha\}$ and $\{\beta\}$ , and put $J=J_{1}\times J_{2}$ .
Set $p_{J_{1}}=\sum_{a\in J_{1}}p_{a},$ $q_{J_{2}}=\sum_{\beta\in J_{2}}q_{\beta}$ and $\gamma_{J^{-}}-p_{J_{1}}\otimes q_{J_{2}}$ . Let $x$ be a positive element

of $M_{1}\otimes_{\alpha}M_{2}$ . By the above arguments

$\langle\tau_{1nor}\overline{\otimes}\tau_{2nor}(r_{J}xr_{J}), y\phi\otimes\psi_{y^{*}}\rangle$
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$=\langle\tau_{1}\otimes\tau_{2}(r_{J}xr_{J}), y\phi\otimes\psi_{y^{*}}\rangle$

$=\langle\tau(r_{J}xr_{J}), y\phi\otimes\phi_{y^{*}}\rangle$

$\geqq\langle\tau_{nor}(r_{J}xr_{J}), v\phi\otimes\psi_{y^{*}}\rangle$ .
As the element $x$ is the $\sigma$ -weakly limit of $r_{J}xr_{J}$ with respect to the index set
$\{J\}$ , we have

$\langle\tau_{1nor^{-}}\otimes\tau_{2nor}(x), y\phi\otimes\psi_{y^{*}}\rangle\geqq\langle\tau_{nor}(x), y\phi\otimes\psi_{y^{*}}\rangle$ .

Therefore we have the same ordering for a positive element in $M_{1}\otimes M_{2}-$ . Now
the order in $N_{1}\otimes N_{2}-$ is determined by the family of functionals $\{_{y}\phi\otimes\psi_{y}\cdot\}$

where $\phi,$ $\psi$ are ranging over all normal states $\phi$ of $N_{1},$ $\psi$ of $N_{2}$ and all elements

$y=\sum_{i=1}^{n}a_{i}\otimes b_{i}$ in $N_{1}\otimes N_{2}$ . Hence

$\tau_{1}n\circ r^{-}\otimes\tau_{2nor}(x)\geqq\tau_{nor}(x)$

for every positive element $x$ in $M_{2}\otimes M_{2}-$

Let $M_{m}$ be the $m\times m$ matrix algebra and consider the map

$\tau_{m}$ : $M_{m}(M_{1}\overline{\otimes}M_{2})\rightarrow M_{m}(N_{1}\otimes N_{2})-$

defined by
$\tau_{m}([x_{i,j}])=[\tau(x_{i,j})]$ .

We can easily see that $(\tau_{m})_{nor}=(\tau_{nor})_{m}$ and $(\tau_{m})_{\sin}=(\tau_{\sin})_{m}$ . With the identi-
fication of $M_{m}(M_{1}^{---}\otimes M_{2})=M_{m}\otimes M_{1}\otimes M_{2}$ and $M_{m}(N_{1}\otimes N_{2})=M_{m}\otimes N_{1}\otimes N_{2}---$ it follows
from the preceding arguments

$(\tau_{1nor^{--}}\otimes\tau_{2nor})_{m}(x)=((\tau_{1})_{m})_{nor}\otimes(\tau_{2})_{nor}(x)$

$\geqq(\tau_{m})_{nor}(x)$

$=(\tau_{nor})_{m}(x)$

for every positive element $x$ in $M_{m}(M_{1}\otimes M_{2})-$ . Thus, $(\tau_{1})_{n}\circ r^{-}\otimes(\tau_{2})_{nor}-\tau_{nor}$ is a
completely positive map.

Moreover for an element $x$ in $M_{1}\otimes M_{2}-$ ,

$l((\tau_{1}\overline{\bigotimes_{l}}\tau_{2})(x))=\tau_{1}\circ l_{g}(x)\circ t\tau_{2}|N_{2*}$

$=(\tau_{1nor}\circ l_{g}(x)\circ{}^{t}\tau_{2nor}+\tau_{1nor^{o}}l_{g}(x)\circ{}^{t}\tau_{2\sin}+\tau_{1\sin}\circ l_{g}(x)\circ{}^{t}\tau_{2nor}$

$+\tau_{1\sin}\circ l_{g}(x)\circ{}^{t}\tau_{2\sin})|N_{2*}$

$=(l((\tau_{1nor}\bigotimes_{\iota}^{-}\tau_{2nor})(x))+l((\tau_{1nor}\bigotimes_{l}^{-}\tau_{2\sin})(x))+l((\tau_{1\sin}\bigotimes_{l}^{-}x_{2nor})(x))$

$+l((\tau_{1\sin}\bigotimes_{l}^{-}\tau_{2\sin})(x))|N_{2*}$ .
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Hence $(\tau_{1}\bigotimes_{l}^{-}\tau_{2})=\tau_{1nor}\bigotimes_{l}^{-}\tau_{2nor}+\tau_{1nor}\bigotimes_{\iota}^{-}\tau_{2\sin}+\tau_{1\sin}\bigotimes_{l}^{-}\tau_{2nor}+\tau_{1\sin}\bigotimes_{l}^{-}\tau_{2\sin}$ , therefore

$(\tau_{1}\bigotimes_{l}^{-}\tau_{2})(x)\geqq\tau_{1nor}\bigotimes_{l}^{-}\tau_{2nor}(x)$ for every positive element $x$ . From the definition of

the normal part of $(\tau_{1}\bigotimes_{l}^{-}\tau_{2})$ (cf. [8]) one sees that

$(\tau_{1}\bigotimes_{l}^{-}\tau_{2})_{nor}(x)\geqq\tau_{1nor}\bigotimes_{l}^{-}\tau_{2nor}(x)$

for every positive element $x$ . Hence, $(\tau_{1}\bigotimes_{l}^{-}\tau_{2})_{nor}=\tau_{1nor^{-}}\otimes\tau_{2nor}$ . The last state-

ment is a trivial consequence. This completes all proofs.
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