COMPLETELY REDUCIBLE OPERATORS

PETER ROSENTHAL ${ }^{1}$

1. Introduction. Let H be a separable complex Hilbert space. A (closed) subspace of H is nontrivial if it is different from $\{0\}$ and H. A bounded linear operator A on H is completely reducible if whenever M is a reducing subspace of A of dimension greater than 1 , the operator $A \mid M$ has a nontrivial reducing subspace. The spectral theorem implies that every normal operator is completely reducible. If H is finite dimensional then every completely reducible operator is normal. This is not the case in general, however, as the example given below shows.

Our main results are sufficient conditions that a completely reducible operator have a reducing eigenvector, i.e. an eigenvector that is also an eigenvector of the adjoint of the operator. For normal operators, of course, every eigenvector is a reducing eigenvector. Andô [1] has shown that a compact operator which has the property that every invariant subspace is reducing must be normal. Our techniques are similar to Andô's, and Corollary 3 below generalizes his result to the case of polynomially compact operators.
2. An example. Let B denote the Hermitian operator consisting of multiplication by the independent variable on $L^{2}(0,1)$. P. R. Halmos has shown (unpublished) that every reducing subspace of the operator

$$
\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right),
$$

acting on the space $L^{2}(0,1) \oplus L^{2}(0,1)$, is of the form $N \oplus N$, where N is a reducing subspace of B. It follows that

$$
\left(\begin{array}{ll}
0 & B \\
0 & 0
\end{array}\right)
$$

is a completely reducible operator, although it is clearly not normal.
A slight modification of Halmos's example shows that a completely reducible operator can have a spanning set of eigenvectors

[^0]and still be nonnormal. We show that every reducing subspace of the operator
\[

A=\left($$
\begin{array}{ll}
0 & B \\
0 & 1
\end{array}
$$\right)
\]

is of the form $N \oplus N$, where N reduces B. Our argument is essentially the same as Halmos's.

First note that

$$
A^{*}=\left(\begin{array}{ll}
0 & 0 \\
B & 1
\end{array}\right) \quad \text { and } \quad A^{*} A=\left(\begin{array}{cc}
0 & 0 \\
0 & B^{2}+1
\end{array}\right) .
$$

Now let M be any reducing subspace of A. Let N be the reducing subspace of B generated by the set of vectors f in $L^{2}(0,1)$ such that there exists a g in $L^{2}(0,1)$ with $\langle f, g\rangle$ or $\langle g, f\rangle$ in M. Then clearly M is contained in $N \oplus N$. To prove the reverse inclusion, let $\langle h, k\rangle$ be any element of M. Then the fact that $\left(A^{*} A\right)^{n}\langle h, k\rangle$ is in M for every positive integer n implies that $\{0\} \oplus \mathrm{V}_{n=1}^{\infty}\left\{\left(B^{2}+1\right)^{n} k\right\}$ is contained in M. But polynomials without constant term in the variable $\left(x^{2}+1\right)$ are uniformly dense in the space of continuous functions on [0,1]. Therefore $\langle 0, k\rangle$ is in M, and then so is $\langle h, 0\rangle$. If we apply A and A^{*} to these vectors we see that $\{0\} \oplus \mathrm{V}_{n=0}^{\infty}\left\{B^{2 n} k\right\},\{0\} \oplus \mathrm{V}_{n=0}^{\infty}\left\{B^{2 n+1} h\right\}$, $\mathrm{V}_{n=0}^{\infty}\left\{B^{2 n} h\right\} \oplus\{0\}$, and $\mathrm{V}_{n=0}^{\infty}\left\{B^{2 n+1} k\right\} \oplus\{0\}$ are each contained in M.

Now if $\left\langle f_{1}, f_{2}\right\rangle$ is in $N \oplus N$ then the foregoing shows us how to prove that $\left\langle f_{1}, 0\right\rangle$ and $\left\langle 0, f_{2}\right\rangle$ are in M. Hence $N \oplus N$ is contained in M.
3. Results. The above example shows that a completely reducible operator need not have a reducing eigenvector even if it has a spanning set of eigenvectors and is polynomially compact; ($A^{2}-A=0$ in the example). Our results show that a slight strengthening of either of these conditions does imply that a completely reducible operator has a reducing eigenvector.

Lemma. If $\left\{M_{\alpha}\right\}$ is a totally ordered family of subspaces of a separable Hilbert space, and if $N=\bigcap_{\alpha} M_{\alpha}$, then there is a countable subfamily $\left\{M_{\alpha_{i}}\right\}$ such that $N=\bigcap_{i} M_{\alpha_{i}}$ and $M_{\alpha_{i+1}} \subset M_{\alpha_{i}}$ for each i.
Proof. ${ }^{2}$ Taking set-theoretic complements, we get $N^{\prime}=\mathrm{U}_{\alpha} M_{\alpha}^{\prime}$. Since N^{\prime} has the Lindelöf property, there is a countable subcover $\left\{M_{\alpha_{i}}^{\prime}\right\}$. Then $N=\bigcap_{i} M_{\alpha_{i}}$. To get $M_{\alpha_{i}+1} \subset M_{\alpha_{i}}$ we simply discard $M_{\alpha_{i+1}}$ if $M_{\alpha_{i+1}} \subseteq M_{\alpha_{i}}$.
Theorem 1. If A is completely reducible, and if the subspace E_{λ} $=\{x: A x=\lambda x\}$ is finite dimensional, then E_{λ} reduces A.
${ }^{2}$ This proof is due to C. R. MacCluer.

Proof. Let \mathcal{F} denote the family of subspaces of H that reduce A and meet E_{λ} in a subspace other than $\{0\}$. By the Hausdorff maximal principle there is a maximal chain $\left\{M_{\alpha}\right\}$ in \mathcal{F}. If we let N be $\bigcap_{\alpha} M_{\alpha}$, then N clearly reduces A. We will show that N is in \mathfrak{F} and that N is one dimensional.
Choose a countable subfamily of $\left\{M_{\alpha}\right\}$ by the Lemma. Then for each i choose an x_{i} in $M_{\alpha_{i}}$ such that $\left\|x_{i}\right\|=1$ and $A x_{i}=\lambda x_{i}$. Some subsequence of $\left\{x_{i}\right\}$ converges, to some x, since E_{λ} is finite dimensional. Then x is in N, since the sequence $\left\{x_{i}\right\}$ is eventually in each $M_{\alpha_{i}}$. Also $\|x\|=1$ and $A x=\lambda x$. Thus N is in \mathcal{F} and the dimension of N is at least 1.

If the dimension of N were greater than 1 then $A \mid N$ would have a nontrivial reducing subspace L. Then at least one of L and $L^{\perp} \cap N$ would be in \mathfrak{F}, contradicting the fact that N is the intersection of the subspaces in a maximal chain in \mathfrak{F}.

Thus the dimension of N is 1 and N contains a reducing eigenvector x in E_{λ}. If the dimension of E_{λ} is greater than 1 we can apply the above proof to $A \mid\{x\}^{\perp}$ and get another reducing eigenvector in E_{λ}. If we repeat this process finitely many times we will get an orthonormal basis for E_{λ} consisting of reducing eigenvectors.

Corollary 1. If A is completely reducible and has a spanning set of eigenvectors each of which corresponds to an eigenvalue of finite multiplicity, then A is normal.

Proof. Each eigenvector in the spanning set is reducing, by Theorem 1, and thus A can be written as a diagonal matrix.

Theorem 2. If A is completely reducible, and if there exists a nonzero compact operator T such that every reducing subspace of A reduces T, then A has a reducing eigenvector.

Proof. The proof is similar to the proof of Theorem 1. Here we let \mathcal{F} denote the family of subspaces M that reduce A and that have the property that $\|T \mid M\|=\|T\|$. Let N be the intersection of the subspaces in a maximal chain in \mathcal{F} and write $N=\bigcap_{i} M_{\alpha_{i}}$ by the Lemma. We will be done if we show that the dimension of N is 1 .

A compact operator attains its norm; thus for each i there is an x_{i} in $M_{\alpha_{i}}$ such that $\left\|x_{i}\right\|=1$ and $\left\|T x_{i}\right\|=\|T\|$. Choose a subsequence of $\left\{x_{i}\right\}$ that converges weakly to some x. Then $\|T x\|=\|T\|$ and thus $\|x\|=1$. Also, x is in N since $\left\{x_{i}\right\}$ is eventually in each $M_{\alpha_{i}}$. Thus N is in \mathfrak{F}. If the dimension of N were greater than 1 there would be a nontrivial reducing subspace L of A properly contained in N. But the fact that T attains its norm on N implies that T attains its norm on L
or on $L^{\perp} \cap N$. Thus at least one of L and $L^{\perp} \cap N$ is in \mathfrak{F}, contradicting the definition of N.

Corollary 2. A compact completely reducible operator is normal.
Proof. Let A be compact and completely reducible, and let \mathcal{E} be a maximal orthonormal set of reducing eigenvectors of A. It suffices to show that \mathcal{E}^{\perp} is $\{0\}$. If ε^{\perp} is not $\{0\}$ then either $A \mid \varepsilon^{\perp}=0$ or Theorem 2 applies, with $T=A$. In either case the maximality of ε is contradicted.

Corollary 3. If A is polynomially compact, (i.e. there is a nonzero polynomial p such that $p(A)$ is compact), and if every invariant subspace of A is reducing, then A is normal.

Proof. First, such an operator is completely reducible, by the Bernstein-Robinson invariant subspace theorem for polynomially compact operators [2], [3]. Let \mathcal{E} be a maximal orthonormal set of reducing eigenvectors of A. If $\varepsilon^{\perp} \neq\{0\}$, consider $A \mid \varepsilon^{\perp}$. If $p(A) \mid \varepsilon^{\perp}$ is not 0 then A has a reducing eigenvector in \mathcal{E}^{\perp} by Theorem 2 , with $T=p(A)$. If $p(A) \mid \varepsilon^{\perp}$ is 0 then $A \mid \varepsilon^{\perp}$ has an eigenvector by the spectral mapping theorem. But every eigenvector of A is reducing by hypothesis.

Corollary 4. If A is completely reducible, and if $p(A)$ is compact and has finite-dimensional nullspace for some polynomial p, then A is normal.

Proof. As in the previous corollaries, let \mathcal{E} be a maximal orthonormal set of reducing eigenvectors of A. If ε^{\perp} is finite dimensional then $A \mid \varepsilon^{\perp}$ is normal and the proof is finished. If ε^{\perp} is infinite dimensional then $p(A) \mid \varepsilon^{\perp}$ is not 0 and Theorem 2 applies.

Corollary 5. If the von Neumann algebra generated by a completely reducible operator A contains a nonzero compact operator, then A has point spectrum.

Proof. The hypotheses imply that A and the compact operator satisfy the conditions of Theorem 2.

Theorem 3. Let A and B be operators on H with disjoint spectra. Then an operator S commutes with $A \oplus B$ on $H \oplus H$ if and only if $S=C \oplus D$, where C commutes with A and D commutes with B.

Proof. Let

$$
S=\left(\begin{array}{ll}
C & E \\
F & D
\end{array}\right)
$$

commute with $A \oplus B$. We must show that $E=0$ and $F=0$. Now

$$
S(A \oplus B)=\left(\begin{array}{ll}
C A & E B \\
F A & D B
\end{array}\right) \quad \text { and } \quad(A \oplus B) S=\left(\begin{array}{ll}
A C & A E \\
B F & B D
\end{array}\right)
$$

Therefore $A E=E B$ and $B F=F A$. A theorem of Rosenblum [4] implies that these equations can hold only if $E=0$ and $F=0$ (because of the fact that the spectra of A and B are disjoint).

Corollary 6. If A and B are completely reducible and have disjoint spectra then $A \oplus B$ is completely reducible.

Proof. It follows from Theorem 3 that every projection that commutes with $A \oplus B$ is of the form $P \oplus Q$. Thus every reducing subspace of $A \oplus B$ is of the form $M \oplus N$, where M reduces A and N reduces B.
4. Remarks. The above theorems and corollaries all hold for operators on nonseparable spaces too; this follows from the fact that every operator can be written as the direct sum of operators on separable spaces.

It would be interesting to find other sufficient conditions that a completely reducible operator be normal. In particular, if A is completely reducible and every invariant subspace of A is reducing must A be normal?

Added in Proof. The case of Corollary 3 where $p(z)=z^{n}$ has been provén by T. Saitô in Some remarks to Ando's Theorems, Tôhoku Math. J. (2) 18 (1966).

References

1. T. Andô, A note on invariant subspaces of a compact normal operator, Arch. Math. 14 (1963), 337-340.
2. A. R. Bernstein and A. Robinson, Solution of an invariant subspace problem of K. T. Smith and P. R. Halmos, Pacific J. Math. 16 (1966), 421-431.
3. P. R. Halmos, Invariant subspaces of polynomially compact operators, Pacific J. Math. 16 (1966), 433-437.
4. M. Rosenblum, On the operator equation $B X-X A=Q$, Duke Math. J. 23 (1956), 263-269.

The University of Michigan and
The University of Toronto

[^0]: Received by the editors April 10, 1967.
 ${ }^{1}$ The author is very grateful to Professor P. R. Halmos for his suggestions regarding the material in this paper and the preparation of the manuscript.

