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1. Introduction. Let 77 be a separable complex Hilbert space. A

(closed) subspace of H is nontrivial if it is different from {0} and H.

A bounded linear operator A on H is completely reducible if whenever

M is a reducing subspace of A of dimension greater than 1, the op-

erator A | M has a nontrivial reducing subspace. The spectral the-

orem implies that every normal operator is completely reducible.

If 77 is finite dimensional then every completely reducible operator is

normal. This is not the case in general, however, as the example given

below shows.

Our main results are sufficient conditions that a completely reduc-

ible operator have a reducing eigenvector, i.e. an eigenvector that is

also an eigenvector of the adjoint of the operator. For normal op-

erators, of course, every eigenvector is a reducing eigenvector. Ando

[l] has shown that a compact operator which has the property that

every invariant subspace is reducing must be normal. Our techniques

are similar to Andd's, and Corollary 3 below generalizes his result to

the case of polynomially compact operators.

2. An example. Let B denote the Hermitian operator consisting

of multiplication by the independent variable on L2(0, 1). P. R.

Halmos has shown (unpublished) that every reducing subspace of

the operator

(o  o)'

acting on the space L2(0, 1) ©7,2(0, 1), is of the form N@N, where N

is a reducing subspace of B. It follows that

C )\0   0/

is a completely reducible operator, although it is clearly not normal.

A slight modification of Halmos's example shows that a com-

pletely reducible operator can have a spanning set of eigenvectors
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and still be nonnormal. We show that every reducing subspace of the

operator

-CO
is of the form N®N, where N reduces B. Our argument is essentially

the same as Halmos's.

First note that

/0    0\ /0        0    \
A* = ( and    A* A = (

\73    1/ \0    B2+l)

Now let M be any reducing subspace of A. Let A be the reducing

subspace of B generated by the set of vectors/ in 7,2(0, 1) such that

there exists a g in Z2(0, 1) with (/, g) or (g,/) in M. Then clearly M

is contained in N@N. To prove the reverse inclusion, let Qi, k) he

any element of M. Then the fact that iA *A)n(h, k) is in M for every

positive integer n implies that {o} © V^_i {iB2 + l)nk} is contained

in M. But polynomials without constant term in the variable 02 + l)

are uniformly dense in the space of continuous functions on [0, l].

Therefore (0, k) is in M, and then so is Qi, 0). If we apply A and A*

to these vectors we see that j 0} 9 V^o {B2nk}, {0} © \C=0 {B2n+1h},

VB"=0 {B2nh} © {0}, and \C=o {B2n+1k} © {0} are each contained in M.

Now if ifufi) is in A© A then the foregoing shows us how to prove

that ifi, 0) and (0,/2) are in M. Hence N®N is contained in M.

3. Results. The above example shows that a completely reducible

operator need not have a reducing eigenvector even if it has a span-

ning set of eigenvectors and is polynomially compact; iA2 — A =0 in

the example). Our results show that a slight strengthening of either

of these conditions does imply that a completely reducible operator

has a reducing eigenvector.

Lemma. If {Ma} is a totally ordered family of subspaces of a separable

Hilbert space, and if N = C\aMa, then there is a countable subfamily

{Mai} such that N = C\iMai and Mai+lEMaifor each i.

Proof.2 Taking set-theoretic complements, we get N' = \JaMJ.

Since N' has the Lindelof property, there is a countable subcover

{M'a.}. Then N=()iMtti. To get Ma<+lEMai we simply discard

Mai+1 if Mai+1(tMtti.

Theorem 1. If A is completely reducible, and if the subspace E\

= {x: Ax = Sx} is finite dimensional, then E\ reduces A.

2 This proof is due to C. R. MacCluer.
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Proof. Let ff denote the family of subspaces of H that reduce A

and meet E\ in a subspace other than {0}. By the Hausdorff maximal

principle there is a maximal chain {Ma} in ff. If we let N be f\aMa,

then N clearly reduces A. We will show that N is in ff and that N is

one dimensional.

Choose a countable subfamily of {Ma} by the Lemma. Then for

each i choose an x< in Mai such that ||x<||=l and .4x,=Xx,. Some

subsequence of {x»} converges, to some x, since E\ is finite dimen-

sional. Then x is in N, since the sequence {x,} is eventually in each

Mai. Also ||x|| =1 and Ax=\x. Thus A7 is in ff and the dimension of

N is at least 1.

If the dimension of N were greater than 1 then A \ N would have a

nontrivial reducing subspace L. Then at least one of L and L^C\N

would be in ff, contradicting the fact that N is the intersection of the

subspaces in a maximal chain in ff.

Thus the dimension of N is 1 and N contains a reducing eigen-

vector x in E\. If the dimension of Ex is greater than 1 we can apply

the above proof to A\ {x}x and get another reducing eigenvector in

E\. If we repeat this process finitely many times we will get an ortho-

normal basis for E\ consisting of reducing eigenvectors.

Corollary 1. 1/ A is completely reducible and has a spanning set o/

eigenvectors each o/ which corresponds to an eigenvalue o/ finite multi-

plicity, then A is normal.

Proof. Each eigenvector in the spanning set is reducing, by The-

orem 1, and thus A can be written as a diagonal matrix.

Theorem 2. 7/^4 is completely reducible, and if there exists a nonzero

compact operator T such that every reducing subspace of A reduces T,

then A has a reducing eigenvector.

Proof. The proof is similar to the proof of Theorem 1. Here we let

ff denote the family of subspaces M that reduce A and that have the

property that ||P| M\\ =||p||. Let N be the intersection of the sub-

spaces in a maximal chain in ff and write N = f]iMai by the Lemma.

We will be done if we show that the dimension of A7 is 1.

A compact operator attains its norm; thus for each i there is an

Xi in Mai such that ||ac»|| =1 and ||P*.j| =||p||- Choose a subsequence

of {x^ that converges weakly to some x. Then || Px|| =|| 7J| and thus

||x|| = 1. Also, x is in Af since {*,•} is eventually in each Mai. Thus N

is in ff. If the dimension of N were greater than 1 there would be a

nontrivial reducing subspace L of A properly contained in N. But the

fact that T attains its norm on N implies that T attains its norm on L
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or on L±DN. Thus at least one of L and LXDN is in ff, contradicting

the definition of N.

Corollary 2. A compact completely reducible operator is normal.

Proof. Let A be compact and completely reducible, and let S be

a maximal orthonormal set of reducing eigenvectors of A. It suffices

to show that Sx is {0}. If 8X is not {0} then either A | 8X = 0 or The-

orem 2 applies, with T = A. In either case the maximality of S is

contradicted.

Corollary 3. If A is polynomially compact, (i.e. there is a nonzero

polynomial p such that p(A) is compact), and if every invariant subspace

of A is reducing, then A is normal.

Proof. First, such an operator is completely reducible, by the

Bernstein-Robinson invariant subspace theorem for polynomially

compact operators [2], [3]. Let 8 be a maximal orthonormal set of

reducing eigenvectors of A. If 8"L?^{0}, consider ^4|8X. If piA)\&x

is not 0 then A has a reducing eigenvector in 8 by Theorem 2, with

T = piA). If p(A)\ 8X is 0 then A | 8X has an eigenvector by the spec-

tral mapping theorem. But every eigenvector of A is reducing by

hypothesis.

Corollary 4. If A is completely reducible, and if p(A) is compact

and has finite-dimensional nullspace for some polynomial p, then A is

normal.

Proof. As in the previous corollaries, let 8 be a maximal orthonor-

mal set of reducing eigenvectors of A. If Sx is finite dimensional then

A I 8X is normal and the proof is finished. If 8X is infinite dimensional

then piA)\ 8X is not 0 and Theorem 2 applies.

Corollary 5. If the von Neumann algebra generated by a completely

reducible operator A contains a nonzero compact operator, then A has

point spectrum.

Proof. The hypotheses imply that A and the compact operator

satisfy the conditions of Theorem 2.

Theorem 3. Let A and B be operators on H with disjoint spectra.

Then an operator S commutes with A@B on H@H if and only if

S=C®D, where C commutes with A and D commutes with B.

Proof. Let
* = (c E)

\F    Dj
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commute with A @B. We must show that E = 0 and P = 0. Now

(CA     EB\ (AC    AE\
S(A 0 B) = ( )    and    (A ® B)S = I J.

\FA    DB/ \BF    BD)

Therefore AE=EB and BF=FA. A theorem of Rosenblum [4]

implies that these equations can hold only if E = 0 and P = 0 (be-

cause of the fact that the spectra of A and B are disjoint).

Corollary 6. If A and B are completely reducible and have disjoint

spectra then A®B is completely reducible.

Proof. It follows from Theorem 3 that every projection that com-

mutes with A @B is of the form P®Q. Thus every reducing subspace

of A ®B is of the form M@N, where M reduces A and N reduces B.

4. Remarks. The above theorems and corollaries all hold for

operators on nonseparable spaces too; this follows from the fact that

every operator can be written as the direct sum of operators on

separable spaces.

It would be interesting to find other sufficient conditions that a

completely reducible operator be normal. In particular, if A is com-

pletely reducible and every invariant subspace of A is reducing must

A be normal?

Added in Proof. The case of Corollary 3 where p(z) =zn has been

prove'n by T. Saito in Some remarks to Ando's Theorems, Tohoku

Math. J. (2) 18 (1966).
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