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COMPLETELY REDUCIBLE OPERATORS 
THAT COMMUTE WITH COMPACT OPERATORS 

SHLOMO ROSENOER 

ABSTRACT. It is shown that if T is a completely reducible operator on a 
Banach space and TK = KT, where K is an injective compact operator with 
a dense range, then T is a scalar type spectral operator. Other related results 
are also obtained. 

Let A be an algebra of bounded linear operators on a Banach space X. lat A 
is the lattice of (closed) invariant subspaces of A. We say that A is completely 
reducible if for every M E lat A there is N E lat A with M + N = X (that is, 
M n N = 0 and the algebraic sum M + N coincides with X). An operator T 
is completely reducible if the algebra generated by T is. It is unknown whether a 
weakly closed unital completely reducible algebra must be reflexive; that is, must 
contain every operator which leaves invariant its invariant subspaces. Some partial 
solutions of this problem can be found in [1, 6, 7]. 

In this paper we show that every completely reducible operator commuting with 
an injective compact operator with a dense range is a scalar type spectral operator. 
In particular, the weakly closed unital algebra generated by such an operator must 
be reflexive. This result seems to be unknown even for operators on a Hilbert space. 
Also, we show that every compact completely reducible operator must be a scalar 
type spectral operator. This answers a question raised by E. Azoff and A. Lubin 
(see the last page of [1]) and, independently, by V. Lomonosov. Finally, our result 
generalizes the results of Loginov and Sul'man [2] and Rosenthal [5] on reductive 
Hilbert space operators that commute with compact operators. 

The following theorem is the central result of the author's paper [4], where it 
was stated in a slightly different form: 

THEOREM 1. Let A be a commutative operator algebra on a Banach space X. 
If the commutant of A is completely reducible and the ranges of compact operators 
in A span X, then every operator in A is a scalar type spectral operator. If, in 
addition, A is a weakly closed unital completely reducible algebra, then A is gener-
ated, as a uniformly closed algebra, by a complete totally atomic Boolean algebra 
of proiections. Moreover, A is reflexive and admits spectral synthesis (i.e., every 
invariant subspace of A is spanned by its one-dimensional invariant subspaces). 

Thus, in order to prove the result described above, it suffices to show that if 
A is a commutative completely reducible algebra which has enough hyperinvariant 
subspaces, then the commutant of A is also completely reducible. This will be done 
in Theorem 8 below. The above result then follows easily, a sufficient supply of 
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hyperinvariant subspaces being provided by Lomonsov's theorem. It can be shown, 
by a slight variation of the proof of Theorem 8, that the word "hyperinvariant" in 
its statement can be replaced with "invariant." 

Let us introduce some definitions and notation. For Banach spaces X and Y, 
£(X, Y) denotes the collection of all bounded linear operators from X to Y; £(X, X) 
is denoted by £(X). X* means the conjugate space of the Banach space X. For 
M ~ X, M.L is an annihilator of Min X*. An operator E in £(X) is a projection 
if E2 = E. If E and F are projections, we write E ~ F provided EF = FE = E. 
Clearly, E ~ F if and only if E(X) ~ F(X) and Ker E "2 Ker F. If E is a projection, 
we write E.L for I-E. If A is a subalgebra of £(X), then A' denotes the commutant 
of A; that is, the set of all operators in £(X) that commute with every operator in 
A. Hyperinvariant subspaces of A are those invariant for A'. We will write P(A) 
for the family of all projections in A', and Po(A) for the set of those projections in 
P(A) whose range is hyperinvariant for A. Finally, for E in P(A), we define intE A 
as the set of all T E £(E.L (X), E(X)) such that 

EAET = TE.L AE.L for each A E A 

or, equivalently, 

(AIE(X))T = T(AIE.L(X)) for each A EA. 

Clearly, an operator algebra A is completely reducible if and only if for every 
M in lat A there is a projection in P(A) with range M. Note also that for A com-
pletely reducible and M in lat A, the restriction of A to M, AIM, is also completely 
reducible. 

We shall need some very elementary lemmas. The first is well known. 

LEMMA 2. Let X be a Banach space and let Xl and X2 be subspaces of X 
with Xl + X 2 = X. Then X is isomorphic to the exterior direct sum Xl EEl X2 
defined as a vector space of ordered pairs (Xl, X2), Xi E Xi, endowed with the norm 
II(Xl,X2)11 = Ilxlll + Ilx211· 

LEMMA 3. Let A be a subalgebra of £(X) and E E P(A). Then E.L(X) is in 
lat A' if and only if intEA = O. 

PROOF. Suppose E.L(X) E lat A'. For each T E intE A, ETE.L is in A', so that 
ETE.L = 0 and T = O. Conversely, for each B E A', EBE.LIE.L(X) is in intE A, 
and intE A = 0 implies EBE.L = 0, so that E.L(X) is invariant under B. 

LEMMA 4. Let A be a subalgebra of £(X) and FE Po(A). Let Xl = F(X) and 
X2 = KerF. 

(i) For each M E lat A', F(M) E lat A'. 
(ii) A subspace Y which contains Xl belongs to lat A' if and only ifY = Xl + Yl , 

where Yl ~ X2 and Yl E lat(AIX2}'. 

PROOF. (i) For each B E A', BF(M) ~ F(X), since F(X) is hyperinvariant, 
and BF(M) ~ M, since M is hyperinvariant and F E A'. Hence, BF(M) ~ 
F(X) n M = F(M). 

(ii) Let Y "2 Xl and Y E lat A'. In particular, Y is invariant under F, so that 
Y = Xl + Yl for some Yl ~ X 2. For each C E (AIX2)', F.LCF.L E A', and 
C(Yt} = F.LCF.L(XI + Y1 ) ~ F.L(y) = Y1 ; that is, Y1 E lat(AIX2)/. Conversely, 
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COMPLETELY REDUCIBLE OPERATORS 35 

if YI E lat(AIX2 )' and B E A', then FJ.. BFJ..IX2 is in (AIX2 )' and FJ.. BF = O. It 
follows that B(Y) = (F B + FJ.. BFJ.. )(Y) ~ Xl -i- YI = Y. 

The following two lemmas will enable us to reduce the proof of the main result 
to the case when the completely reducible commutative algebra has no nonzero 
finite-dimensional invariant subspaces. 

LEMMA 5. Let A ~ £(X) be a completely reducible algebra such that the one-
dimensional subspaces in lat A span X. Then A' is completely reducible. 

PROOF. Clearly, A is commutative. We claim that A admits spectral synthesis. 
Indeed, let M E lat A. Then there exists F E P(A) such that E(X) = M. Since 
E transforms everyone-dimensional invariant subspace of A into an invariant sub-
space of A of dimension no greater than one, E(X) is spanned by one-dimensional 
elements of lat A. 

Now suppose Xl E latA'. Since A' ~ A, Xl is also in latA, and one can find 
X2 E lat A with Xl -i- X 2 = X. We sill show that X2 is also in lat A'. Suppose not. 
Denote by E the projection onto Xl along X 2 . Then, by Lemma 3, intE A =I- 0, and, 
by our claim above, there exist such T E intE A and one-dimensional N E lat(AIX2 ) 

such that M = T(N) =I- O. It is very easy to see that M E lat A and the algebra 
AI(M -i- N) consists only of multiples of the identity. Denote by S an operator 
which maps Minto N and is identically zero on some invariant complement to 
M -i- N. Then SEA', but Xl is not invariant for S, a contradiction. 

LEMMA 6. Let A ~ £(X) be a completely reducible algebra. Suppose Xl zs 
spanned by all one-dimensional subspaces in lat A and X2 is in lat A with Xl -i-
X 2 = X. Then both Xl and X2 are in latA'. 

PROOF. Obviously, Xl lies in lat A'. Suppose X 2 does not. Then, denoting by 
E a projection onto Xl along X 2 , we conclude that intE A =I- O. Choose nonzero 
T E intE A. Since clT(X2 ) E lat(AIXI ) and, as has been noted in the proof of the 
previous lemma, AIXI admits spectral synthesis, we can find a one-dimensional P E 
P(AIXd such that PT =I- o. However, PT E intE A, so that Ker PT E lat(AIX2 ). 

On the other hand, codim Ker PT = 1 and, since AIX2 is completely reducible, 
AIX2 has a one-dimensional invariant subspace, which contradicts the definition of 
X I and therefore completes the proof. 

LEMMA 7. Suppose A ~ £(X) is a commutative completely reducible algebra 
which has the following property: for every nonzero ME lat A', there is N E lat A' 
such that N ~ M, N =I- 0, N =I- M. Let Ml, M2 , ... ,Mn, .. , be an infinite sequence 
of nonzero subspaces in lat A'. Then there exists such an F E Po (A) that FJ.. (M I) =I-
o and F(Mn) =I- 0 for infinitely many n. 

PROOF. Choose hyperinvariant N ~ M I , N =I- 0, N =I- MI' Since A' ~ A, 
N E lat A, and there exists P E Po(A) with range N. Now consider two cases. 

Case 1. P(Mn ) =I- 0 for only finitely many n. 
Then there is an infinite set of positive integers J such that Mn ~ PJ..(X) for 

all n in J. Let F denote a projection of Po(A) onto a subspace V nEJ Mn such that 
F ~ pJ... Then F(Mn) = Mn =I- 0 for every n E J and FJ..(Md ~ N =I- O. 

Case 2. P(Mn) =I- 0 for infinitely many n. 
Then take F = P. Clearly, F{Mn) =I- 0 for infinitely many n. On the other 

hand, FJ..(Md =I- 0, since N =I- MI' 
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Now we are ready for the proof of our main result. 

THEOREM 8. Let A S;;; leX) be a commutative completely reducible algebra. 
Suppose that for every hyperinvariant subspace M of A of dimension and codimen-
sion greater than 1, there exist nontrivial hyperinvariant subspaces of A, MI and 
M2, other than M, such that MI S;;; M S;;; M2. Then A' is completely reducible. 

PROOF. Choose Xl in lat A'. Since A' ::;;> A, Xl is also in lat A and, since A is 
completely reducible, there is in X 2 E lat A such that Xl + X 2 = X. We claim 
that X2 is in lat A' and therefore that X2 is the unique complement to Xl in lat A. 

The claim will be established by contradiction; suppose X 2 is not in lat A'. 
Denote by E the projection onto Xl along X 2 • The proof will be divided into 
three parts. In the first part, we shall construct two infinite sequences of pairwise 
orthogonal projections, {En}~=l in (AIXz)' and {Fn}~=l in (AIXd = A'IXI , and 
a sequence {Tn}~=l in intE A such that EnTnFn -=J 0 for all n. 

Note that for T E intE A, BE A'IXI , and C E (AIXz)', BTC E intE A. For an 
arbitrary projection G in £(Xz) let M(G) denote the subspace of Xl spanned by 
all TG(Xz) with T E intE A. Clearly, M(G) is always in lat(A'IXd. 

Now denote by Y the intersection of the kernels of all operators in intE A. By 
our assumption that Xz is not in lat A' and Lemma 3, it follows that Y -=J X z. On 
the other hand, Y lies in lat(AIXz)' and, by Lemma 4(ii), Xl + Y lies in lat A'. 
Let Q be a projection in P(AIXz) onto a subspace which is complementary to Y in 
X z. By hypothesis, Xl + Y is contained in some larger nontrivial hyperinvariant 
subspace of A. By lemma 4(ii), this larger subspace has the form Xl + Y + EI (Xz) 
for some nonzero EI E P(AIXz), EI ::; Q, EI -=J Q. Repeating the same argument, 
one can find nonzero Ez E P(AIXz) with Ez ::; Q - El, Ez -=J Q - EI. Proceeding 
by induction, we get an infinite sequence {En}~l of pairwise orthogonal nonzero 
projections in P(AIXz) with En ::; Q for all n. It follows from the definition of Q 
that M(En) -=J 0 for all n. 

Now Lemma 7 provides GI E Po(AIXd such that Gt M(Ed -=J 0 and GIM(En) 
-=J 0 for every n in the infinite set J of positive integers. 

Renumber the elements of h by 2,3, .... By Lemma 4(i), GIM(En) E lat(AIXd' 
for n ~ 2. Since 

((AIGI(Xd)' = AIGI(Xd, 
we may again apply Lemma 7 to the algebra AIGI(XI) and a sequence GIM(Ez), 
GIM(E3 ), ... of its hyperinvariant subspaces. As a result, we obtain Gz E Po(AXd 
such that Gz ::; GI, (G I - Gz)G IM(E2) = (G I - Gz)M(Ez) -=J 0, and 
GzGIM(En) = GzM(En) -=J 0 for every n from an infinite subset h of h. 

Proceeding by induction (renumbering the elements of I n by n + 1, n + 2, ... ), 
we get a sequence I = Go ~ G I ~ Gz ~ ... ~ Gn ~ "', where Gn E Po(AIXd and 

n = 1,2, .... 

Let Fn = Gn- l - Gn, n = 1,2, .... The Fn's are pairwise orthogonal projections in 
P(AIXd, and FnM(En) -=J 0 for n = 1,2, .... Finally, from the definition of M(En}, 
it follows that there is a sequence {Tn}~=l in intE A such that FnTnEn -=J 0 for all 
n. 

In the second part of the proof we will construct a closed unbounded linear 
transformation T defined on the linear manifold D S;;; Xl, with range in X z, such 
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that its graph {Tx + x, xED} is invariant under A. For this, define an operator 
To E £(X2' Xt) as follows: 

00 

To = L 2-nllFnTnEnll- 1 Fn Tn En , 
n=l 

w here the series converges in the sense of the norm in £ (X 2, X t). It is easy to see 
that To E intE A. Now let L = n:=l Ker Fn. Then L E lat(AIXt}; let N be in 
lat(AIXd with L -+- N = Xl' Denote by P the projection onto N along L. Let 
us observe that for every n the operator PFnlFn(Xd is injective; it follows that 
PFnTnEn i= 0 for n ~ 1. Now define S E (AIX2)' as follows: 

00 

S = LT2nllPFnTnEnil IlFnTnEnll-111Enll-1 En 
n=l 

(again, the series is convergent in the sense of the norm). 
We claim that the subspace 

M = cl{(PTox, Sx), x E X 2} ~ Xl EB X 2 

is a graph of some linear transformation T: D ----> Xl, D ~ X 2. 
Indeed, the conjugate space to Xl EB X 2 is a linear space of vectors (xi, xi), 

xi E Xi, endowed with the norm 

II(xL x2)II = sup(IIxill, IIx;II)· 
It is easy to see that (xi, xi) E M.L if and only if TO' P* xi + S* xi = o. Note that, 
by the definition of L, 

weak*cl CY1 F~(Xi)) = weak*cl CY/Ker Fn).L) 

~ CO, K.,Fn r ~ L". 

Note also that L.L = P* (Xi), N.L = Ker P*, and L.L -+- N.L = Xi. Let 

Clearly, £ is weak * dense in L.L. Now, for m ~ 1, 

T,* P* F* = T,* F* = (~TnIIF T E 11- 1 E*T* F*) F* o mOm L..-t n n n .:In n n m 
n=l 

= 2-m 11F T E 11- 1 E* T* F* m m m m m m' 

Similarly, we conclude that E:"'(X2) is contained in the range of S* for m ~ 1. It 
follows that for each xi E £+N.L there exists xi E X2 such that TO' P*xi +S*xi = 0 
(if xi E N.L, then P*xi = 0 and we can take xi = 0), or (xi,x:i) E M.L. Now 
suppose (x,O) EM for some x E Xl. Then, for each xi E £ + N.L, xi(x) = 0, and, 
since £ + N.L is weak* dense in Xi, x = O. This proves our claim. 
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Now we shall show that T is unbounded. Indeed, for every m ~ 1, Em (X2 ) ~ 

S(X2) and therefore Em(X2) ~ D. Furthermore, TSEm = PToEm' or 

T(2-2mIIPFmTmEmIIIIFm.TmEmll-lIIEmll-l)Em 
= 2-mllFmTmEmll-1PFmTmEm. 

Since PFmTmEm =I 0, 

TEm = 2mIIEmIIIIPFmTmEmll-1PFmTmEm-
Hence, IITEmll = 2mllEmll, which proves that T is unbounded. 

Now let Mo be the closure of {PTox + Sx, x E X 2} in X. Lemma 2 allows us 
to identify Mo with M. That is, we may suppose that Mo = {Tx + x, xED}; 
in particular, Mo n Xl = 0 and (Mo + Xl n X 2 = D. For each A in A, A = 
EAE + E-l.. AE.L; it follows, since PTo E intE A and S E (AIX2)', that for x E X 2, 

A(PTox + Sx) = (EAE + E.L AE.L ) (PTox + Sx) 
= EAEPTox + E.L AE.LSx = PToE.L AE.L x + SE.L AE.L x , 

which shows that Mo E lat A. This ends the second part of the proof. 
In the last part of the proof we obtain a contradiction. To do this, it would 

suffice to refer to a simple result of Fong [1], but we prefer to give a direct proof. 
Since Mo E lat A and A is completely reducible, one can find Ml E lat A such 

that Mo -i- Ml = X. Let Eo denote the projection onto Mo along Mi. Then 
Eo E A' and hence Xl is invariant under Eo. This implies that 

Xl = Xl n Mo -i- Xl n Mi. 

However, as we have seen, Xl n Mo = 0; that means Xl ~ Mi' From the fact 
that Mo -i- Ml = X and Lemma 2, it follows that the manifold Mo + Xl is closed. 
Then D = (Mo + Xd n X 2 is also closed. But D is the domain of definition for a 
closed unbounded transformation T, and, by the Closed Graph Theorem, cannot 
be closed. This contradiction completes the proof of the theorem. 

THEOREM 9. Let A ~ £(X) be a commutative unital weakly closed completely 
reducible algebra. Suppose that the intersection of the kernels of all compact oper-
ators in A' is zero and the subspace spanned by ranges of all compact operators in 
A' is X. Then A is generated, as a uniformly closed algebra, by a complete bounded 
totally atomic Boolean algebra of projections; in particular, A is an algebra of scalar 
type spectral operators. Furthermore, A is reflexive and admits spectral synthesis. 

PROOF. Let Xl denote the subspace spanned by all one-dimensional subspaces 
in lat A, and let X 2 be a complement to Xl in lat A. By Lemma 6, Xl and X 2 
are in lat A'. We shall show that for AIX2 the conditions of the previous theorem 
are satisfied. Denote by C the family of all compact operators in (AIX2)'. Clearly, 
intersections of the kernels of all operators in C is zero, and the subspace spanned 
by all their ranges is X 2 • Let M be a nonzero subspace in lat(AIX2)' and E be in 
Po(AIX2) with E(X2) = M. Then there is Kl E C such that KllM =I 0 and (note 
that M is infinite-dimensional), by Lomonosov's theorem [3], there is a nonzero 
Ml ~ M such that Ml E lat(AIX2)' and Ml =I M. On the other hand, there 
exists K2 E C such that E.L K2E.L =I 0, for otherwise E.L K E = E.L K E.L = 0 
for each K in C, hence K = EK and K(X2) ~ E(X2), which contradicts our 
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hypothesis. Again, by Lomonosov's theorem, the algebra AIE~(X2) has a nontrivial 
hyperinvariant subspace, and now Lemma 4(ii) implies that AIX2 has a nontrivial 
hyperinvariant subspace M2 strictly containing M. So the conditions of Theorem 
8 are satisfied for AIX2 . 

Choose a subspace in lat A'. Clearly, it can be written as M + N, where M <;:; Xl 
and N <;:; X 2 • By Lemma 5, there exists MI in lat(AIXd such that M + MI = Xl, 
and, by Theorem 8, we can find NI E lat(Alx2)' such that N + NI = X 2 . But 
then MI + NI lies in lat A' and (M + N) + (MI + Nt) = X. It follows that A' 
is completely reducible. Now, to conclude the proof of the theorem, it suffices to 
apply Theorem 1. 

The following corollary follows immediately from Theorem 9. 

COROLLARY 10. Let T E £(X) be a completely reducible operator. If T K = 
KT, where K is an injective compact operator such that cl K(X) = X, then T is a 
scalar type spectral operator, and spectral synthesis holds for T. 

COROLLARY 11. Let A <;:; £(X) be a commutative unital weakly closed com-
pletely reducible algebra. If the intersection of the kernels of all the compact oper-
ators in A is zero, or if the ranges of all the compact operators in A span X, then 
the conclusions of Theorem 9 hold for A. 

PROOF. We shall show that the assumpition about the kernels is equivalent 
to that about the ranges. Then the result would be an immediate consequence of 
Theorem 9. Let M be intersection of the kernels of all compact operators in A. 
Clearly, M E lat A. Let N E lat A be such that M + N = X. Let No be the 
subspace spanned by all K(N), where K runs over the set of all compact operators 
in .A. Obviously, No E lat A and No <;:; N. Let NI E lat A, No + NI = N. Then, 
by the definition of No, all the compact operators in A vanish on N I ; that is, 
NI <;:; M n N = 0 and No = N. On the other hand, the range of every compact 
operator in A is contained in N. It follows that the subspace spanned by the ranges 
of the compact operators in A is exactly N. But M = 0 implies N = X, and vice 
versa. 

To end this paper, we give a characterization of completely reducible compact 
operators. 

COROLLARY 12. Every compact, completely reducible operator K E £(X) is a 
scalar type spectral operator. 

PROOF. It suffices to note that Ker K + cl K(X) = X [1]. 
The author is grateful to Victor Sul'man for some helpful discussions. 
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