COMPLETELY REDUCIBLE OPERATORS THAT COMMUTE WITH COMPACT OPERATORS

SHLOMO ROSENOER

Abstract

It is shown that if T is a completely reducible operator on a Banach space and $T K=K T$, where K is an injective compact operator with a dense range, then T is a scalar type spectral operator. Other related results are also obtained.

Let \mathcal{A} be an algebra of bounded linear operators on a Banach space X. lat \mathcal{A} is the lattice of (closed) invariant subspaces of A. We say that A is completely reducible if for every $M \in \operatorname{lat} \AA$ there is $N \in \operatorname{lat} \AA$ with $M+N=X$ (that is, $M \cap N=0$ and the algebraic sum $M+N$ coincides with X). An operator T is completely reducible if the algebra generated by T is. It is unknown whether a weakly closed unital completely reducible algebra must be reflexive; that is, must contain every operator which leaves invariant its invariant subspaces. Some partial solutions of this problem can be found in $[\mathbf{1}, \mathbf{6}, \mathbf{7}]$.

In this paper we show that every completely reducible operator commuting with an injective compact operator with a dense range is a scalar type spectral operator. In particular, the weakly closed unital algebra generated by such an operator must be reflexive. This result seems to be unknown even for operators on a Hilbert space. Also, we show that every compact completely reducible operator must be a scalar type spectral operator. This answers a question raised by E. Azoff and A. Lubin (see the last page of [1]) and, independently, by V. Lomonosov. Finally, our result generalizes the results of Loginov and Sul'man [2] and Rosenthal [5] on reductive Hilbert space operators that commute with compact operators.

The following theorem is the central result of the author's paper [4], where it was stated in a slightly different form:

Theorem 1. Let A be a commutative operator algebra on a Banach space X. If the commutant of A is completely reducible and the ranges of compact operators in A span X, then every operator in A is a scalar type spectral operator. If, in addition, \mathcal{A} is a weakly closed unital completely reducible algebra, then A is generated, as a uniformly closed algebra, by a complete totally atomic Boolean algebra of projections. Moreover, A is reflexive and admits spectral synthesis (i.e., every invariant subspace of \mathcal{A} is spanned by its one-dimensional invariant subspaces).

Thus, in order to prove the result described above, it suffices to show that if A is a commutative completely reducible algebra which has enough hyperinvariant subspaces, then the commutant of A is also completely reducible. This will be done in Theorem 8 below. The above result then follows easily, a sufficient supply of

[^0]hyperinvariant subspaces being provided by Lomonsov's theorem. It can be shown, by a slight variation of the proof of Theorem 8, that the word "hyperinvariant" in its statement can be replaced with "invariant."

Let us introduce some definitions and notation. For Banach spaces X and Y, $\mathcal{L}(X, Y)$ denotes the collection of all bounded linear operators from X to $Y ; \mathcal{L}(X, X)$ is denoted by $\mathcal{L}(X)$. X^{*} means the conjugate space of the Banach space X. For $M \subseteq X, M^{\perp}$ is an annihilator of M in X^{*}. An operator E in $\mathcal{L}(X)$ is a projection if $E^{2}=E$. If E and F are projections, we write $E \leq F$ provided $E F=F E=E$. Clearly, $E \leq F$ if and only if $E(X) \subseteq F(X)$ and $\operatorname{Ker} E \supseteq \operatorname{Ker} F$. If E is a projection, we write E^{\perp} for $I-E$. If \mathcal{A} is a subalgebra of $\mathcal{L}(X)$, then \mathcal{A}^{\prime} denotes the commutant of \mathcal{A}; that is, the set of all operators in $\mathcal{L}(X)$ that commute with every operator in A. Hyperinvariant subspaces of A are those invariant for A^{\prime}. We will write $P(A)$ for the family of all projections in \mathcal{A}^{\prime}, and $P_{0}(\mathcal{A})$ for the set of those projections in $P(A)$ whose range is hyperinvariant for \mathcal{A}. Finally, for E in $P(A)$, we define int $E A$ as the set of all $T \in \mathcal{L}\left(E^{\perp}(X), E(X)\right)$ such that

$$
E A E T=T E^{\perp} A E^{\perp} \quad \text { for each } A \in \mathbb{A}
$$

or, equivalently,

$$
(A \mid E(X)) T=T\left(A \mid E^{\perp}(X)\right) \quad \text { for each } A \in \mathcal{A}
$$

Clearly, an operator algebra A is completely reducible if and only if for every M in lat \mathcal{A} there is a projection in $P(A)$ with range M. Note also that for A completely reducible and M in lat \AA, the restriction of \AA to $M, \mathcal{A} \mid M$, is also completely reducible.

We shall need some very elementary lemmas. The first is well known.
Lemma 2. Let X be a Banach space and let X_{1} and X_{2} be subspaces of X with $X_{1}+X_{2}=X$. Then X is isomorphic to the exterior direct sum $X_{1} \oplus X_{2}$ defined as a vector space of ordered pairs $\left(x_{1}, x_{2}\right), x_{i} \in X_{i}$, endowed with the norm $\left\|\left(x_{1}, x_{2}\right)\right\|=\left\|x_{1}\right\|+\left\|x_{2}\right\|$.

Lemma 3. Let \AA be a subalgebra of $\mathcal{L}(X)$ and $E \in P(\mathcal{A})$. Then $E^{\perp}(X)$ is in lat A^{\prime} if and only if $\operatorname{int}_{E} A=0$.

Proof. Suppose $E^{\perp}(X) \in$ lat \mathcal{A}^{\prime}. For each $T \in \operatorname{int}_{E} \mathcal{A}, E T E^{\perp}$ is in \mathcal{A}^{\prime}, so that $E T E^{\perp}=0$ and $T=0$. Conversely, for each $B \in A^{\prime}, E B E^{\perp} \mid E^{\perp}(X)$ is in int $E \mathcal{A}$, and $\operatorname{int}_{E} \mathcal{A}=0$ implies $E B E^{\perp}=0$, so that $E^{\perp}(X)$ is invariant under B.

Lemma 4. Let \mathcal{A} be a subalgebra of $\mathcal{L}(X)$ and $F \in \mathcal{P}_{0}(\mathcal{A})$. Let $X_{1}=F(X)$ and $X_{2}=\operatorname{Ker} F$.
(i) For each $M \in \operatorname{lat} \mathcal{A}^{\prime}, F(M) \in$ lat \AA^{\prime}.
(ii) A subspace Y which contains X_{1} belongs to lat \mathcal{A}^{\prime} if and only if $Y=X_{1}+Y_{1}$, where $Y_{1} \subseteq X_{2}$ and $Y_{1} \in \operatorname{lat}\left(\mathcal{A} \mid X_{2}\right)^{\prime}$.

Proof. (i) For each $B \in \AA^{\prime}, B F(M) \subseteq F(X)$, since $F(X)$ is hyperinvariant, and $B F(M) \subseteq M$, since M is hyperinvariant and $F \in \mathcal{A}^{\prime}$. Hence, $B F(M) \subseteq$ $F(X) \cap M=F(M)$.
(ii) Let $Y \supseteq X_{1}$ and $Y \in$ lat \AA^{\prime}. In particular, Y is invariant under F, so that $Y=X_{1}+Y_{1}$ for some $Y_{1} \subseteq X_{2}$. For each $C \in\left(\mathcal{A} \mid X_{2}\right)^{\prime}, F^{\perp} C F^{\perp} \in A^{\prime}$, and $C\left(Y_{1}\right)=F^{\perp} C F^{\perp}\left(X_{1}+Y_{1}\right) \subseteq F^{\perp}(Y)=Y_{1}$; that is, $Y_{1} \in \operatorname{lat}\left(\mathcal{A} \mid X_{2}\right)^{\prime}$. Conversely,
if $Y_{1} \in \operatorname{lat}\left(\mathcal{A} \mid X_{2}\right)^{\prime}$ and $B \in \mathcal{A}^{\prime}$, then $F^{\perp} B F^{\perp} \mid X_{2}$ is in $\left(\mathcal{A} \mid X_{2}\right)^{\prime}$ and $F^{\perp} B F=0$. It follows that $B(Y)=\left(F B+F^{\perp} B F^{\perp}\right)(Y) \subseteq X_{1}+Y_{1}=Y$.

The following two lemmas will enable us to reduce the proof of the main result to the case when the completely reducible commutative algebra has no nonzero finite-dimensional invariant subspaces.

LEMMA 5. Let $\mathcal{A} \subseteq \mathcal{L}(X)$ be a completely reducible algebra such that the onedimensional subspaces in lat A span X. Then \mathcal{A}^{\prime} is completely reducible.

Proof. Clearly, A is commutative. We claim that A admits spectral synthesis. Indeed, let $M \in$ lat \mathcal{A}. Then there exists $F \in \mathcal{P}(\mathcal{A})$ such that $E(X)=M$. Since E transforms every one-dimensional invariant subspace of \mathcal{A} into an invariant subspace of \mathbb{A} of dimension no greater than one, $E(X)$ is spanned by one-dimensional elements of lat A.

Now suppose $X_{1} \in$ lat \mathcal{A}^{\prime}. Since $\mathcal{A}^{\prime} \supseteq \mathcal{A}, X_{1}$ is also in lat \mathcal{A}, and one can find $X_{2} \in \operatorname{lat} \mathcal{A}$ with $X_{1}+X_{2}=X$. We sill show that X_{2} is also in lat \mathcal{A}^{\prime}. Suppose not. Denote by E the projection onto X_{1} along X_{2}. Then, by Lemma $3, \operatorname{int}_{E} \mathcal{A} \neq 0$, and, by our claim above, there exist such $T \in \operatorname{int}_{E} A$ and one-dimensional $N \in \operatorname{lat}\left(\mathcal{A} \mid X_{2}\right)$ such that $M=T(N) \neq 0$. It is very easy to see that $M \in$ lat A and the algebra $A \mid(M \dot{+} N)$ consists only of multiples of the identity. Denote by S an operator which maps M into N and is identically zero on some invariant complement to $M \dot{+} N$. Then $S \in A^{\prime}$, but X_{1} is not invariant for S, a contradiction.

LEMMA 6. Let $\mathcal{A} \subseteq \mathcal{L}(X)$ be a completely reducible algebra. Suppose X_{1} is spanned by all one-dimensional subspaces in lat \AA and X_{2} is in lat \AA with $X_{1} \dot{+}$ $X_{2}=X$. Then both X_{1} and X_{2} are in lat A^{\prime}.

Proof. Obviously, X_{1} lies in lat \mathcal{A}^{\prime}. Suppose X_{2} does not. Then, denoting by E a projection onto X_{1} along X_{2}, we conclude that $\operatorname{int}_{E} \AA \neq 0$. Choose nonzero $T \in \operatorname{int}_{E} \mathcal{A}$. Since $\operatorname{cl} T\left(X_{2}\right) \in \operatorname{lat}\left(\mathcal{A} \mid X_{1}\right)$ and, as has been noted in the proof of the previous lemma, $A \mid X_{1}$ admits spectral synthesis, we can find a one-dimensional $P \in$ $P\left(\mathcal{A} \mid X_{1}\right)$ such that $P T \neq 0$. However, $P T \in \operatorname{int}_{E} A$, so that $\operatorname{Ker} P T \in \operatorname{lat}\left(\mathcal{A} \mid X_{2}\right)$. On the other hand, codim $\operatorname{Ker} P T=1$ and, since $A \mid X_{2}$ is completely reducible, $\mathcal{A} \mid X_{2}$ has a one-dimensional invariant subspace, which contradicts the definition of X_{1} and therefore completes the proof.

Lemma 7. Suppose $\AA \subseteq \mathcal{L}(X)$ is a commutative completely reducible algebra which has the following property: for every nonzero $M \in$ lat \AA^{\prime}, there is $N \in$ lat A^{\prime} such that $N \subseteq M, N \neq 0, N \neq M$. Let $M_{1}, M_{2}, \ldots, M_{n}, \ldots$ be an infinite sequence of nonzero subspaces in lat \mathcal{A}^{\prime}. Then there exists such an $F \in \mathcal{P}_{0}(\mathcal{A})$ that $F^{\perp}\left(M_{1}\right) \neq$ 0 and $F\left(M_{n}\right) \neq 0$ for infinitely many n.

Proof. Choose hyperinvariant $N \subseteq M_{1}, N \neq 0, N \neq M_{1}$. Since $\mathcal{A}^{\prime} \supseteq \neq A$, $N \in \operatorname{lat} \mathcal{A}$, and there exists $P \in P_{0}(\mathcal{A})$ with range N. Now consider two cases.

Case 1. $P\left(M_{n}\right) \neq 0$ for only finitely many n.
Then there is an infinite set of positive integers J such that $M_{n} \subseteq P^{\perp}(X)$ for all n in J. Let F denote a projection of $P_{0}(A)$ onto a subspace $\bigvee_{n \in J} M_{n}$ such that $F \leq P^{\perp}$. Then $F\left(M_{n}\right)=M_{n} \neq 0$ for every $n \in J$ and $F^{\perp}\left(M_{1}\right) \supseteq N \neq 0$.

Case 2. $P\left(M_{n}\right) \neq 0$ for infinitely many n.
Then take $F=P$. Clearly, $F\left(M_{n}\right) \neq 0$ for infinitely many n. On the other hand, $F^{\perp}\left(M_{1}\right) \neq 0$, since $N \neq M_{1}$.

Now we are ready for the proof of our main result.
THEOREM 8. Let $\mathcal{A} \subseteq \mathcal{L}(X)$ be a commutative completely reducible algebra. Suppose that for every hyperinvariant subspace M of A of dimension and codimension greater than 1 , there exist nontrivial hyperinvariant subspaces of \mathcal{A}, M_{1} and M_{2}, other than M, such that $M_{1} \subseteq M \subseteq M_{2}$. Then \mathcal{A}^{\prime} is completely reducible.

Proof. Choose X_{1} in lat \mathcal{A}^{\prime}. Since $\AA^{\prime} \supseteq \not \subset, X_{1}$ is also in lat A and, since \notin is completely reducible, there is in $X_{2} \in$ lat A such that $X_{1}+X_{2}=X$. We claim that X_{2} is in lat \mathcal{A}^{\prime} and therefore that X_{2} is the unique complement to X_{1} in lat \mathcal{A}.

The claim will be established by contradiction; suppose X_{2} is not in lat \AA^{\prime}. Denote by E the projection onto X_{1} along X_{2}. The proof will be divided into three parts. In the first part, we shall construct two infinite sequences of pairwise orthogonal projections, $\left\{E_{n}\right\}_{n=1}^{\infty}$ in $\left(\mathcal{A} \mid X_{2}\right)^{\prime}$ and $\left\{F_{n}\right\}_{n=1}^{\infty}$ in $\left(\mathcal{A} \mid X_{1}\right)^{\prime}=\mathcal{A}^{\prime} \mid X_{1}$, and a sequence $\left\{T_{n}\right\}_{n=1}^{\infty} \operatorname{in~}_{\operatorname{int}_{E}} \AA$ such that $E_{n} T_{n} F_{n} \neq 0$ for all n.

Note that for $T \in \operatorname{int}_{E} \mathcal{A}, B \in A^{\prime} \mid X_{1}$, and $C \in\left(\mathcal{A} \mid X_{2}\right)^{\prime}, B T C \in \operatorname{int}_{E} A$. For an arbitrary projection G in $\mathcal{L}\left(X_{2}\right)$ let $M(G)$ denote the subspace of X_{1} spanned by all $T G\left(X_{2}\right)$ with $T \in \operatorname{int}_{E} \mathcal{A}$. Clearly, $M(G)$ is always in lat $\left(\mathcal{A}^{\prime} \mid X_{1}\right)$.

Now denote by Y the intersection of the kernels of all operators in $\operatorname{int}_{E} A$. By our assumption that X_{2} is not in lat \mathcal{A}^{\prime} and Lemma 3, it follows that $Y \neq X_{2}$. On the other hand, Y lies in $\operatorname{lat}\left(\mathcal{A} \mid X_{2}\right)^{\prime}$ and, by Lemma 4(ii), $X_{1}+Y$ lies in lat \mathcal{A}^{\prime}. Let Q be a projection in $P\left(\mathcal{A} \mid X_{2}\right)$ onto a subspace which is complementary to Y in X_{2}. By hypothesis, $X_{1} \dot{+} Y$ is contained in some larger nontrivial hyperinvariant subspace of A. By lemma 4(ii), this larger subspace has the form $X_{1}+Y \dot{+} E_{1}\left(X_{2}\right)$ for some nonzero $E_{1} \in \mathcal{P}\left(\mathcal{A} \mid X_{2}\right), E_{1} \leq Q, E_{1} \neq Q$. Repeating the same argument, one can find nonzero $E_{2} \in \mathcal{P}\left(A \mid X_{2}\right)$ with $E_{2} \leq Q-E_{1}, E_{2} \neq Q-E_{1}$. Proceeding by induction, we get an infinite sequence $\left\{E_{n}\right\}_{n=1}^{\infty}$ of pairwise orthogonal nonzero projections in $P\left(\mathcal{A} \mid X_{2}\right)$ with $E_{n} \leq Q$ for all n. It follows from the definition of Q that $M\left(E_{n}\right) \neq 0$ for all n.

Now Lemma 7 provides $G_{1} \in \mathcal{P}_{0}\left(\mathcal{A} \mid X_{1}\right)$ such that $G_{1}^{\perp} M\left(E_{1}\right) \neq 0$ and $G_{1} M\left(E_{n}\right)$ $\neq 0$ for every n in the infinite set J of positive integers.

Renumber the elements of J_{1} by $2,3, \ldots$. By Lemma 4(i), $G_{1} M\left(E_{n}\right) \in \operatorname{lat}\left(\mathcal{A} \mid X_{1}\right)^{\prime}$ for $n \geq 2$. Since

$$
\left(\left(\mathscr{A} \mid G_{1}\left(X_{1}\right)\right)^{\prime}=\mathscr{A} \mid G_{1}\left(X_{1}\right)\right.
$$

we may again apply Lemma 7 to the algebra $\mathcal{A} \mid G_{1}\left(X_{1}\right)$ and a sequence $G_{1} M\left(E_{2}\right)$, $G_{1} M\left(E_{3}\right), \ldots$ of its hyperinvariant subspaces. As a result, we obtain $G_{2} \in \mathcal{P}_{0}\left(A X_{1}\right)$ such that $G_{2} \leq G_{1},\left(G_{1}-G_{2}\right) G_{1} M\left(E_{2}\right)=\left(G_{1}-G_{2}\right) M\left(E_{2}\right) \neq 0$, and $G_{2} G_{1} M\left(E_{n}\right)=G_{2} M\left(E_{n}\right) \neq 0$ for every n from an infinite subset J_{2} of J_{1}.

Proceeding by induction (renumbering the elements of J_{n} by $n+1, n+2, \ldots$), we get a sequence $I=G_{0} \geq G_{1} \geq G_{2} \geq \cdots \geq G_{n} \geq \cdots$, where $G_{n} \in \mathcal{P}_{0}\left(\mathcal{A} \mid X_{1}\right)$ and

$$
\left(G_{n-1}-G_{n}\right) M\left(E_{n}\right) \neq 0, \quad n=1,2, \ldots
$$

Let $F_{n}=G_{n-1}-G_{n}, n=1,2, \ldots$. The F_{n} 's are pairwise orthogonal projections in $\mathcal{P}\left(\mathcal{A} \mid X_{1}\right)$, and $F_{n} M\left(E_{n}\right) \neq 0$ for $n=1,2, \ldots$. Finally, from the definition of $M\left(E_{n}\right)$, it follows that there is a sequence $\left\{T_{n}\right\}_{n=1}^{\infty} \operatorname{in~int~}_{E} \mathscr{A}$ such that $F_{n} T_{n} E_{n} \neq 0$ for all n.

In the second part of the proof we will construct a closed unbounded linear transformation T defined on the linear manifold $D \subseteq X_{1}$, with range in X_{2}, such
that its graph $\{T x+x, x \in D\}$ is invariant under A. For this, define an operator $T_{0} \in \mathcal{L}\left(X_{2}, X_{1}\right)$ as follows:

$$
T_{0}=\sum_{n=1}^{\infty} 2^{-n}\left\|F_{n} T_{n} E_{n}\right\|^{-1} F_{n} T_{n} E_{n}
$$

where the series converges in the sense of the norm in $\mathcal{L}\left(X_{2}, X_{1}\right)$. It is easy to see that $T_{0} \in \operatorname{int}_{E} \mathcal{A}$. Now let $L=\bigcap_{n=1}^{\infty} \operatorname{Ker} F_{n}$. Then $L \in \operatorname{lat}\left(\mathcal{A} \mid X_{1}\right)$; let N be in $\operatorname{lat}\left(\mathcal{A} \mid X_{1}\right)$ with $L \dot{+}=X_{1}$. Denote by P the projection onto N along L. Let us observe that for every n the operator $P F_{n} \mid F_{n}\left(X_{1}\right)$ is injective; it follows that $P F_{n} T_{n} E_{n} \neq 0$ for $n \geq 1$. Now define $S \in\left(A \mid X_{2}\right)^{\prime}$ as follows:

$$
S=\sum_{n=1}^{\infty} 2^{-2 n}\left\|P F_{n} T_{n} E_{n}\right\|\left\|F_{n} T_{n} E_{n}\right\|^{-1}\left\|E_{n}\right\|^{-1} E_{n}
$$

(again, the series is convergent in the sense of the norm).
We claim that the subspace

$$
M=\operatorname{cl}\left\{\left(P T_{0} x, S x\right), x \in X_{2}\right\} \subseteq X_{1} \oplus X_{2}
$$

is a graph of some linear transformation $T: D \rightarrow X_{1}, D \subseteq X_{2}$.
Indeed, the conjugate space to $X_{1} \oplus X_{2}$ is a linear space of vectors $\left(x_{1}^{*}, x_{2}^{*}\right)$, $x_{i}^{*} \in X_{i}^{*}$, endowed with the norm

$$
\left\|\left(x_{1}^{*}, x_{2}^{*}\right)\right\|=\sup \left(\left\|x_{1}^{*}\right\|,\left\|x_{2}^{*}\right\|\right) .
$$

It is easy to see that $\left(x_{1}^{*}, x_{2}^{*}\right) \in M^{\perp}$ if and only if $T_{0}^{*} P^{*} x_{1}^{*}+S^{*} x_{2}^{*}=0$. Note that, by the definition of L,

$$
\begin{aligned}
\text { weak }^{*} \mathrm{cl}\left(\bigvee_{n=1}^{\infty} F_{n}^{*}\left(X_{1}^{*}\right)\right) & =\text { weak }^{*} \mathrm{cl}\left(\bigvee_{n=1}^{\infty}\left(\operatorname{Ker} F_{n}\right)^{\perp}\right) \\
& =\left(\bigcap_{n=1}^{\infty} \operatorname{Ker} F_{n}\right)^{\perp}=L^{\perp}
\end{aligned}
$$

Note also that $L^{\perp}=P^{*}\left(X_{1}^{*}\right), N^{\perp}=\operatorname{Ker} P^{*}$, and $L^{\perp} \dot{+} N^{\perp}=X_{1}^{*}$. Let

$$
\mathcal{L}=\bigcup_{n=1}^{\infty}\left(\sum_{i=1}^{n} F_{i}^{*}\left(X_{1}^{*}\right)\right)
$$

Clearly, \mathcal{L} is weak* dense in L^{\perp}. Now, for $m \geq 1$,

$$
\begin{aligned}
T_{0}^{*} P^{*} F_{m}^{*}=T_{0}^{*} F_{m}^{*} & =\left(\sum_{n=1}^{\infty} 2^{-n}\left\|F_{n} T_{n} E_{n}\right\|^{-1} E_{n}^{*} T_{n}^{*} F_{n}^{*}\right) F_{m}^{*} \\
& =2^{-m}\left\|F_{m} T_{m} E_{m}\right\|^{-1} E_{m}^{*} T_{m}^{*} F_{m}^{*}
\end{aligned}
$$

Similarly, we conclude that $E_{m}^{*}\left(X_{2}^{*}\right)$ is contained in the range of S^{*} for $m \geq 1$. It follows that for each $x_{1}^{*} \in \mathcal{L}+N^{\perp}$ there exists $x_{2}^{*} \in X_{2}^{*}$ such that $T_{0}^{*} P^{*} x_{1}^{*}+S^{*} x_{2}^{*}=0$ (if $x_{1}^{*} \in N^{\perp}$, then $P^{*} x_{1}^{*}=0$ and we can take $x_{2}^{*}=0$), or $\left(x_{1}^{*}, x_{2}^{*}\right) \in M^{\perp}$. Now suppose $(x, 0) \in M$ for some $x \in X_{1}$. Then, for each $x_{1}^{*} \in \mathcal{L}+N^{\perp}, x_{1}^{*}(x)=0$, and, since $\mathcal{L}+N^{\perp}$ is weak* dense in $X_{1}^{*}, x=0$. This proves our claim.

Now we shall show that T is unbounded. Indeed, for every $m \geq 1, E_{m}\left(X_{2}\right) \subseteq$ $S\left(X_{2}\right)$ and therefore $E_{m}\left(X_{2}\right) \subseteq D$. Furthermore, $T S E_{m}=P T_{0} E_{m}$, or

$$
\begin{aligned}
& T\left(2^{-2 m}\left\|P F_{m} T_{m} E_{m}\right\|\left\|F_{m} T_{m} E_{m}\right\|^{-1}\left\|E_{m}\right\|^{-1}\right) E_{m} \\
&=2^{-m}\left\|F_{m} T_{m} E_{m}\right\|^{-1} P F_{m} T_{m} E_{m}
\end{aligned}
$$

Since $P F_{m} T_{m} E_{m} \neq 0$,

$$
T E_{m}=2^{m}\left\|E_{m}\right\|\left\|P F_{m} T_{m} E_{m}\right\|^{-1} P F_{m} T_{m} E_{m}
$$

Hence, $\left\|T E_{m}\right\|=2^{m}\left\|E_{m}\right\|$, which proves that T is unbounded.
Now let M_{0} be the closure of $\left\{P T_{0} x+S x, x \in X_{2}\right\}$ in X. Lemma 2 allows us to identify M_{0} with M. That is, we may suppose that $M_{0}=\{T x+x, x \in D\}$; in particular, $M_{0} \cap X_{1}=0$ and $\left(M_{0}+X_{1} \cap X_{2}=D\right.$. For each A in $A, A=$ $E A E+E^{\perp} A E^{\perp}$; it follows, since $P T_{0} \in \operatorname{int}_{E} \mathcal{A}$ and $S \in\left(\mathcal{A} \mid X_{2}\right)^{\prime}$, that for $x \in X_{2}$,

$$
\begin{aligned}
A\left(P T_{0} x+S x\right) & =\left(E A E+E^{\perp} A E^{\perp}\right)\left(P T_{0} x+S x\right) \\
& =E A E P T_{0} x+E^{\perp} A E^{\perp} S x=P T_{0} E^{\perp} A E^{\perp} x+S E^{\perp} A E^{\perp} x
\end{aligned}
$$

which shows that $M_{0} \in \operatorname{lat} A$. This ends the second part of the proof.
In the last part of the proof we obtain a contradiction. To do this, it would suffice to refer to a simple result of Fong [1], but we prefer to give a direct proof.

Since $M_{0} \in \operatorname{lat} A$ and A is completely reducible, one can find $M_{1} \in$ lat A such that $M_{0} \dot{+} M_{1}=X$. Let E_{0} denote the projection onto M_{0} along M_{1}. Then $E_{0} \in \mathcal{A}^{\prime}$ and hence X_{1} is invariant under E_{0}. This implies that

$$
X_{1}=X_{1} \cap M_{0}+X_{1} \cap M_{1} .
$$

However, as we have seen, $X_{1} \cap M_{0}=0$; that means $X_{1} \subseteq M_{1}$. From the fact that $M_{0}+M_{1}=X$ and Lemma 2, it follows that the manifold $M_{0}+X_{1}$ is closed. Then $D=\left(M_{0}+X_{1}\right) \cap X_{2}$ is also closed. But D is the domain of definition for a closed unbounded transformation T, and, by the Closed Graph Theorem, cannot be closed. This contradiction completes the proof of the theorem.

Theorem 9. Let $A \subseteq \mathcal{L}(X)$ be a commutative unital weakly closed completely reducible algebra. Suppose that the intersection of the kernels of all compact operators in \mathcal{A}^{\prime} is zero and the subspace spanned by ranges of all compact operators in \mathcal{A}^{\prime} is X. Then \mathcal{A} is generated, as a uniformly closed algebra, by a complete bounded totally atomic Boolean algebra of projections; in particular, \AA is an algebra of scalar type spectral operators. Furthermore, \mathcal{A} is reflexive and admits spectral synthesis.

Proof. Let X_{1} denote the subspace spanned by all one-dimensional subspaces in lat \mathcal{A}, and let X_{2} be a complement to X_{1} in lat \mathcal{A}. By Lemma $6, X_{1}$ and X_{2} are in lat A^{\prime}. We shall show that for $A \mid X_{2}$ the conditions of the previous theorem are satisfied. Denote by \mathcal{C} the family of all compact operators in $\left(\mathcal{A} \mid X_{2}\right)^{\prime}$. Clearly, intersections of the kernels of all operators in \mathcal{C} is zero, and the subspace spanned by all their ranges is X_{2}. Let M be a nonzero subspace in lat $\left(\mathcal{A} \mid X_{2}\right)^{\prime}$ and E be in $\mathcal{P}_{0}\left(A \mid X_{2}\right)$ with $E\left(X_{2}\right)=M$. Then there is $K_{1} \in \mathcal{C}$ such that $K_{1} \mid M \neq 0$ and (note that M is infinite-dimensional), by Lomonosov's theorem [3], there is a nonzero $M_{1} \subseteq M$ such that $M_{1} \in \operatorname{lat}\left(\mathcal{A} \mid X_{2}\right)^{\prime}$ and $M_{1} \neq M$. On the other hand, there exists $K_{2} \in \mathcal{C}$ such that $E^{\perp} K_{2} E^{\perp} \neq 0$, for otherwise $E^{\perp} K E=E^{\perp} K E^{\perp}=0$ for each K in \mathcal{C}, hence $K=E K$ and $K\left(X_{2}\right) \subseteq E\left(X_{2}\right)$, which contradicts our
hypothesis. Again, by Lomonosov's theorem, the algebra $\mathcal{A} \mid E^{\perp}\left(X_{2}\right)$ has a nontrivial hyperinvariant subspace, and now Lemma 4 (ii) implies that $\mathcal{A} \mid X_{2}$ has a nontrivial hyperinvariant subspace M_{2} strictly containing M. So the conditions of Theorem 8 are satisfied for $A \mid X_{2}$.

Choose a subspace in lat A^{\prime}. Clearly, it can be written as $M+N$, where $M \subseteq X_{1}$ and $N \subseteq X_{2}$. By Lemma 5 , there exists M_{1} in lat $\left(\mathcal{A} \mid X_{1}\right)^{\prime}$ such that $M+M_{1}=X_{1}$, and, by Theorem 8 , we can find $N_{1} \in \operatorname{lat}\left(\mathcal{A} \mid x_{2}\right)^{\prime}$ such that $N+N_{1}=X_{2}$. But then $M_{1} \dot{+} N_{1}$ lies in lat \mathfrak{A}^{\prime} and $(M \dot{+} N) \dot{+}\left(M_{1} \dot{+} N_{1}\right)=X$. It follows that \mathcal{A}^{\prime} is completely reducible. Now, to conclude the proof of the theorem, it suffices to apply Theorem 1.

The following corollary follows immediately from Theorem 9.
Corollary 10. Let $T \in \mathcal{L}(X)$ be a completely reducible operator. If $T K=$ $K T$, where K is an injective compact operator such that $\mathrm{cl} K(X)=X$, then T is a scalar type spectral operator, and spectral synthesis holds for T.

Corollary 11. Let $\AA \subseteq \mathcal{L}(X)$ be a commutative unital weakly closed completely reducible algebra. If the intersection of the kernels of all the compact operators in A is zero, or if the ranges of all the compact operators in A span X, then the conclusions of Theorem 9 hold for \AA.

Proof. We shall show that the assumpition about the kernels is equivalent to that about the ranges. Then the result would be an immediate consequence of Theorem 9. Let M be intersection of the kernels of all compact operators in A. Clearly, $M \in$ lat \mathcal{A}. Let $N \in$ lat \mathcal{A} be such that $M \dot{+} N=X$. Let N_{0} be the subspace spanned by all $K(N)$, where K runs over the set of all compact operators in \mathcal{A}. Obviously, $N_{0} \in$ lat \AA and $N_{0} \subseteq N$. Let $N_{1} \in \operatorname{lat} \mathcal{A}, N_{0}+N_{1}=N$. Then, by the definition of N_{0}, all the compact operators in A vanish on N_{1}; that is, $N_{1} \subseteq M \cap N=0$ and $N_{0}=N$. On the other hand, the range of every compact operator in A is contained in N. It follows that the subspace spanned by the ranges of the compact operators in \AA is exactly N. But $M=0$ implies $N=X$, and vice versa.

To end this paper, we give a characterization of completely reducible compact operators.

COROLLARY 12. Every compact, completely reducible operator $K \in \mathcal{L}(X)$ is a scalar type spectral operator.

Proof. It suffices to note that $\operatorname{Ker} K+\operatorname{cl} K(X)=X[\mathbf{1}]$.
The author is grateful to Victor Sul'man for some helpful discussions.

References

[^1]5. P. Rosenthal, On commutants of reductive operator algebras, Duke Math. J. 41 (1974), 829-834.
6. P. Rosenthal and A. Sourour, On operator algebras containing cyclic Boolean algebras, Pacific J. Math. 70 (1977), 243-252.
7. __, On operator algebras containing cyclic Boolean algebras. II, J. London Math. Soc. 16 (1977), 501-506.

Bol'Shaya Serpuhovskaya Str., 31, Korpus 6, Apt. 229A, MOSCOW 113093, U.S.S.R.

[^0]: Received by the editors September 14, 1981.
 1980 Mathematics Subject Classification (1985 Revision). Primary 47B40.

[^1]: 1. C.-K. Fong, Operator algebras with complemented invariant subspace lattices, Indiana Univ. Math. J. 26 (1977), 1045-1056.
 2. A. I. Loginov and V. S. Sul'man, On reductive operators and operator algebras, Izv. Akad. Nauk SSSR Ser. Math. 40 (1976), 845-854. (Russian)
 3. V. J. Lomonosov, Invariant subspaces for the family of operators which commute with a completely continuous operator, Funct. Anal. Appl. 7 (1973), 213-214.
 4. Sh. Rosenoer, Completely reducible operator algebras and spectral synthesis, Canad. J. Math. (to appear).
