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COMPLETENESS AND BASIS PROPERTIES
OF COMPLEX EXPONENTIALS

BY

RAYMOND M. REDHEFFER AND ROBERT M. YOUNG

Abstract. This paper is concerned with what might be termed the " fine structure"
of the completeness and basis properties of complex exponentials. We give new
criteria for two sequences to have the same excess in the sense of Paley and Wiener,
a result that illuminates and supplements a well-known completeness criterion of
Levinson, and new examples and counterexamples pertaining to Riesz bases.

1. Introduction. There is an extensive literature on the completeness and expansion
properties of sets of complex exponentials over a finite interval of the real axis (see,
e.g., [5 and 7] and the references therein). The present work continues this investiga-
tion.

A system (e'A"'} of complex exponentials is said to be complete Lp(~a, a), where
1 </? < oo, if the relations

ff(t)e,x"'dt = 0       (n= 1,2,3,...),
•'-a

with/ E Lp, imply that / = 0 a.e. The system is closed Lp(-a, a) if every / E Lp on
this interval can be approximated in Lp norm by linear combinations of the
functions e'x"'. By duality, if 1 </? < oo then closure Lp is equivalent to complete-
ness Lq, where q is the conjugate exponent, i.e., l/p + l/q= 1. The slight lack of
symmetry for p = 1 or p = oo is overwhelmed by the effect of adding or removing a
single X.

If the system (e'x"'} is complete Lp(-a, a) but fails to be complete on the removal
of a single term, then it will be called exact. If it becomes exact when £ terms are
removed, then we say it has excess E or E(X). The deficiency is defined similarly, or
as a "negative excess." By convention, E = oo if arbitrarily many terms can be
removed without losing completeness, and £ = - oo if arbitrarily many terms can be
adjoined without getting completeness. Observe that the quantity £ depends on both
p and a; although this dependence is not built into the notation, the context will
make its use clear.

In the first part of this paper (§§2-5) we obtain estimates for | E(X) — £(ju) | in
terms of | Xn — p.n \ . By convention, an inequality of the form |£(A) — £(u) |*£ A
shall mean: Either £(A) and E(¡i) axe both oo, or they are both -oo, or they are
both finite and satisfy the stated inequality. Some of the results appeared without
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94 R. M. REDHEFFER AND R. M. YOUNG

proof in [5]; others are extensions and refinements of work done by one of the
authors and others in [1,3,4 and 5]. In the second part of the paper (§§6-9) we
investigate the basis properties of systems of complex exponentials that are in some
sense "close to" the trigonometric system {e'"'}.

In §2, we consider the mapping

T:f^e-iXxfeiX'f(t)dt.
•'-a

Here, X is a fixed complex number and / belongs to the subspace of Lp(-a, a),
1 </? < oo, for which JHae'x'f(t) dt = 0. Then F is a bounded hnear operator into
Lp(-a, a). While the exact determination of ||F|| is an open problem, we show that
when/? = 2,

||F|| = 2a/(7T2 + 4|ImX|V)1/2,

and that, in general, || F || =£ min(2a, | Im X |~').
The results of §2 are used in §3 to compare the excesses of two sequences {e'x"'}

and {e,,in'}. It is shown, for example, that if the points X„ and ¡in lie in the half-plane
Im z > c and if

|X[ - ut I + ••• +|X„ - u„|hmsup —!-——:-—-—— < oo,

then the Lp excesses of the two sequences satisfy | £(X) — £(ju) | < 1.
For a real increasing sequence {X„} of nonzero numbers, the counting function

A(w) is the number of X^. on the interval (0, u], counted negatively for negative u.
An important use of the counting function is in the formula

log|fWI=/-AM_i_„„,
where

F(x)=lim     û    ('-fM    and    A(M) = t?(M2).

In §4, we investigate this integral under the assumption that A(w) = [u — <i>(w)]
where <i>: R -» R is a twice differentiable, bounded function, <l>'(u) < 1, 0 < $(0) < 1
(this ensures that uA(u)>0 and that no X„ is zero), and 2!°^ | #"(£„) |< oo
whenever ¿„ £ (Xn, Xn+!). In many applications, it is desirable to replace A(w) by
the simpler expression u — </>(w) — \. In this case, the error £(x) introduced in the
integral is shown to satisfy | £(x) |< 0(1) whenever inf„ | x — X„ |> e, and £(x) <
0(1) for all x.

A classical result of Levinson [3, p. 6] states that the system {e'x"'} is complete
Lp(-jn, it) if | Xn |<| n | + l/2^r, and that the constant l/2t? cannot be replaced by
any larger number. It is not difficult to show that completeness continues to hold if

l*„l<l»l+¿ + *(l»l)
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COMPLETENESS AND BASIS PROPERTIES 95

where <j> is a sufficiently regular function for which 2?°<i>(w)/rt < oo. In §5, using the
results of §4, we investigate the case <¡>(n) = ß/logn, ß i= 0, which just fails to
satisfy this criterion.

For the remainder of the paper, we restrict attention to the basis properties of a
system {e'x"'}°?œ of complex exponentials in L2(-^n, tt). Such a system is said to be a
Riesz basis for L2(-^n, it) if the mapping e"" -* e'x"' (-oo < n < oo) can be extended
to an isomorphism on all of L2(-vr, tt). If this is the case, then each function / in
L2(-7T, it) will have a unique nonharmonic Fourier expansion

00

/(') = 1 cne'K'  (in the mean)
-00

with {c„} E I2.
The possibihty of such expansions was discovered by Paley and Wiener, who

showed that the system {e'Xn'} is a Riesz basis for L2(-7t, tt) whenever each X„ is real
and |X„ — n\< L< 1/tt2. Ultimately, Kadec showed that the constant 1/tt2 could
be replaced by \. That \ is in fact the "best possible" constant follows from the fact
that the system {e±,(n_1/4)'}"=1 is already exact in L2(-7r, tt). (For a comprehensive
introduction to the theory of nonharmonic Fourier series, including proofs of these
assertions, see [7].)

Riesz bases constitute the largest and most tractable class of bases known. In fact,
there is no known example of a basis of complex exponentials for L2(-tt, tt) which is
not a Riesz basis.

In §7, we investigate some of the ways in which Kadec's result is the best possible.
In particular, we show that the condition | X„ — « |< ^ (-oo < n < oo)is not strong
enough to ensure that the system {e'X"'} is a Riesz basis for L2(-tt, tt), even if it is
exact. For this purpose, we analyze in detail, in §6, canonical products of the form

00   / z2       \t*) = *II h-T-T-É  '       e>0'
n=\ \        (n + e)   /

obtaining both an integral representation for F(z) and a simple formula for
F'(n + e).

If

X„ =
n+\,     n>0,
0, n = 0,
n-\,    n<0,

then the system {e'Xn') is a reasonable candidate for a "non-Riesz" basis of complex
exponentials. We investigate this assertion in §8, showing in particular that the
system possesses a bounded biorthogonal system. This is then related to the solution
of certain interpolation problems in a classical Hilbert space of entire functions.

An entire function F(z) of exponential type tt is said to be of sine type if (1) its
zeros X„ are separated, i.e., infn#m | X„ — Xm |> 0, and (2) there exist positive
constants A, B and H such that

Ae«W<\F(x + iy)\< Be«W

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



96 R. M. REDHEFFER AND R. M. YOUNG

whenever x and v are real and | v |s* H. It is well known that if (X„) is the set of
zeros of a function of sine type, then the system {e'x-'} is a Riesz basis for
L2(-m, tt). In §9 we exhibit a large class of Riesz bases of complex exponentials that
cannot be obtained in this way.

2. An integral inequality. With a > 0 and 1 < p *s oo let/ £ Lp(-a, a) and let

v(x) = e'iXx feiX'f{t) dt,      y(a) = 0.
•'-a

where X = p + io is a given complex number. The question addressed here is the
following: What is the best constant K= K(p,a,X) such that ||y\\p < AT II / Il ̂
where II • 11 denotes the Lp norm on (-a, a)? This question underhes the results
stated without proof at the end of [4], some of those in [1] and their refinements in
[5].

Let us begin by establishing the property

(1) K(p,a,X) = aK{p,l,\a\a).
If the inequahty

fepax\ (Xe-'e""f(t) dt   dx <Kpf\ e""f{t) f dt
J-a I •'-a J-a

is to hold for all/ E Lp such that

f e-V7(r) dt = 0,
•'-a

this is equivalent to a condition of the same kind applied to the function g(t) =
f(t)e,f". Since | g \ = \f\ we conclude that p = 0 involves no loss of generahty, or in
other words that K(p, a, X) = K(p, a, a). To see that the result depends only on
| a | let p = /'a and use the fact that y(a) = 0. By setting t = -s in the inner integral
it is found that the inequality with a and f(t) is equivalent to the inequahty with -ct
and f(-t), including the same side condition y(a) = 0. Making the change of
variable / = cs, where c is a suitable constant, we get (1).

Let us then take X = io with a s* 0. If v rather than / is viewed as the unknown
function the inequality is equivalent to

(2) fa\yfdx^Kpf\y'-ayfdx,       y(-a) = y(a) = 0.
-a -a

This formulation together with (1) leads to the value

(3) K(2,a,X) =
(tt2 + 4ffV)1/2

which was given without proof in [5]. To see this, let p = 2 in (2) and write
v = u + iv. It is found that the inequahty holds for v if and only if it holds for u and
t>. Hence, without loss of generahty, v is real. In that case the term -2ovv' in the
expansion of the term on the right integrates to 0 and the inequahty reduces to

(1 - K2a2)fy2 dx < K2f(y')2 dx.
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COMPLETENESS AND BASIS PROPERTIES 97

Theorem 257 of [2] gives K2 — 1 - K2a2 when a = tt/2, and the result for arbitrary
a is now given by (1).

When a = 0 the reformulation (2) again falls into a standard pattern. Applying
[2, Theorem 256] on (-a, 0) and on (0, a) and adding, we get the value

, -x p a  .    tt
Kip, a,0) =-——sin—,       p = even integer,(p- l)x/p"      P

for a = 2. The result for general a follows from (1). That the constant is sharp
follows from the fact that Theorem 256 is sharp.

The determination of K(p, a,X) for a > 0 and arbitrary p is left as an open
problem. However, we shall establish the inequality

(4) K(p,a,X)<min(2a,\o\'x)

which was stated without proof in [5]. A routine use of the Holder inequality gives

K(p, a, X) < xnin(2a,{2a)x/p{qayx/q)

and even a somewhat stronger result [1], but (4) is more difficult.
The proof is as follows. Let X = io where o > 0 is fixed and define a transforma-

tion T by

Tf=e-"x[Xe'"f(t)dt.

Then

IIT/lloo ̂  ll/Hoo ■ supe— re'"^<min(2a,ff-1)||/||00,
x -a

where the second inequahty follows from 1 — e~s < min(l, s) for s > 0. Further-
more

IITf II, </V"/V' |/(í) I dtdx^xnin(2a,o~x)\\ /II,,
J-a -a

where the second inequality follows from Fubini's theorem together with the same
inequality for 1 — e's as was used above. This gives the desired result for/? = 1 and
p = oo. Now comes an important point. The only use of the side condition y(a) — 0
was to permit the assumption that o > 0. Apart from this, the condition y (a) = 0
plays no role in the above estimates for the norm of the linear operator F.
Accordingly, we can use the Riesz-Thorin convexity theorem [9] or the Marcinkie-
wicz interpolation theorem to get the same estimate, with the same constant, for
arbitrary p. This gives (4). It would be desirable to have a direct proof, without
interpolation, but such a proof is not available.

3. Comparison of two sequences. The foregoing discussion has applications to
problems of completeness. To illustrate the nature of these we state the following
theorem, which is imphcit in [5] but has not been formulated hitherto.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



9S R. M. REDHEFFER AND R  M. YOUNG

Theorem 1. Let {X„} and {¡xn} be sequences of complex numbers lying in a
half-plane Im z > const and so numbered that | X„ | or | u„ | increases with n. Suppose
that

lAl  ~~ Ml I  +1 A2 _ i*2 I  +  " ' "  +1 An _ Mnlhm sup —!-————~-—-—— < oo.
„-.oo lQg"

F/te« the Lp excesses satisfy | £(X) — £(u) |< 1.

Proof. Replace {X„} and {¡x,,} by {X„ + ib) and {/x„ + ib} where o is a positive
constant. This alteration does not change the completeness properties of either set
and enables us to assume Im X„ > c, Im nn > c where c is as large as may be desired.
Let cen=\nn — Xn\ . Then the conclusion | £(X) — £(u) |< 1 follows from | X„ —
jitn |= o(n) and

(5) 2-<oo.
n=\ «

To see this, let [5, Theorem 19] be stated for Lp rather than L2, using (4) rather than
(3); the proof is unchanged [1]. The result shows that (5) gives E(X) < E(n) + 1,
and by symmetry also £(u) < £(X) + 1. Since 1 + e < ee, the hypothesis of Theo-
rem 1 implies (5) when c is large enough, and this completes the proof.

When the X„ and /xn are not required to lie in a half-plane, [5, Theorem 20] implies
|£(X) — £(/x)|< oo under the remaining hypotheses of Theorem 1. However, the
following stronger result is also valid.

Theorem 2. Let {Xn} and {/¿„} be sequences of complex numbers such that \Xn\ or
| /i„ | increases with n and

n

2 |Re\,.-Re/i,-|=0(log/i),       | Im X„ - Im (i„ |= 0(1).
j=\

Then the L2 excesses satisfy \E(X) — £(/x) |< 1, and hence the Lp excesses satisfy
|£(X)-£(jtt)|<2.

Proof. The statement for Lp follows from that for L2, since £(X) and £(ju) are
monotonie functions of p which change by at most 1 when/? ranges from 1 to oo. To
prove the result for/? = 2, let us first change /x„ so that Im ¡xn — Im X„ for each n, as
can be done by the theorem of Eisner and Peterson [5, Theorem 17]. Next fix
attention on those X„ for which | Im X„ |< c, where c is a given constant. To these
and to the corresponding /t„ we add a term 2/c, as can be done by a second use of
[5,Theorem 17]. We now have |ImX„|>c and |Imju,n|>c for all n, and the
conclusion follows as in the proof of Theorem 1.

If the hypothesis is strengthened to

| Re X„ - RejLt„ | = 0(1/«),       | Im X„ - Imu„ |= 0(1),
the sum can still have the order log n allowed in Theorem 2, but the conclusion is
£(X) = £(u) and | £(X) — £(ju.) |=£ 1 in the two cases p = 2, p ¥= 2 respectively.
This follows from another theorem of Peterson [5, Theorem 18]. The interest of
Theorem 2 is that it does not require | X„ — ju.„ |= o(l); in fact, | X„ — /x„ | can be,
from time to time, almost as large as log n.
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COMPLETENESS AND BASIS PROPERTIES 99

If {X„} and {n„} axe real, [5, Theorem 65] gives |£(X) — £(/x)|< 1 under the
hypothesis that p = 2,

The second of these conditions is implied by the hypothesis of Theorem 2. Whether
Theorem 65 can be extended to complex sequences is left as an open problem.

4. The counting function. For any real sequence {X„} the signed counting function
A(w) is the number of Xk on the interval (0, u] when u > 0, and -A(u) is the number
of X¿ on [u,0) when u < 0. Since a finite number of Xk can be altered without
changing the completeness properties, the restriction Xk 9* 0 needed for use of this
definition does no harm. (For the same reason the following estimates are needed
only when | X„ | , | ¡in | and | u \ axe all large, provided the early X's and ¡it's are in 1:1
correspondence. This remark is tacitly used in §5.)

The deviation of {X„} from {«} can be described by A(w) — u or by X„ — n. We
shall establish a result which allows an easy passage from one of these measures to
the other. Let <i>: R -* R be bounded, let 0 < <#>(0) < 1, let <*>'(/) < 1 for t E R, and
suppose

00

l€«-»l<i=»2l*'(OI<«>-
-oc

Then, as we shall show, the set (X„} with counting function A(w) = [u — <t>(u)] has
the same Lp excess as has the set (ju„) with un — n + <H«). For proof, note that X„
can be so labeled that n = Xn — (¡>(Xn), -oo < n < oo; hence

X„ -fin = 4>(X„) - <t>(n) = (Xn - n)4>'(U = <i>(X„)</>'(£„).
The hypothesis ensures 2 | X„ — /t„ |< oo and therefore £(X) = £(ju) by [1].

In the context in which this result is used we generally have Xn~ n, whether <i> is
bounded or not, and the essential condition is

00

2 |«f»(n)</>'(n)|< oo.
-oo

It is left for the reader to give regularity conditions under which this hypothesis
ensures £(X) = £(/t). For the particular application which we have in mind, the
result given above is sufficient.

A familiar use of the counting function is to give the formula

i   i ev m   r A(")   x   jlog £(x) = /    ——?--du
J_œ    u    x — u

where X¿ E R, Xk ¥= 0, and

F(x)=  hm     û    (l-f )•
R~°° \\„\<R V A" '

The formula follows by partial integration if A(u) = o(u2), which is always the case
in the applications intended here.
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100 R. M. REDHEFFER AND R. M. YOUNG

Suppose now that A(u) = [u — (¡>(u)] where $ is continuous, <¡>' < 1, and 0 < <í>(0)
< 1. In a variety of investigations it is desirable to replace A(w) in the above integral
by the simpler expression u — <j>(u) — {-. The error introduced by this substitution is

r°° ip(u)      X
J_u    x - u

where t//(«) = [u — (¡>(u)] — u + $(u) + \.
Let us suppose that | $ | is bounded, 0 < <f>(0) < 1, <j>' < 1, and 2?«, | $"(£„) \ < oo

whenever£„ E (Xn, Xn+1). Under these hypotheses we shall show that | £(x) |< 0(1)
when inf„ \x — Xn\> e, and £(x) < 0(1) when x is unrestricted. Without loss of
generality we confine attention to the case x -> +oo; the case x -» -oo is similar.
Then since f^\p (u)du is bounded, as seen below,

E(x)=f2X*¥--^-du + 0(l),       x>0,
Jx/2     U      X       U

and it suffices to consider the latter integral.
To this end set K(x, u) = x/u(x — u) and write

fK+xt(u)K(x, u) du = fK+l4>(u)[K(x, u) - K(x, XJ] du

+K(x,X„)fK+x4>(u)du.

Denoting the two expressions on the right by /„ and Jn, respectively, we shall assess
In by use of the inequahty

oK{x,u)
ou

12
An<"<A„+i(x - uf

This holds for x/2 < X„ < Xn+1 < 2x provided x is not on the interval [X„, X„+1].
Since <f>(«) = O(l) makes X„+1—X„ = 0(l)we conclude that

JK     (x — u)

where c is constant. Let us form the sum of F, over all pairs (X„, X„+1) on the
interval (l/2x, 2x) for which Xn+1 < x — e, and also the sum over all pairs for
which X„ > x + e. These sums are dominated by the integrals

rx~e       c r00 c
/      --du   and     1     --du
Jo      (x-u) Jx+t(x-u)

respectively, each of which equals c/e.
Let us now impose the condition inf | x — X„ | > e. In this case the pair (Xn, Xn+X)

for which X„ < x < Xn+, is the only pair not included in the above calculation. Since
X„+1— X„ = 0(1), and since the integral is a principal value at x, the question
whether 2/„ is bounded reduces effectively to the question whether

fx+e*(x) -»(") du
Jx-e        x-u

is bounded. It is readily verified that </>' is bounded, however, and the result follows.
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COMPLETENESS AND BASIS PROPERTIES 101

Still assuming inf | x — X„ \> e, let us now turn to the second expression /„. On
the interval (X„, Xn+1) the function ty has the form i\/(u) = c + §(u) — u where c is
a constant such that t^(Xn) = 1/2, \¡/(Xn+x) = -1/2. This gives two expressions for c
which are consistent by virtue of the fact that [u — <¡>(u)] is the counting function for
{Xn}. Adding the two expressions, we get the symmetric form 2c = (X„+x + Xn) —
[(¡>(X„+X) + (¡>(Xn)]. On the other hand,

f"+V(») du = c(Xn+x - Xn) -Ux2n+X - X2„) + fK+l(t>(u) du.JK L JK

The above expression for c changes the right-hand side to

fX'"*(u)du-(\m+l-\m)*iK"\++iK),

which is precisely the difference between the integral and its trapezoidal-rule
approximation. Hence its magnitude does not exceed C| <f>"(£„) | , where £„ E
(X„, Xn+1) and where C is a constant depending on sup(Xk+x — Xk). Since
| K(x, Xn) | < 2/e for X„ > x/2, | x — X„ |s* e, we see that the sum of the terms /„ is
bounded and the conclusion follows.

Suppose next that | x — X„ | < e for some n. The number of such X is bounded by a
constant, N, since (¡>(u) — 0(1). Writing \¡/(u) as the sum of a smooth function and a
jump function, we see that the contribution of these Xk to the integral produces a
negative term plus a bounded term. The contribution of the other X^ is assessed as in
the previous discussion, so that we get an upper bound. Actually the bound tends to
-oo as x -> X„, in agreement with the fact that F(X„) = 0.

5. Supplement to a theorem of Levinson. Let N(u) be the number of Xj satisfying
| X ■ | < u, where {X •} is an arbitrary sequence of complex numbers. An important
theorem of Levinson asserts that {e'x-x} is complete Lp(-^r, tt) if

(6) hmsup(j^<Ä-2r + ^)>-oo.

For a simple proof see [5, Theorem 8]. As a corollary Levinson deduces the
completeness if | X„ |<| « | +/2q, -oo <«< oo, and also shows that the constant
l/2o cannot be replaced by any larger constant.

Since (6) is unaffected if N(t) is replaced by N(t) + <¡>(t), where 4>(t)/t E L(l, oo),
the completeness holds if

|X„|<|«| + 2^ + *(|«|),

where $ is a sufficiently regular function satisfying 2f<i>(H)/w < oo. Here we
consider the case <f>(n) = /ß/log n, ß ¥= 0, which just fails to satisfy this criterion. As
seen by the following theorem, the question whether the set is complete depends on
the value of ß.

Theorem 3. Let X, be an arbitrary positive number and let X„ = n + l/2q +
/?/log n for n > 2 where ß > 0 and 1 <p < oo. Then the set {1, e±,X"x} is complete
Lp(^tt, ir)ifß< min(l/4, l/2q) and not if ß > max(l/4, l/2q).
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102 R. M. REDHEFFER AND R. M. YOUNG

This result was stated without proof in [5] and was simultaneously communicated
to one of us, again without proof, by D. R. Peterson.

Proof. It will be seen that the main difficulties are already overcome in §4, and
that the rest of the proof requires little calculation. In fact, taking </>(«) = a +
/?/log u, we find that estimation of the canonical product associated with {0, ±X„}
reduces effectively to the estimate

2o2 du
00.<7>        I rTrai^2"*1^0«'h   u(a2-u2) log"

To estabhsh (7) let us use the symbol = to denote equality within O(l) as a -» oo.
Then

r00       2a2 du   _¡_ z*00       2a2 log y

h   u(a2 -u2) log u~J2   y(a2 + y2) (log y)2 + (tt/2)2 y

2a2 dy   _¡_ f>       2a2 dy— /°°       2a dy   ^_ ra
F     v(n2 4- v2)  log V       F>h   y(a2+y2)logy     h y(a2 + y2) log y '

Here the first = follows by integration over a contour in the first quadrant indented
at 0 and a, and the others are more elementary. The last expression can be written

2dy        f        2ydyra  ¿dy        r"
J-> vlos v     Fh Jlogj     h (a2 + v2)log v'

which is 2 log log a + 0( 1 ) since the second integral does not exceed

1     f° 2 y dy
ilog2J2    a2

Suppose now that X„ = n + a + /?/log n îoi n > I, where a and ß axe constant
and where log 1 is replaced by any suitable value to give X,. If F(x) denotes the
canonical product associated with {±Xn} we can replace F, in the study of
completeness, by another canonical product G with zeros ±¡u„. The counting
function for {¡j.n} is A(u) — [u — a — /?/log "]> « ^ L When only an upper bound
is needed, or when inf¿ | x — nk \> e > 0, the function G in turn can be replaced by
H where

log H(x) = }    [u — a — -:-— I-—du.
6      V    '       h    \ lOg"        2/M(x2_M2)

(All of these assertions follow by obvious choice of <t> in §4.)
The only troublesome term in the evaluation of H is given by (7) with a = x, and

hence

logH(x) = -(o + i)(21ogjc) -2/?loglogx-r- O(l)

as x -» oo. Adding the factor x corresponding to X0 = 0 we see that the relevant
estimate for Theorem 3 is

C,x-2a(logx)"2/î < xH(x) < C2x-2a(logx)"2^

which holds for large x with positive constants C.
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Suppose, now, that a = l/2q and ß > l/2q. In this case xH £ F?(-oo, oo) and,
since log | F|< log | H\ +0(1), the same is true of xF. Hence xF admits the
representation

<F(x)=fe,x<f(t)dt,       /EL'Kí),

if q < 2 and it follows that {1, e±,x"x} is not complete.
In like manner, if a = 1/2 o and /? < l/2o, we see not only that xH fails to be in

Lq, but even that [xH]q > l/(xlog x) for large x. A similar estimate holds for | xF|
in the set where \x — Xn\> \, say, and shows that xF is not in Lq. It follows that the
set {1, e~'x"x} is complete if/? < 2. Otherwise there would be a representation

xF(x)K(x) = fe'x'f{t) dt,       f £ L"(-tt, tt),

with K of type 0. But in fact K must be a polynomial, since | £(X) | < oo ; and even if
the degree of K is 0, we would have x£ £ Lq. This completes the proof.

When Levinson's criterion (6) is applied to {0, ±X„} with A(u) as above, the
correct choice for N is N(t) = 1 + 2A(i). The criterion for completeness is then

/ fA(t) , ,l+o,       \hmsup   J —j^-dt - r + ^ log r    > -oo.
r-»oo      v    1 " /

In the context of Theorem 3 we have, effectively, A(u) = u — a — jß/log u — \ and
the expression following the lim sup is (l/2q — a)log r — ySloglog r. The criterion is
fulfilled when a < l/2q, also when a = 1/2 o and ß = 0, but not when a = 1/2 o
and ß > 0. To one familiar with the proof of (6), the fact that such a regular
distribution of {X„} can lead to completeness without satisfying (6) is surprising.
Another surprising aspect of Theorem 3 was already mentioned in [5]; namely,
Theorem 3 shows that | X„ — u„ |= o(l) is not enough to give £(X) = £(/t) even if
this condition is strengthened to | X„ — ftn | < e/log n. Here again, the behavior does
not hinge upon irregularity of {X„} or {¡u„}.

6. A canonical product. Let

i/j + e,     n>0,
^n =    0, n = 0,

[n — e,     n<0,

where e is positive, and let F(z) be the canonical product with these zeros:

00

(8) F(z) = z\\(l-z2/X2n).
n=\

For the results that follow, we shall require both an integral repesentation for F(z)
and a simple formula for F'(X„).

The following lemma is essentially contained in [3, p. 67].
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Lemma 1. //O < s < \ and F(z) is given by (8), then

F(z) = cff(t)eiz'dt
-TT

where

f(t) — (cos^í)2E~'sin2-í.

Proof. Write G(z) = f"„f(t)e'z' dt. Since e is positive, / is integrable over the
interval (-tt, tt) and hence G(z) is an entire function of exponential type at most tt.
As pointed out by Levinson [3, p. 11] G(Xn) = 0 for every «.

Assertion. G(z) can vanish only at the X„. Suppose to the contrary that G(z)
were zero for some other value of z, say z = u. Then integration by parts shows that

g(z) _ r

with

/>)«"'<*

g(t) = -»«?'""/'f(x)eilixdx.

Accordingly, g is a nontrivial function in L2(-7r, tt) orthogonal to e'Xn' for every n.
But this is absurd since the condition |X„ —«|<| guarantees that the system
{eiX-'} is complete L2(-tt, tt) [3, Theorem 4]. The contradiction proves the assertion.

By Hadamard's factorization theorem, we can write G(z) = AeBzF(z). Since F(z)
and G(z) are both odd, B — 0 and hence G(z) = AF(z). This proves the lemma.

Remark. The proof of the lemma reveals that the system {e,Xnt} is not only
complete L2(-7r, tt) but also exact. Indeed,

where

z An        J-tí

g„(t) = -ie-iX-' [' f(x)eiX-x dx.

Thus, gn is a nontrivial function in L2(-tt, tt) orthogonal to e'Xk' whenever k ¥= n,
and the system {e'Xk'}k¥,„ is incomplete L2(-rr, tt).

Lemma 2. IfXn = n + e(n = 1,2,3,...), where e > -1, and

z2
H(z)=][\l-^\,

n=\

then

H'(Xn) = (-l)nT2(l+e)
T(")

T(n + 1 + 2e)

Proof. Put n = X, = 1 + e. We claim that

t2(m)H(z) =
T(ii + z)T(^-z)
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Call the right side G(z). Then G(z) is entire of order 1  and has zeros  ±X„
(n = 1,2,3,...). By Hadamard's theorem, G(z) = eazH(z). But G(z) and H(z) are
both even, and hence a = 0. Thus G(z) = H(z).

Thus,

IV(A = THu\\        l T'(^-z) 1 F(» + z)
uw   M/iJlr(« + z)r2(M-z)    r(u-z)r2(„ + z)

and

y n}   Hft + xj z^r^-z)

_J^l_      lim   W
T(n+ 1 +2e)   ^-„+i T2(z) '

We complete the proof by showing that

Um"S4 = (-1)"+1',!        (« = 0,1,2,...).
z^-n Y   (z)

Suppose first that n = 0 and write

r'U) _   i   Hz) _ fa)
T2(z)     r(z) T(z)      T(z)

1     Í   1 ,   y
r(z) {   z n%n{n + z)

Since l/zT(z) -> 1 as z -» 0, the result for n = 0 follows. Proceed by induction.
Since T(z + 1) = zr(z) and t|/(z + 1) = t//(z) + 1/z, we find

hm     IM = to il£^= ^ ^)-1/(^-1)
*— <«+i)r2(z)   «—»r(z-i)   ,—■   r(z)/(z-i)

= limfii4(z_1)   if(z)v      '    r(z)

= (-1)-

This completes the proof.

= (_l)"+,n!(_„- i) = (-l)"+2(« + 1)!

Kadec's "¿-theorem" asserts that the system of
exponentials {e'x"'} forms a Riesz basis for L2(-jn, tt) whenever each Xn is real and
| X„ — n |=£ L < \ (-oo < n < oo). In this section we shall investigate some of the
ways in which Kadec' result is the best possible.

It is not difficult to see that the condition

(9) \\„-n\<\       (-oo<n<oo)

is not strong enough to guarantee that the system {e'Xn'} is a Riesz basis for
L2(-tt, tt) for the trivial reason that it permits the system to have an excess. Indeed,
if we take u„ = n - ¿, /x_„ = -p,„ (n - 1,2,3,...), and then choose {X„} so that (9)
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holds and 2 |Xn — jtt„|< oo, then {e,,ln'}n¥¡0 is complete L2(-tt, tt) (see, e.g., [7,p.
122]) and, hence, so is {e'x"'}n^0 [1, p. 66]. Thus, (9) cannot even guarantee that the
system {e'Xn'} is exact.

We are going to show that condition (9) is not strong enough to ensure that {e'x"'}
is a Riesz basis for L2(-jn, tt) even if it is exact. For this purpose we shall make use
of the Paley-Wiener space F consisting of all entire functions of exponential type at
most tt that are square integrable on the real axis. The inner product of two
functions F and G in F is, by definition,

/oo -F(x)G(x)dx.
— rv-,

By virtue of the Paley-Wiener theorem, the complex Fourier transform
1

/(«)-£/>).

is an isometric isomorphism from L2(-tt, tt) onto all of P. When the X„ are real, the
exponentials e'X"' axe sent to the "reproducing" functions

sin7r(z — X„)
*»(*) =

tt(z-X„)

so that (F, Kn) = F(X„) for every F E P.
By means of the Fourier isometry, problems involving complex exponentials in

L2(-tt, tt) can be examined via their transform image in P. Thus, for example, the
system {etXn'} is a Riesz basis for F2(-w, tt) if and only if the interpolation problem
F(Xn) — cn is uniquely solvable for F in F whenever {c„} El2, and for these
sequences only (see, e.g., [7, p. 170]).

Theorem 4. If
'« + £,     «>0,

0, n = 0,
n-\,    n<0,

then the system {e'x-'} is not a Riesz basis for L2(-rr, tt).

Proof. Suppose it were. Then the system of reproducing functions {K„(z)} would
be a Riesz basis for F, since the Fourier transform is an isometry. Put

*.)=-=T^F'(X„)(z - XJ '

where F(z) = zH»(l - ¿2/X2„). Then Fn(Xk) - onk, and the Remark following
Lemma 1 shows that each F„ belongs to P. Accordingly, {Fn(z)} is "biorthogonal"
to {Kn(z)} in F (see §8 for the definition) and so must also be a Riesz basis for F [7],
In particular, the series

lc_^_Li <~n r,(F(XB)(z-X„)
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must converge in the topology of P, and hence pointwise, whenever {c„} E L2. By
the converse to Holder's inequality, this can happen only if

1
n¥=0 *nF'(K)

2

< oo.

en -1/2

But by Lemma 2,

"(>O = M-0T>(f)jJM__    (. = ,,2.3......
and Stirling's formula, T(x + 1) ~ (2Tr)x/2xx+x/2e-x, shows that | F'(X„) |
as n -» oo. Thus, 2n5t0| VAn^"(^n)|2 = °°> and the contradiction proves the theo-
rem.

Corollary. The condition | X„ — n \< \ (-oo < n < oo) is not sufficient to ensure
that the system {e'Xn'} is a Riesz basis for L2(-tt, tt), even if it is exact.

Proof. Let n„ = n + ¿, ¡i_n = -u„ (n = 1,2,3,...), and u0 = 0, and choose {X„}
so that | X„ — n |< \ and 2 | X„ — ¡in |< oo. Since {e'^"'} is exact (see the Remark
following Lemma 1) so is {e'Xn'} [l,p. 66]. The claim is that {e'x"'} is not a Riesz
basis for L2(-^n, it). Suppose it were. Then there is a constant e > 0 such that {e'y"'}
is also a Riesz basis for L2(-^tt, tt) provided | Xn — yn |< e for all n [7, p. 191]. Since
| X„ — /i„ | -» 0, we may choose N so large that | X„ - ¡u„ | < e when \n\> N, and
conclude that the system {e'x"'}\n\S;N U {e'>i"'}\n\>N is a Riesz basis for L2(-m, tt).
But it is a simple matter to show that the basis properties of a system of complex
exponentials is unaffected if one of the exponents is replaced by another number.
Replacing the X„'s (| n \ =£ N) by the corresponding /x„'s, we conclude that the system
{e'*1"'} is a Riesz basis for L2(-7r, tt). But this contradicts Theorem 4 and the proof is
complete.

8. The system biorthogonal to (1, e±'("+x/4)'}. Fundamental to the study of bases
in a separable Hilbert space H is the notion of a biorthogonal system (see, e.g., [6
and 7] and the references therein). Two sequences {/„} and {g„} of elements from H
axe said to be biorthogonal if ( /„, gm) — 8nm.

It is easy to show that a sequence (/„} possesses a biorthogonal sequence if and
only if it is minimal, i.e., if none of its elements can be approximated by linear
combinations of the others. If this is the case, then a biorthogonal sequence will be
uniquely determined if and only if {/„} is exact.

In this section we shall investigate further the system biorthogonal to
{l,e±,("+1/4)'}.Put

(10) G(z)=Cf(t)eiz'dt,
J -TT

where /(/) = (eos\tyx/2sin\t. Let X„ = n + \, X_„ = -X„ (n = 1,2,3,...), and
X0 = 0. It follows at once from Lemma 1 and the Remark following it that the
system [e'x"'} is exact in F2(-vr, it) and that its (unique) biorthogonal system is
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given by {gn/G'(X„)}, where

(H) g„(t) = -ie-iK'ff(x)eiX-xdx.

Theorem 5. //

n + \,    n >0,
0, n = 0,
n-\,    n<0,

then the system {/„} biorthogonal to {e'x-'} in L2(-tt, tt) is bounded, i.e., sup„ Il /„ || <
oo.

Proof. We have II /„ II = IIg„ ||/| G'(X„) | , where G and g„ are given by (10) and
(11), respectively. We begin by showing that

(i2) iigji=|/7(*yx"*ax =oUL as n -* oo.

Since/(x) is odd, a similar assertion is true for n -» -oo. Put Ix(t) — J!„f(x)e'Xx dx
for X > 0 and -tt < t < w. We define

g(0 = /(0 - (/2A-|/| - /2Â)sgn;
for -tt < t <tt, and g(±w) = 0. Let

4(0 = fg(x)eiX*dx.

Then

(13) ll/xll<HAII+|/'(/W-«(*)yXjtáx .
II •'-77

It is easy to see that g(t) is of class C' on [^tt, 7r], and integration by parts yields

JxU) = Jï(g(t)etX'-fj'(x)eiX>dx).

Accordingly,

(14)
Put

Then

|/X|| = 0(1/X)   asX^oo.

1
" —TT   i/*TT    -

eiXx dx.

I/F

-» ]/TT — | X |

= fjHX(t)\2dt=[iy Q\Hx(t)\2dt.
When -tt < t < 0,

*x(0 - / ***& = e
-îît\

» V TT + X

/•(T+QXe'»

/X   -t) ^
i/w
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(put u = (tt + x)X). Thus

J°JHx(t)\2dt=lfjG((TT + t)X)\2dt,
where we have put G(t) = f¿(e'u/ JU) du. As X -» oo,

f° | G((ir + t)X) |2 <ft -» tt I G(oo) |2 *= 0.■'-»
The integral /q" | //a(0 |2 <& is treated similarly, and we obtain

(15) \\Hx\\ = o(l/J\)    asX-^oo.
Direct integration shows that

(16) f'J^e,Xxdx   = o(t)    asX->oo.

Combining (13)—(16), we find that IIFJ = 0(1/ \/X) as X -» oo. This establishes
(12).

To complete the proof, we show that for some positive constant A,

(17) \G'(\„)\~A/J\,    asn-oo.
But by Lemma 1, G(z) = cz II ~=1(1 — z2/X\), and so, by Lemma 2,

«'<*-> = ̂ -0"r'(|)r<^
for n = 1,2,3,_Applying Stirling's formula, we obtain (17). The proof is complete
since (12) and (17) show that sup„ II /„ 11 < oo.

Remarks. Theorem 4 and the remarks preceding it show that the interpolation
problem
(18) F(X„) = cn       (-oo<«<oo),

where F belongs to the Paley-Wiener space P, cannot be solved for every square-
summable sequence {c„}. On the other hand, the functions

G(z)/G'(Xj(z-X„),
being the Fourier transforms of the/n's, must belong to F and, according to Theorem
5, must also be uniformly bounded in norm. Thus the series

F(z)=Íc _2i£)_
{  '      _tC"0'(X„)(z-X„)

converges absolutely whenever {c„} is summable, and so represents the unique
solution to (18). Put another way, the Lagrange expansion

f(z)vtf(x-w.)((:-x.)
is vahd for any function F in F for which 2|F(X„)|< oo. Since the system of
exponentials {e'x"'} is complete L2(-7r, tt), so is its biorthogonal system {/„} [8], and
it follows that the functions {G(z)/G'(X„)(z — X„)} are necessarily complete in P.
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Thus, the expansion above is valid on a dense subspace of P. If it could be shown
that this expansion is valid for every function belonging to F, then we could
conclude first that the system {G(z)/G'(Xn)(z — X„)} is a basis for F, next that
{/„} is a basis for L2(-tt, tt), and finally that its biorthogonal system [eiX"'} is also a
basis for L2(-tt, tt). At present, there is no known example of a basis of complex
exponentials that is not a Riesz basis.

9. Functions of sine type. One of the most natural ways of generating Riesz bases
of complete exponentials {e'x"'} is by means of an entire generating function which
vanishes at the X„'s and, in some sense, resembles sin ttz.

Definition. An entire function F(z) of exponential type tt is said to be of sine
type if

(1) its zeros X„ are separated, i.e., infn#m | X„ — Xm | > 0, and
(2) there exist positive constants A, B, and H such that

Ae*H<\F(x + i» |« Be"W
whenever x and v are real and \y\> H.

The following theorem is fundamental (see, e.g., [7, p. 172]).

Theorem 6 (Levin-Goluvin). // {X„} is the set of zeros of a function of sine type,
then the system {e'X"'} forms a Riesz basis for L2(-tt, tt).

The following theorem exhibits a large class of Riesz bases of complex exponen-
tials that cannot be obtained in this way.

Theorem 7. //0 < e < \ and

X„=|0, n = 0,
[n — e,     n < 0,

then the system {e'x"'} is a Riesz basis for L2(-rr, tt) but {Xn} is not the set of zeros of
a function of sine type.

Proof. The first assertion follows at once from Kadec's " ¿-theorem". For the
second, we argue by contradiction. Suppose then that there were a function F(z) of
sine type with zero set {X„}. Then inf„ | F'(Xn) |> 0 (see, e.g., [7, p. 173]). By
Hadamard's theorem, we can write

00

F(z)=AzeBz][(l~z2/X2n).
n=\

If Re B < 0, then by Lemma 2 together with Stirling's formula,

\F'(Xn)\~cenKeBn-2t   asn-oo,

and hence | F'(X„) | -» 0 as n -» oo. If Re B > 0, then we conclude in similar fashion
that | F'(Xn) |-> 0 as n -» -oo. The contradiction proves the theorem.
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