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Language 

O u r  language will be that of the ordinary propositional calculus, 
supplemented with the counterfactual conditional connective 
0-t. The sentence Q] 0-t y may be read as ‘If it were the case 
that v, then it would be the case that y’. 

Intented interpretation 

A sentence Q] 0-t y is intended to  mean, roughly, that y holds in 
certain of the possible worlds in which Q] holds: those of them 
that are most closely similar to  our actual world. We could capture 
this intention most straightforwardly by positing a function f 
which selects, for any sentence 9 and world i, a set f(v, i) of worlds 
regarded as the set of worlds most closely similar to i out of the 
worlds in which Q] holds. 

But this approach is open to  objection. Just as no real number 
greater than 1 is closest to  0, so it may be that none of the worlds 
in which Q] holds is most closely similar to  i. It may be that for 
each of them, there is another still closer. To meet this difficulty, 
we could introduce the notion of degrees of similarity between 
worlds, and take Q] 0-t y to  mean that, unless no worlds in which 
v holds are similar to  any degree to  our actual world, there is some 
degree of similarity to  our actual world within which there are 
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some worlds in which p holds, and within which y holds in all 
worlds in which p holds. 

To introduce the notion of degrees of similarity, it is fortunate- 
ly not necessary to  suppose that the similarity of worlds admits 
of numerical measurement. We could posit a family, indexed by 
worlds, of sets $i of sets of worlds; each S in $i is regarded as the 
set of all worlds similar to  a t  least a certain degree to  the world i. 
Or we could posit a family, again indexed by worlds, of compara- 
tive similarity relations < i  over sets of all or some worlds; 
j < 12 is regarded as meaning that the world j is a t  least as similar 
as the world 12 t o  the world i. 

A further account of the philosophical motivation and conse- 
quences of such an interpretation of counterfactual conditionals 
will be given in [2]. 

Model theory 
Corresponding to  these various approaches to  the interpretation 
of counterfactuals, we will consider three different versions of the 
model theory for our language. In each version, the intended 
models are those in which I is the set of all possible worlds; [TI 
is the set of those worlds in which the sentence p holds; and f, $, 
or < is as described above. 

An a-model is any triple (I, [ 1, f )  such that: 

(a.O.l) I is a nonempty set, 
(a.0.2) [ ] assigns to  each sentence g~ a subset [p] of I, 
(a.0.3) [ -911 =I- [p], [ y  & y ]  = [p,] n [ y ] ,  and so on for 

the other truth-functional connectives, 
(a.0.4) f assigns to  each i in I and sentence a subset 

(a.O.5) [p 0-t y] = {i E I : f(p, i) E tyl}. 

(a.O.6) f(v, 4 b l ,  

f(Y, 4, 

fCP, i> o f &  

All intended a-models also meet a t  least three further conditions: 

(a.0.7) if f(p, i)E[y] and fly, i)r[y], then f(p, i ) =  
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(a.0.8) either f(p v y ,  i ) ~ [ p ]  or f(p v y, i ) c [ y ]  or 
f b  v Y,  i) = f b ,  i) " fly, i). 

Let us call any a-model that meets conditions (a.0.6-8) standard. 
A p-model is any triple (I, [ 1, $) such that: 

(8.0.1-3) (same as (a.0.1-3) above), 
(p.0.4) $ assigns to  each i in I a nonempty set $i of 

(8.0.5) [q.~ 0-t y ]  = {i € I: [p] n U $i= A or 3s € $i 
subsets of I, 

[A#[pl  n SaYlI).  

All intended p-models also meet at least this further condition: 

(p.0.6) $i is nested (that is, if S, T € $i then S S  T or 
T S S ) .  

Let us call any p-model that meets condition (p.0.6) standard. 
A y-model is any triple (I, [ 1, <) such that: 

(7.0.1-3) (same as (a.0.1-3) above), 
(7.0.4) < assigns to  each i in l a  2-place relation < over 

(7.0.5) [p 0-t y ]  = {i € I: [p] n Si = A or 
a subset Si of I, 

3k C [p] n Si V j  € [p] [if j G i  k then j € [ y ] ] ) .  

All intended y-models also meet a t  least this further condition: 

(7.0.6) Q i  is a total preordering of Si (that is, it is 
transitive and strongly connected in Si). 

Let us call any y-model that meets condition (y.0.6) standard. 
It  is highly plausible that all intended models meet two further 

conditions: roughly, that a world is at  least as similar to  itself as 
any other world is to  it, and that no other world is as similar to  
a world as that world itself is. Let us call any standard model that 
meets these two conditions I-standard. More precisely, an 
a-model is 1-standard iff it is standard and: 

(a.l.1) if i € [ y ]  then i € f(p, i), 
(a.1.2) if i € [p] then j € f(p, i) only if j = i. 
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A p-model is 1-standard iff it is standard and: 

(p.l.1) i € n &, 
(p.1.2) unless u $ i = A ,  {i} € $i. 

A y-model is l-standard iff it is standard and: 

(y.l.1) i € Si, and if j E S i  then i Q j, 
(y.  1.2) unless Si = A, j Q i iff j = i. 

It has been suggested by Stalnaker and Thomason, in [4] and 
[S], that all intended models meet another condition: roughly, 
that for each world i and sentence pll unless no world in which p 
holds is at all similar to  i, there is a unique closest world to  i 
in which p holds. Let us call any l-standard model that meets this 
condition 2-standard. More precisely, an a-model is 2-standard 
iff it is 1-standard and, 

(a.2) f(p, i) contains at  most one member. 

A /?-model is 2-standard iff it is 1-standard and: 

(p.2) if [ y ]  n U $i # A, there are S E $i and j E I such 
that [ y ]  n S = { j } .  

A y-model is 2-standard iff it is 1-standard and: 

any j € [p], j G i  k only if j=k. 
(y.2) if [p] n S i # A ,  there is k E [pl] n Si  such that for 

Apart from inessential technical differences, the models for sen- 
tential conditional logic considered by Stalnaker and Thomason 
are exactly our 2-standard a-models. 

A sentence pl is true at i in I in a model (I, [ 1, . . .) iff i € [pl]; 
pl is valid in such a model iff I= [pl], so that p is true at  every i in I. 

Equivalent models 
We call two models (of the same or different sorts) equivalent iff 
they have the same first and second components-the same I and 
the same [ ]-and differ only in the third component: the f, $, 
or G as the case may be. We shall see that if we are given a stan- 
6-Theoria. 1: 1971 
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dard a-model, we can convert it into an equivalent ,&model or 
into an equivalent y-model. 

Given a standard a-model (I, [ 1, f) ,  we begin by defining a 
family, indexed by I, of relations d over all sentences: 

V d : i Y = d f  A#f(p,  i ) s f ( p v y ,  i) orf(y, i > = A .  

In intended models, p 4 y iff the closest worlds to  i in which p 
holds are at  least as close to i as are the closest worlds to i in 
which y holds. 

Note that if [ q ] ~ [ 0 ]  and [q] n f(0, i ) # A  then, by (a.0.6-8), 
f(q, i) = [q] n f(0, i). Note also that if [q] E [el and f(0, i) = A then 
by (a.0.6-7), f(q, i) = A.  Using these two observations, we can 
prove three useful lemmas about the relations 6 i .  

First lemma: d is a total preordering of all sentences. To prove 
that d is strongly connected, note that if [p] n f[p v y ,  i) # A ,  
then 9 d y ;  if [ y ]  n f(9 v y ,  i) z A ,  then y 6 p; otherwise f(q v y ,  
i) = A ,  so f(p, i) =f(y ,  i) = A,  so p 4, y and conversely. To prove 
that 6 is transitive, note that if [p] n f(p v y v x,  i) # A, then 

then not p d ix; if [p] n f(p v y v x, i) = A  and [ x  &-p] n f(p v y v  
v x, i) = A  and [ y  &-% &-p] n f(p v y v x, i) # A ,  then not x d iy; 
otherwise, f(p v y v x ,  i) = A, so f(y, i) = A and again p d i y .  So in 
all cases if pd x 4 y then p 4 y .  

Second lemma: if p 4 y ,  then [y] n f(q, i )rf(y,  i). If [p] n 
f(p v y, i ) # A  and [y] n f(p v y ,  i ) # A ,  the consequent of the 
lemma holds; if [p] n f(p v y ,  i ) # A  and [y] n f(q v y ,  i )=A,  
[ y ]  n f(p, i )  = A and again the consequent holds; if [p] n f(p v y ,  i) 
= A  and [ y ]  n f(p v y ,  i) f A, then not p 6 y; otherwise f(p v y ,  
i) = A =f(p, i) = f(y, i), so again the consequent holds. 

Third lemma: if [p] n f(y, i) z A, then p 6 y .  If [a1 n f(p v y ,  
i) # A, the consequent of the lemma holds; if [p] n f(p v y ,  i) = A  
and [y] n f(p v y ,  i) # A, fly, i) = [ y ]  n f(p, v y, i) so the antecedent 
of the lemma fails; otherwise f(p v y ,  i) = A =f(y, i) so again the 
antecedent fails. 

Now let $ assign to  each i in I the set of all subsets S of I such 
that, for some sentence p, S =  u {f(y, i) : y 6 p}. We call (I, [ 1, 
$> the 8-conversion of our original a-model ( I ,  [ 1, f ) .  Using our 

p 4 Y; if191 n f(p v y v x, i) = A  and [ x  &-TI n f(p v Y vx ,  i ) # A ,  



COMPLETENESS AND DECIDABILITY OF THREE LOGICS 79 

three lemmas about the relations d <, it is easily verified that the 
p-conversion of a standard a-model is a standard b-model; that the 
p-conversion of a standard a-model meeting (a. 1.1) meets (p. 1.1); 
that the p-conversion of a standard a-model meeting (a.l.2) meets 
(p.1.2); and that the p-conversion of a standard a-model meeting 
(a.2) meets (p.2). 

Alternatively, let < assign to  each i in I the relation Q such 
that j Q 12 iff there are sentences p and y such that j € f(p, i), 
lz € f(y, i), and p 4 y .  We call ( I ,  [ 1, Q ) the y-conversion of our 
original a-model. It is easily verified that the y-conversion of a 
standard a-model is a standard y-model; that the y-conversion of 
a standard a-model meeting (a.l.l) meets (y.l.1); that the y-con- 
version of a standard a-model meeting (a.1.2) meets (y.1.2); and 
that the y-conversion of a standard a-model meeting (a.2) meets 

We went from a-models to  ,!?-models and y-models for the sake 
of generality; and we did indeed gain generality. Although every 
standard a-model can be converted to  an equivalent #?-model or 
y-model, the opposite is not the case. Consider, for instance, the 
I-standard p-model ( I ,  [ 1, $) in which I is the set of real numbers; 
in which [a] is {i E I: O<i} ,  [a,] is {i E I: i<a},  [a2] is {i € I: i<a}, 
and in general [a,] is {i € I: i <2-"} throughout a countable se- 
quence of sentence letters; and in which $i is the set of all closed 
intervals [i, x ]  with i S X .  Or consider the equivalent 1-standard 
y-model in which I and [ ] are as just specified and Q is the usual 
ordering of the real numbers greater than or equal to i. There can 
be no a-model equivalent to  these two models. For in the two 
models, a 0-t a, a O+ a,, a !I+ a2, . . ., a n+ a,, . . . are all true 
at 0. But there is no real number at which all of a, a,, a2, . . ., an, . . . 
are true in the original models. So there is no i in I that couId serve 
as a member off(a, 0) in an equivalent a-model. Nor could f(a, 0) 
be empty, since a !I+ - a is not true a t  0 in the two original 
models. 

We might expect that as a result of the greater generality 
gained by moving to  @-models and y-models, some valid sentences 
would be lost. As will be seen, this is not correct. Exactly the same 
sentences are valid in all standard a-models, in all standard p- 

(Y 4. 
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models, and in all standard y-models; and likewise for 1-standard 
and 2-standard models of the three sorts. 

Deductive systems 

We may identify a deductive system with the set of its theorems. 
This will be the smallest set of sentences closed under certain 
rules of inference and containing certain axioms (more precisely, 
all instances of certain axiom-schemata). Our rules of inference 
are, first, the rule of tautological implication (TI): 

- 
Y 

when y is a tautology, 

when (xl & . . . & X ~ ) = J Y  is a tautology; X1, . . ., X n  

Y 

and, second, the rule of deduction within conditionals (DWC): 

The deductive system CO is generated by the rules TI and 
DWC and three basic axioms: 

Axiom A. p, U+ p,, 
Axiom B .  ((p, a+ Y> & (Y U+ p,)P(Ip, 0-t XI=  (Y U-t XI), 
Axiom C. (p, v y O+ p,) v (p, v y U-t y )  v ((p, v y 0-t x)= 

= (p, u-, X I  & (Y n-+ X I ) .  
CO is the weakest system that has any claim to be called a logic 
of conditionals; a system missing some of Axioms A-C might 
better be called a logic of sententially indexed modalities. 

The system C1 is generated by the rules TI and DWC, Axioms 
A-C, and two further axioms: 

Axiom D. (p, U+ y)~(p ,~ 'y ) ,  
Axiom E. p, & y2(p, U-t y ) .  

In my opinion, C1 is the correct logic of counterfactual condi- 
tionals as we ordinarily understand them. 

The system C2 is generated by the rules TI and DWC, Axioms 
A-C, Axiom D, and one further axiom: 
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Axiom F.  (p 0-t y )  v (p U+- - y ) .  

C2 contains C1, since Axiom E follows by TI from Axioms D and 
F. C2 is the same as Stalnaker’s differently axiomatized system of 
the same name in [4]. Stalnaker and Thomason [5] contains a 
proof, in effect, that C2 is sound and complete for the class of 
2-standard a-models. We shall proceed to  obtain similar results 
for the weaker systems CO and C1, with respect to models of all 
three sorts. 

Soundness results 

Each of the following observations is easily verified. The rule TI 
preserves truth a t  any i in I in any model, and hence preserves 
validity. The rule DWC, though not truth-preserving, preserves 
validity in any a-model, in any standard ,!?-model, and in any 
standard y-model. Axiom A (more precisely, any instance thereof) 
is valid in any a-model that meets condition (a.0.6), in any B- 
model, and in any y-model. Axiom B is valid in any a-model that 
meets condition (a.0.7), in any standard B-model, and in any 
standard y-model. Axiom C is valid in any a-model that meets 
condition (a.0.8), in any standard B-model, and in any standard y- 
model. Therefore any theorem of CO is valid in any standard model. 

Further, Axiom D is valid in any a-model that meets condition 
(a.l.l), in any B-model that meets condition (B.1.1), and in any 
y-model that meets condition (7.1.1). Axiom E is valid in any 
a-model that meets condition (a.l.2), in any B-model that meets 
condition (B.1.2), and in any y-model that meets condition (y.1.2). 
Therefore any theorem of C1 is valid in any 1-standard model. 

Further, Axiom F is valid in any a-model that meets condition 
(~2.2)~ in any B-model that meets condition (!?.2), and in any y- 
model that meets condition (7.2). Therefore any theorem of C2 
is valid in any 2-standard model. 

Deducibility and consistency 

A sentence p is deducible from a set Z of sentences in a deductive 
system L iff p belongs to  the smallest set of sentences closed 
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under the rule TI and including both C and L. (Note that it is 
inappropriate to require closure under the non-truth-preserving 
rule DWC.) A set of sentences is L-consistent iff not every sen- 
tence is deducible from it in L. A set of sentences is maximal 
L-consistent iff it is L-consistent but not a subset of any larger 
L-consistent set. Note that if a sentence p' belongs to every maxi- 
mal L-consistent set that includes a set 2 of sentences, then p' 

is deducible in L from some finite subset of C. 

Canonical models 
The methods employed in the remainder of this paper are adapted 
from those developed for modal logic by Kaplan in [ 11 and by Lem- 
mon and Scott in unpublished work described by Segerberg in [3]. 

If L is any deductive system closed under the rules TI and DWC, 
the canonical a-model for L is the triple ( I ,  [ 1, f )  where I is the set 
of all maximal L-consistent sets of sentences, [p'] is {i I I: p' E i}, 
and f(p', i) is n { [ y ] :  (p' 0-t y )  E i}. It is easily verified that this 
triple is indeed an a-model. (It is not an intended model, since 
possible worlds are not really sets of sentences.) Part of this 
verification merits closer examination: given that f(p', i) E [ y ] ,  
show that (p' a+ y)  E i as follows. By hypothesis, y belongs to 
every member of f(y, i); that is, to every maximal L-consistent 
set of sentences that includes the set Z of all those sentences x 
such that (p' m+ x)  E i. Therefore y is deducible in L from a 
finite subset of C. Either y itself is a theorem of L or there are 
xl, . . ., xn in Z such that & . . . & x n ) 3 y  is a theorem of L. Then 
since L is closed under DWC, either p' 0-t y or ((p' O+ xl) 
& . . . & (p' U-+ x n ) ) ~  (p' 0-t y)  is a theorem of L; so, since i is 
maximal L-consistent, (p' a+ y)  6 i. 

I t  is also easily verified that if L contains Axiom A, the canonical 
a-model for L meets condition (a.0.6); if L contains Axiom B, it 
meets (a.0.7); if L contains Axiom C, it meets (a.0.8); if L contains 
Axiom D, it meets (a.1.1); if L contains Axiom E, it meets (a.1.2); 
and if L contains Axiom F, it meets (a.2). Thus the canonical 
a-model for CO is standard, the canonical a-model for C1 is 1- 
standard, and the canonical a-model for C2 is 2-standard. 
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If L is any deductive system closed under TI and DWC and 
containing Axioms A-C, so that the canonical a-model for L 
is standard, then let us call the B-conversion of the canonical 
a-model for L the canonical B-model for L, and let us call the 
y-conversion of the canonical a-model for L the canonical y-model 
for L. The three canonical models for L are equivalent; and if the 
canonical a-model for L is 1-standard or 2-standard, then so are 
the other two canonical models for L. 

Completeness results 
If any sentence is valid in every member of some class of models 
that includes one of the canonical models for a deductive system 
L, then that sentence belongs to  every maximal L-consistent set 
of sentences, so it must be a theorem of L. By this argument 
together with our results about standardness of canonical models 
and our soundness results, we have now proved the following 
theorem. (The third part restates a result of Stalnaker and 
Thomason [5].) 

THEOREM 

All and only theorems ofC0 are valid in all standard 

all and only theorems of C1 are valid in all I-standara 

all and only theorems of CZ are valid in all 2-standarcr 

Decidability results 
We can now also show that the systems CO, C1, 

.models; 

-models; 

-models. 

and C2 are 
decidable. If L is one of these systems and p is any sentence, 
proceed as follows to  decide whether p is a theorem of L. First 
choose a set J with exactly 2" members, where n is the number of 
subsentences of p (including p itself). Then consider the set M 
of all B-models ( I ,  [ 1, $) such that: (1) I c J ;  (2) [a]=A whenever 
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a is a sentence letter that does not occur in v; and (3) (I, [ 1, $) 
is standard (if L is CO), 1-standard (if L is Cl), or 2-standard (if L 
is C2). There are finitely many models in M, and each of them is 
such that we can decide whether g.~ is valid in it. If p is valid in 
every model in M, decide that p is a theorem of L; if y is invalid 
in some model in M, decide that cp is not a theorem of L. 

If p is a theorem of L, it follows from our soundness results 
that is valid in every model in M, so in this case the procedure 
decides correctly. 

If q.~ is not a theorem of L, it follows from our completeness 
results that q.~ is invalid in some ,%model (I, [ 1, $) which is stand- 
ard (if L is CO), 1-standard (if L is Cl), or 2-standard (if L is C2). 
Call i and j in I pindistinguishable iff every subsentence of tp is 
true in that model at both or neither of i and j. Call (*I, *[ 1, *$) 
a v-filtration of (I, [ 1, $) iff it is a p-model and there is a function * 
from I into J such that: (1) *I= {+i: i E I}; (2) + i =  + j  iff i and j 
are p-indistinguishable; (3) if a is any sentence letter that occurs 
in y ,  *[a] = {xi: i E [a]}; (4) if a is any sentence letter that does not 
occur in v, *[(TI = A; and (5) for each j in *I there is i in I such that 
j = +i and *$j = { { x k :  k E S } :  S E &}. We can easily verify that there 
do exist p-filtrations of (I, [ 1, $). We can verify by induction on 
subsentences of y that if y is any subsentence of ~1 (in particular, 
if y is y~ itself) and (*I, *[ 1, *$) is any pfiltration of (I, [ 1, $) then 
* [y ]  = { +i: i E [y]}. I t  follows that cp is invalid in any q-filtration of 
our original model (I, [ 1, $). We can also verify that if (I, [ 1, $) 
is standard, 1-standard, or 2-standard, then so is any v-filtration 
of it. (To verify that 2-standardness is preserved, we should first 
note that if (*I, *[ 1, *$) is any tp-filtration and y is any sentence, 
there is a truth-functional compound x of subsentences of y 
such that * [ y ] = * [ x ] ;  and for any such x, *[XI= {*i: i E [ x ] } . )  It 
follows that the y-filtrations of our original model (I, [ 1, $) 
belong to M. Therefore the non-theorem g~ is invalid in some 
model in M; so in this case also the procedure decides correctly. 

This completes the proof of the following theorem. 

THEOREM 

CO, C1, and C2 are decidable. 
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