
Completeness and Incompleteness in
Nominal Kleene Algebra

Dexter Kozen∗ Konstantinos Mamouras∗ Alexandra Silva†

November 14, 2014

Abstract

Gabbay and Ciancia (2011) presented a nominal extension of Kleene
algebra as a framework for trace semantics with dynamic allocation of re-
sources, along with a semantics consisting of nominal languages. They
also provided an axiomatization that captures the behavior of the scoping
operator and its interaction with the Kleene algebra operators and proved
soundness over nominal languages. In this paper we show that the axioms
are complete and describe the free language models.

1 Introduction

Nominal sets are a convenient framework for handling name generation and
binding. They were introduced by Gabbay and Pitts [3] as a mathematical
model of name binding and α-conversion.

Nominal extensions of classical automata theory have been recently ex-
plored [1], motivated by the increasing need for tools for languages over in-
finite alphabets. These play a role in various areas, including XML document
processing, cryptography, and verification. An XML document can be seen as
a tree with labels from the (infinite) set of all unicode strings that can appear as
attribute values. In cryptography, infinite alphabets are used as nonces, names
used only once in cryptographic communications to prevent replay attacks. In
software verification, infinite alphabets are used for references, objects, point-
ers, and function parameters.

In this paper, we focus on axiomatizations of regular languages and how
these can be lifted in the presence of a binding operator and an infinite alpha-
bet of names. This work builds on the recent work of Gabbay and Ciancia [5],

∗Computer Science, Cornell University, Ithaca, New York 14853-7501, USA.
http://www.cs.cornell.edu/~kozen/, http://www.cs.cornell.edu/~mamouras/. This work
was done while visiting Radboud University Nijmegen.

†Intelligent Systems, Radboud University Nijmegen, Postbus 9010, 6500 GL Nijmegen, The
Netherlands. http://alexandrasilva.org.

1

http://www.cs.cornell.edu/%7Ekozen/
http://www.cs.cornell.edu/%7Emamouras/
http://alexandrasilva.org

who presented a nominal extension of Kleene algebra as a framework for trace
semantics with dynamic allocation of resources, along with a semantics consist-
ing of nominal languages. Gabbay and Ciancia also provided an axiomatization
that captures the behavior of the scoping operator and its interaction with the
usual Kleene algebra operators. They proved soundness of their axiomatiza-
tion over nominal languages, but left open the question of completeness. In
this paper we tackle this problem.

Intuitively, the challenge behind showing completeness is twofold. On the
one hand, one needs to find the appropriate (language) model, or in other
words, the free model. On the other hand, there is an inherent need to find
an appropriate normal form for a given expression. Normal forms are a vehi-
cle to completeness: two expressions are equivalent if they can be reduced to
the same normal form, and the axioms are complete if they enable us to derive
normal forms for all expressions.

Our approach is modular. We show that under the right definition of a
language model, one can prove completeness by first transforming the expres-
sion to another expression for which only the usual Kleene algebra axioms
are needed. The steps of the transformation make use of the usual axioms of
Kleene algebra along with axioms proposed by Gabbay and Ciancia for the
scoping operator.

We also show that the axioms are not complete for the standard language
model proposed by Gabbay and Ciancia. We explain exactly what the problem
is with their original language model, which contains what they called non-
maximal planes. This technical difference will be clear later in the paper. We
also show that the axioms are not complete for summation models in which
the scoping operator is interpreted as a summation operator over a finite set.

Interestingly, in devising the proof of completeness, we have developed a
technique that might be useful in other completeness proofs. More precisely,
we have made use of the well-known fact that the Boolean algebra generated
by finitely many regular sets consists of regular sets and is atomic. Hence,
expressions can be written as sums of atoms. This is crucial in obtaining the
normal form. To our knowledge this has not been used before in completeness
proofs.

The paper is organized as follows. In §2 we recall basic material on Kleene
algebra (KA), nominal sets, and the nominal extension of KA (NKA) by Gabbay
and Ciancia. In §3 we discuss the possible language models, starting with the
original one proposed in [5] and then introducing two new ones: our own al-
ternative language model and three summation models. We give a precise de-
scription of the difference between the two language models. In §4 we present
our main result on completeness. The proof is given in four steps: exposing
bound variables, scope configuration, canonical choice of bound variables, and semi-
lattice identities. The last step uses a novel technique based on the atomicity
of the the Boolean algebra generated by finitely many regular sets. In §5 we
present concluding remarks and directions for future work.

2

2 Background

2.1 Kleene Algebra (KA)

Kleene algebra is the algebra of regular expressions. Regular expressions are
normally interpreted as regular sets of strings, but there are other useful inter-
pretations: binary relation models used in programming language semantics,
the (min,+) algebra used in shortest path algorithms, models consisting of
convex sets used in computational geometry, and many others.

A Kleene algebra is any structure (K,+, ·,∗ , 0, 1) where K is a set, + and · are
binary operations on K, ∗ is a unary operation on K, and 0 and 1 are constants,
satisfying the following axioms:

x + (y + z) = (x + y) + z x(yz) = (xy)z
x + y = y + x 1x = x1 = x
x + 0 = x + x = x x0 = 0x = 0
x(y + z) = xy + xz (x + y)z = xz + yz
1 + xx∗ ≤ x∗ y + xz ≤ z ⇒ x∗y ≤ z
1 + x∗x ≤ x∗ y + zx ≤ z ⇒ yx∗ ≤ z

where we define x ≤ y iff x + y = y. The axioms above not involving ∗ are
succinctly stated by saying that the structure is an idempotent semiring under
+, ·, 0, and 1, the term idempotent referring to the axiom x + x = x. Due to this
axiom, the ordering relation ≤ is a partial order. The axioms for ∗ together say
that x∗y is the ≤-least z such that y + xz ≤ z and yx∗ is the ≤-least z such that
y + zx ≤ z.

2.2 Group Action

A group action of a group G on a set X is a map G× X → X (written as juxta-
position) such that π(ρx) = (πρ)x. For A ⊆ X, define the subgroups

fix A = {π ∈ G | ∀x ∈ A πx = x}
Fix A = {π ∈ G | ∀x ∈ A πx ∈ A} = {π ∈ G | πA = A}

fix x = fix{x} = Fix{x}.

Thus fix A is the subgroup of all elements of G that fix A pointwise and Fix A is
the subgroup of all elements of G that fix A setwise.

2.3 Nominal Sets

Let A be a countably infinite set of atoms and let G be the group of all finite
permutations of G (permutations generated by transpositions (a b)). The group
G acts on A in the obvious way. If X is another set on which G acts, we say

3

that A ⊆ A supports x ∈ X if

fix A ⊆ fix x.

An element x ∈ X has finite support if there is a finite set A ⊆ A that supports
x. A nominal set is a set X with a group action of G on X such that every element
of X has finite support.

Lemma 2.1 For A, B ⊆ A such that A ∪ B 6= A,

fix(A ∩ B) = fix A ∨ fix B,

the least subgroup of G containing both fix A and fix B.

Proof. Clearly fix A ⊆ fix(A ∩ B) and fix B ⊆ fix(A ∩ B), therefore the
right-to-left inclusion holds. For the left-to-right inclusion, write any element
of fix(A ∩ B) as a finite product of transpositions (a b) with a, b 6∈ A ∩ B. For
each such transposition, either a, b 6∈ A, in which case (a b) ∈ fix A, or a, b 6∈ B,
in which case (a b) ∈ fix B, or one of a, b is in A− B and the other is in B− A,
in which case we can write (a b) = (a c)(b c)(a c) where c is any element
in A − (A ∪ B). We have written the element of fix(A ∩ B) as a product of
elements of fix A and fix B. 2

Thus if A and B are finite and support x, then so does A ∩ B. It follows that
if x is finitely supported, there is a smallest set that supports it, which we call
supp x.

Lemma 2.2 A supports x iff πA supports πx. In particular, supp πx = π supp x.

Proof. For the first statement,

A supports x ⇔ fix A ⊆ fix x

⇔ π(fix A)π−1 ⊆ π(fix x)π−1

⇔ fix πA ⊆ fix πx
⇔ πA supports πx.

For the second statement,

supp πx =
⋂
{A | A supports πx}

=
⋂
{πA | πA supports πx}

= π(
⋂
{A | πA supports πx})

= π(
⋂
{A | A supports x})

= π supp x.

2

4

Lemma 2.3 For x ∈ X, fix supp x ⊆ fix x ⊆ Fix supp x. Both inclusions can be
strict.

Proof. The first inclusion is just the statement that supp x supports x. For the
second,

πx = x ⇒ π supp x = supp πx = supp x.

Both inclusions can be strict, as can be seen from the element x = (a + b)c in
a nominal semiring. The transposition (a b) is in fix x − fix{a, b, c} due to the
commutativity of addition, and the transposition (a c) is in Fix{a, b, c} − fix x.

2

One can show that fix supp x is a normal subgroup of Fix supp x, therefore
also of fix x, and the quotient groups fix x/ fix supp x and Fix supp x/ fix supp x are
isomorphic to permutation groups on supp x. The latter is isomorphic to Sn, the
symmetric group on n letters, where n is the cardinality of supp x. The former
is a subgroup of the latter and characterizes those permutations of supp x that
preserve x.

2.4 Syntax of Nominal KA

Expressions over an alphabet Σ of primitive letters are

e ::= a ∈ Σ | e + e | ee | e∗ | 0 | 1 | νa.e.

The scope of the binding νa in νa.e is e. Notational convention: the binding
operator νa is of lower precedence than product but higher precedence than
sum; thus in products, scopes extend as far to the right as possible. Example:

νa.ab νb.ba = νa.(ab νb.(ba)) and not (νa.ab)(νb.ba)

The set of expressions over Σ is denoted ExpΣ.
A ν-string is an expression with no occurrence of +, ∗, or 0, and no occur-

rence of 1 except to denote the null string, in which case we use ε instead.

x ::= a ∈ Σ | xx | ε | νa.x

The set of ν-strings over Σ is denoted Σν.
The free variables of expressions and ν-strings are defined inductively:

FV(a) = {a} FV(0) = FV(1) = ∅ FV(e∗) = FV(e)
FV(e1 + e2) = FV(e1e2) = FV(e1) ∪ FV(e2) FV(νa.e) = FV(e)− {a}.

The nominal axioms proposed by Gabbay and Ciancia [5] are:

νa.(d + e) = νa.d + νa.e a#e⇒ νb.e = νa.(a b)e
νa.νb.e = νb.νa.e a#e⇒ (νa.d)e = νa.de (1)
a#e⇒ νa.e = e a#e⇒ e(νa.d) = νa.ed.

5

3 Models

3.1 Nominal KA

A nominal KA (NKA) over atoms A is a structure

(K,+, ·,∗ , 0, 1, ν)

such that K is a nominal set over atoms A and for all π ∈ G,

π(x + y) = πx + πy π(0) = 0
π(xy) = (πx)(πy) π(1) = 1
π(x∗) = (πx)∗ π(νa.e) = ν(πa).πe,

that is, the action of every π ∈ G is an automorphism of K, and all the KA and
nominal axioms are satisfied.

3.2 Nominal Language Model

Now we describe a nominal language interpretation NL : ExpA → P(A∗) for
each expression e that interprets expressions over A as certain subsets of A∗.
This is the language model of [5]. The definition is slightly nonstandard, as
care must be taken when defining product to avoid capture.

First we give an intermediate interpretation I : ExpA → P(Aν) of expres-
sions as sets of ν-strings over A. The regular operators +, ·, ∗, 0, and 1 have
their usual set-theoretic interpretations, and

I(νa.e) = {νa.x | x ∈ I(e)} I(a) = {a}.

We maintain the scoping of ν-subexpressions in the ν-strings. Examples:

I(νa.a) = {νa.a}
I(νa.νb.(a + b)) = {νa.νb.a, νa.νb.b}

I(νa.(νb.ab)(a + b)) = {νa.(νb.ab)a, νa.(νb.ab)b}
I(νa.(ab)∗) = {νa.ε, νa.ab, νa.abab, νa.ababab, . . .}
I((νa.ab)∗) = {ε, νa.ab, (νa.ab)(νa.ab), (νa.ab)(νa.ab)(νa.ab), . . .}.

Now we describe the map NL : Aν → P(A∗) on ν-strings. Given a ν-string
x, first α-convert so that all bindings in x are distinct and different from all free
variables in x, then delete all binding operators νa to obtain a string x′ ∈ A∗.
For example,

(νa.ab)(νa.ab)(νa.ab)′ = abcbdb.

Here we have α-converted to obtain (νa.ab)(νc.cb)(νd.db), then deleted the
binding operators to obtain abcbdb. The choice of variables in the α-conversion
does not matter as long as they are distinct and different from the free variables.

6

Now we define for each ν-string x and expression e

NL(x) = {πx′ | π ∈ fix FV(x)} NL(e) =
⋃

x∈I(e)

NL(x).

The set NL(x) is the plane x′

x

FV(x) in the notation of [5]. Thus we let the bound
variables range simultaneously over all possible values in A they could take
on, as long as they remain distinct and different from the free variables, and
we accumulate all strings obtained in this way. For example,

NL((νa.ab)(νa.ab)(νa.ab)) = {abcbdb | a, c, d ∈ A distinct and different from b}.

As mentioned, the choice of fresh variables in the α-conversion does not matter;
thus

NL(x) = {πy | π ∈ fix FV(x)} (2)

for any y ∈ NL(x).
For x, y ∈ Aν, write x ≡ y if x and y are equivalent modulo the nom-

inal axioms (1). The following lemma says that the nominal axioms alone
are sound and complete for equivalence between ν-strings in the nominal lan-
guage model.

Lemma 3.1 For x, y ∈ Aν, x ≡ y if and only if NL(x) = NL(y).

Proof. Soundness (the left-to-right implication) holds because each nominal
axiom preserves NL, as is not difficult to check. For completeness (the right-
to-left implication), suppose NL(x) = NL(y). We must have FV(x) = FV(y),
because if a ∈ FV(x)− FV(y), then NL(y) would contain a string with no oc-
currence of a, whereas all strings in NL(x) contain an occurrence of a. Now
α-convert x and y so that all bound variables are distinct and different from the
free variables, and move the bound variables to the front, so that x = νA.x′

and y = νB.y′ for some x′, y′ ∈ A∗. By (2), y′ = πx′ for some π ∈ fix FV(x) =
fix FV(y), so x = πy, and πy ≡ y by α-conversion. 2

Lemma 3.2 For any x ∈ A∗ and A, B ⊆ FV(x),

A ⊆ B⇔ NL(νA.x) ⊆ NL(νB.x).

In the notation of [5],

A ⊆ B⇔ x

x

B′ ⊆ x

x

A′ ,

where A′ = FV(x)− A and B′ = FV(x)− B.

Proof. If A ⊆ B, then fix A′ ⊆ fix B′, therefore

NL(νA.x) = {πx | π ∈ fix A′} ⊆ {πx | π ∈ fix B′} = NL(νB.x).

Conversely, if a ∈ A− B, then x[b/a] ∈ NL(νA.x)−NL(νB.x), where b is any
element of A− FV(x). 2

7

Lemma 3.3 Let y ∈ NL(e) and A ⊆ FV(y) maximal such that NL(νA.y) ⊆
NL(e) (in the notation of [5], this is y

x

A′ ∝ NL(e), where A′ = FV(y)− A). Then
νA.y ∈ I(e), and νA.y is the unique ν-string up to nominal equivalence for which
this is true.

Remark This is the essential content of [5, Theorem 3.16]. This is important for
us because it says that the set NL(e) uniquely determines the maximal elements
of I(e) up to nominal equivalence (Lemma 3.4 below).

Proof. Let x1, . . . , xn ∈ I(e) be all ν-strings such that y ∈ NL(xi). There are
only finitely many of these. Then

NL(νA.y) ⊆ NL(x1) ∪ · · · ∪NL(xn) ⊆ NL(e).

Using the nominal axioms (1), we can move the quantification in each xi to the
front of the string and α-convert so that the quantifier-free part is y. This is
possible because y ∈ NL(xi). Thus we can assume without loss of generality
that each xi = νAi.y for some Ai ⊆ FV(y).

Let z ∈ NL(νA.y) such that (FV(z)− FV(νA.y)) ∩ FV(νAi.y) = ∅, 1 ≤ i ≤
n. Since

NL(νA.y) ⊆ NL(x1) ∪ · · · ∪NL(xn) = NL(νA1.y) ∪ · · · ∪NL(νAn.y),

we must have z ∈ NL(νAi.y) for some i. But then FV(νA.y), FV(νAi.y) ⊆
FV(z) and FV(νAi.y) ⊆ FV(νA.y) by choice of z, therefore A ⊆ Ai. Since A
was maximal, A = Ai. 2

Let Î(e) = {x ∈ I(e) | NL(x) is maximal in NL(e)}.

Lemma 3.4 NL(e1) = NL(e2) if and only if Î(e1) = Î(e2) modulo the nominal
axioms (1).

Proof. Suppose NL(e1) = NL(e2). By Lemma 3.3, each y ∈ NL(e1) is con-
tained in a unique maximal NL(νA.y), and νA.y ∈ Î(e1). As NL(e1) = NL(e2),
these planes are also contained in NL(e2). Similarly, the maximal planes of
NL(e2) are contained in NL(e1). Since the two sets contain the same set of max-
imal planes, they must be equal, therefore Î(e1) = Î(e2) modulo the nominal
axioms.

For the reverse implication, note that

NL(e) =
⋃

x∈I(e)

NL(x) =
⋃

x∈ Î(e)

NL(x)

by the fact that every plane of e is contained in a maximal one. Then

NL(e1) =
⋃

x∈ Î(e1)

NL(x) =
⋃

x∈ Î(e2)

NL(x) = NL(e2).

2

8

3.3 Alternative Nominal Language Model

Let Σ and A be countably infinite disjoint sets. Letters a, b, c, . . . range over A,
x, y, z, . . . over Σ, and u, v, w, . . . over (Σ ∪A)∗. Quantification is only over Σ.

A language is a subset A ⊆ (Σ ∪A)∗ such that πA = A for all π ∈ G. The
set of languages is denoted L.

The operations of nominal KA are defined on L as follows:

A + B = A ∪ B
AB = {uv | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩A = ∅}
A∗ =

⋃
n

An

0 = ∅
1 = {ε}

νx.A = {w[a/x] | w ∈ A, a ∈ A− FV(w)}, x ∈ Σ.

Lemma 3.5 The set L is closed under the operations of nominal KA.

Proof. For sum, π(
⋃

n An) =
⋃

n πAn =
⋃

n An. For product,

π(AB) = {π(uv) | u ∈ A, v ∈ B, FV(u) ∩ FV(v) ∩A = ∅}
= {(πu)(πv) | u ∈ A, v ∈ B, FV(πu) ∩ FV(πv) ∩ πA = ∅}
= {uv | u ∈ πA, v ∈ πB, FV(u) ∩ FV(v) ∩A = ∅}
= (πA)(πB) = AB.

The case of A∗ follows from the previous two cases. The cases of 0 and 1 are
trivial. Finally, for νx.A, we have

π(νx.A) = {π(w[a/x]) | w ∈ A, a ∈ A− FV(w)}
= {(πw)[πa/x] | w ∈ A, a ∈ A− FV(w)}
= {w[a/x] | π−1w ∈ A, π−1a ∈ A− FV(π−1w)}
= {w[a/x] | w ∈ πA, a ∈ πA− πFV(π−1w)}
= {w[a/x] | w ∈ A, a ∈ A− FV(w)}
= νx.A.

2

We can interpret nominal KA expressions as languages. The interpretation
map AL : ExpΣ → L is the unique homomorphism with respect to the above
language operations such that AL(x) = {x}. Note that in this context, atoms
a ∈ A do not appear in expressions or ν-strings.

Theorem 3.6 The nominal axioms (1) hold in this model.

9

Proof.

AL(νx.(d + e)) = {w[a/x] | w ∈ AL(d + e), a ∈ A− FV(w)}
= {w[a/x] | w ∈ AL(d) ∪AL(e), a ∈ A− FV(w)}
= {w[a/x] | w ∈ AL(d), a ∈ A− FV(w)}

∪ {w[a/x] | w ∈ AL(e), a ∈ A− FV(w)}
= AL(νx.d) ∪AL(νx.e)

AL(νx.νy.e) = {w[a/x] | w ∈ AL(νy.e), a ∈ A− FV(w)}
= {w[a/x] | w ∈ {u[b/y] | u ∈ AL(e), b ∈ A− FV(u)},

a ∈ A− FV(w)}
= {u[b/y][a/x] | u ∈ AL(e), b ∈ A− FV(u), a ∈ A− FV(u[b/y])}
= {u[a/x][b/y] | u ∈ AL(e), a ∈ A− FV(u), b ∈ A− FV(u[a/x])}
= AL(νy.νx.e).

For the remaining axioms, assume x 6∈ FV(e). Then

AL(νx.e) = νx.AL(e)
= {w[a/x] | w ∈ AL(e), a ∈ A− FV(w)}
= {w | w ∈ AL(e), a ∈ A− FV(w)} (3)
= AL(e).

The equation (3) holds since FV(w) ∩ Σ ⊆ FV(e), therefore x 6∈ FV(w), so
w[a/x] = w.

AL(νy.e) = νy.AL(e)
= {w[a/y] | w ∈ AL(e), a ∈ A− FV(w)}
= {((x y)w)[a/x] | (x y)w ∈ AL((x y)e), a ∈ A− FV((x y)w)}
= {w[a/x] | w ∈ AL((x y)e), a ∈ A− FV(w)}
= AL(νx.(x y)e).

10

AL((νx.d)e)
= {uv | u ∈ AL(νx.d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅}
= {uv | u ∈ νx.AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅}
= {uv | u ∈ {w[a/x] | w ∈ AL(d), a ∈ A− FV(w)}, v ∈ AL(e),

FV(u) ∩ FV(v) ∩A = ∅}
= {w[a/x]v | w ∈ AL(d), a ∈ A− FV(w), v ∈ AL(e),

FV(w[a/x]) ∩ FV(v) ∩A = ∅}
= {w[a/x]v | w ∈ AL(d), a ∈ A− FV(wv), v ∈ AL(e),

FV(w) ∩ FV(v) ∩A = ∅} (4)
= {u[a/x]v | u ∈ AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅,

a ∈ A− FV(uv)}
= {(uv)[a/x] | u ∈ AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅,

a ∈ A− FV(uv)}
= {w[a/x] | w ∈ {uv | u ∈ AL(d), v ∈ AL(e), FV(u) ∩ FV(v) ∩A = ∅},

a ∈ A− FV(w)}
= {w[a/x] | w ∈ AL(de), a ∈ A− FV(w)}
= νx.AL(de)
= AL(νx.de).

All steps are straightforward except (4), which requires an argument. We cond-
sider two cases: either x ∈ FV(w) or x 6∈ FV(w). In the former case, we argue
that

a ∈ A− FV(w) and FV(w[a/x]) ∩ FV(v) ∩A = ∅
⇔ a ∈ A− FV(wv) and FV(w) ∩ FV(v) ∩A = ∅.

For the left-to-right implication, since x ∈ FV(w), we have a ∈ FV(w[a/x]) ∩
A, and since FV(w[a/x])∩FV(v)∩A = ∅, it must be that a 6∈ FV(v), therefore
a ∈ A− (FV(w)∪FV(v)) = A−FV(wv). Also, FV(w)∩FV(v)∩A = ∅, since
FV(w[a/x]) ∩ FV(v) ∩A = ∅ and FV(w) ∩A ⊆ FV(w[a/x]) ∩A.

For the right-to-left implication, since a ∈ A− FV(wv) = A− (FV(w) ∪
FV(v)), we have a ∈ A− FV(w) and a ∈ A− FV(v), therefore

FV(w[a/x]) ∩ FV(v) ∩A

= (FV(w) ∪ {a}) ∩ FV(v) ∩A

= (FV(w) ∩ FV(v) ∩A) ∪ ({a} ∩ FV(v) ∩A)

= ∅∪∅ = ∅.

In the latter case (x 6∈ FV(w)), the equation (4) reduces to

{wv | w ∈ AL(d), a ∈ A− FV(w), v ∈ AL(e), FV(w) ∩ FV(v) ∩A = ∅}
= {wv | w ∈ AL(d), a ∈ A− FV(wv), v ∈ AL(e), FV(w) ∩ FV(v) ∩A = ∅},

11

which is clearly true, as a is irrelevant.
Similarly, AL(e(νx.d)) = AL(νx.ed). 2

We can also define I : ExpΣ → Σν and Î : ExpΣ → Σν exactly as in §3.2 for
the nominal language model, with the modification that expressions are over
Σ and not A.

Lemma 3.7 AL(e) =
⋃

w∈I(e) AL(w).

Proof. This can be proved by a straightforward induction on the structure
of e. We argue the case of products and binders explicitly.

AL(e1e2) = {uv | u ∈ AL(e1), v ∈ AL(e2), FV(u) ∩ FV(v) ∩A = ∅}
= {uv | u ∈

⋃
p∈I(e1)

AL(p), v ∈
⋃

q∈I(e2)

AL(q), FV(u) ∩ FV(v) ∩A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

{uv | u ∈ AL(p), v ∈ AL(q), FV(u) ∩ FV(v) ∩A = ∅}

=
⋃

p∈I(e1)
q∈I(e2)

AL(pq) =
⋃

r∈I(e1e2)

AL(r).

AL(νx.e) = νx.AL(e)
= {w[a/x] | w ∈ AL(e), a ∈ A− FV(w)}
= {w[a/x] | w ∈

⋃
p∈I(e)

AL(p), a ∈ A− FV(w)}

=
⋃

p∈I(e)

{w[a/x] | w ∈ AL(p), a ∈ A− FV(w)}

=
⋃

p∈I(e)

νx.AL(p) =
⋃

p∈I(e)

AL(νx.p) =
⋃

w∈I(νx.e)

AL(w).

2

Lemma 3.8 Every plane AL(νA.w) in AL(e) is maximal; that is, I(e) = Î(e).

Proof. Replace each x ∈ A in w with a distinct element of A to get w′. Then

AL(νA.w) = {πw′ | π ∈ G}.

This is maximal, as all finite permutations of A are allowed. 2

Lemma 3.8 characterizes the key difference between the nominal language
model of §3.2 and the alternative nominal language model of this section. It
explains why the axioms are complete for the alternative model but not for the
model of §3.2. In the model of §3.2, there are non-maximal planes, and these are
“hidden” by the maximal planes, whereas this cannot happen in the alternative
model, as all planes are maximal.

12

3.4 Summation Model over the Free KA

It is sound to interpret νx as a summation operator ∑a∈F e[a/x]. Let K be the
free KA on generators X (regular expressions over X modulo the KA axioms)
and let F ⊆ K. For x ∈ X, interpret

νx.e = ∑
a∈F

e[a/x] x#e⇔ x 6∈ FV(e),

where e[a/x] is the expression obtained by substituting a for x in e. This can be
interpreted in any KA in which the sums exist; and in any KA when F is finite.

This is a sound interpretation, as all the nominal axioms are satisfied:

∑
a
(d + e)[a/x] = ∑

a
d[a/x] + ∑

a
e[a/x]

∑
a

∑
b

e[b/y][a/x] = ∑
b

∑
a

e[a/x][b/y]

x 6∈ FV(e)⇒∑
a

e[a/x] = e

x 6∈ FV(e)⇒∑
a

e[a/y] = ∑
a

e[x/y][a/x]

x 6∈ FV(e)⇒ (∑
a

d[a/x])e = ∑
a

de[a/x]

x 6∈ FV(e)⇒ e(∑
a

d[a/x]) = ∑
a

ed[a/x].

3.5 Language Summation Model

In particular, let A be a set of letters, finite or infinite. We wish to interpret
expressions as subsets of A∗ by a map L : ExpA → P(A∗). Let the regular
operators have their usual set-theoretic interpretations, and let

L(νx.e) =
⋃

a∈A

L(e[a/x]) L(a) = {a}, a ∈ A.

3.6 Summation Model over an Arbitrary KA K

More generally, let K be an arbitrary KA and let K[X] be the set of polynomials
over indeterminates X with coefficients in K. This is the direct sum (coproduct)
of K with the free KA on generators X. Let F ⊆ K be finite. Let e 7→ e[a/x] be
the evaluation morphism that for x ∈ X evaluates e ∈ K[X] at x = a. We can
interpret

νx.e = ∑
a∈F

e[a/x] x#e⇔ e ∈ K[X− {x}]⇔ e[0/x] = e.

13

This is also sound interpretation:

∑
a
(d + e)[a/x] = ∑

a
d[a/x] + ∑

a
e[a/x]

∑
a

∑
b

e[b/y][a/x] = ∑
b

∑
a

e[a/x][b/y]

e[0/x] = e⇒∑
a

e[a/x] = e

e[0/x] = e⇒∑
a

e[a/y] = ∑
a

e[x/y][a/x]

e[0/x] = e⇒ (∑
a

d[a/x])e = ∑
a

de[a/x]

e[0/x] = e⇒ e(∑
a

d[a/x]) = ∑
a

ed[a/x].

In fact the set F can be a singleton {a}; in this case, νx.e is just evaluation
e 7→ e[a/x].

(d + e)[a/x] = d[a/x] + e[a/x]
e[b/y][a/x] = e[a/x][b/y]
e[0/x] = e⇒ e[a/x] = e
e[0/x] = e⇒ e[a/y] = e[x/y][a/x]
e[0/x] = e⇒ (d[a/x])e = de[a/x]
e[0/x] = e⇒ e(d[a/x]) = ed[a/x].

4 Completeness

In this section we prove our main theorem:

Theorem 4.1 The axioms of nominal Kleene algebra are sound and complete for the
equational theory of nominal Kleene algebras and for the equational theory of the alter-
native language interpretation of §3.3.

We thus show that if two nominal KA expressions e1 and e2 are equivalent
in the alternative language interpretation of §3.3 in the sense that AL(e1) =
AL(e2), then e1 and e2 are provably equivalent in the axiomatization of Gabbay
and Ciancia [5]. This says that the alternative language model of §3.3 is the
free nominal KA. This is not true of Gabbay and Ciancia’s language model
presented in §3.2, as the inequality a ≤ νa.a holds in the language model of §3.2
but not in the summation models. Neither is it true of the summation models of
§3.5 and §3.6, as νa.aa ≤ νa.νb.ab holds in the summation models but not in the
language model. However, it is true of Gabbay and Ciancia’s language model
if one restricts to closed terms, as the closed terms of the language models of
§3.2 and §3.3 are the same.

14

We show that every expression can be put into a particular canonical form
that will allow us to apply the KA axioms to prove equivalence. This construc-
tion will consist of several steps: exposing bound variables, scope configuration,
canonical choice of bound variables, and determining semilattice identities. Each step
will involve a construction that is justified by the axioms.

For the purposes of exposition, we write (
a

e)
a

instead of νa.e so that it is

easier to see the scope boundaries. In this notation, the nominal axioms take
the following form:

νa.(d + e) = νa.d + νa.e (
a

d + e)
a
= (

a
d)

a
+ (

a
e)

a
(5)

νa.νb.e = νb.νa.e (
a
(
b

e)
b
)
a
= (

b
(
a

e)
a
)
b

(6)

a#e⇒ νa.e = e a#e⇒ (
a

e)
a
= e (7)

a#e⇒ νb.e = νa.(a b)e a#e⇒ (
b

e)
b
= (

a
(a b)e)

a
(8)

a#e⇒ (νa.d)e = νa.de a#e⇒ (
a

d)
a

e = (
a

de)
a

(9)

a#e⇒ e(νa.d) = νa.ed a#e⇒ e (
a

d)
a
= (

a
ed)

a
. (10)

We remark that writing scope boundaries of ν-expressions as letters (
a

and)
a

is

merely a notational convenience. Although it appears to allow us to violate the
invariant that starred expressions and ν-expressions are mutually well-nested,
in reality it does not, as all our transformations are justified by the axioms,
which maintain this invariant.

4.1 Exposing Bound Variables

A ν∗-string is a string of

(i) letters a,

(ii) well-nested scope delimiters (
a

and)
a
, and

(iii) starred expressions e∗whose bodies e are (inductively) sums of ν∗-strings.

We say that the bound variables of a ν∗-string are exposed if

(i) the first and last occurrence of each bound variable occur at the top level
in the scope of their binding operator,1 and

(ii) the bound variables of all ν∗-strings in the bodies of starred subexpres-
sions are (inductively) exposed.

1“Top level” means not inside a starred subexpression. Inside a starred expression e∗, “top
level” means not inside a starred subexpression of e.

15

A typical ν∗-string is

(
a
(
b

abb(ab (
a

ab)
a
+b (

b
ba)

b
)∗ba)

b
)
a

.

The bound variables are exposed in this expression because the first and last
occurrences of a and b occur at the top level. Inside the starred subexpression,
the bound variables in the two ν∗-strings are exposed because there are no
starred subexpressions.

Lemma 4.2 Every expression can be written as a sum of ν∗-strings whose bound vari-
ables are exposed.

Proof. It is straightforward to see how to use the nominal axiom (5) in the
left-to-right direction and the distributivity and 0 and 1 laws of Kleene algebra
to write every expression as a sum of ν∗-strings.

Exposing the bound variables is a little more difficult. It may appear at
first glance that one can simply unwind e∗ as 1 + e + ee∗e and then unwind the
starred subexpressions of e inductively, but this is not enough. For example,

(a + b)∗ = 1 + a + b + (a + b)(a + b)∗(a + b)
= 1 + a + b + a(a + b)∗a + a(a + b)∗b + b(a + b)∗a + b(a + b)∗b,

and the subexpression a(a + b)∗a does not satisfy (i). The following more com-
plicated expression is needed:

(a + b)∗ = 1 + a + b + aa∗a + bb∗b + ab + ba (11)
+ a∗ab + aa∗ba∗a + baa∗a + bb∗ba + bb∗ab∗b + abb∗b (12)
+ aa∗abb∗b + aa∗b(a + b)∗ab∗b + aa∗b(a + b)∗ba∗a (13)
+ bb∗a(a + b)∗ab∗b + bb∗a(a + b)∗ba∗a + bb∗baa∗a (14)

Line (11) covers strings containing no a’s or no b’s or one of each. Line (12)
covers strings containing one a and two or more or more b’s or one b and two
or more or more a’s. Lines (13) and (14) cover strings containing at least two
a’s and at least two b’s.

For the general construction, we first argue the case of (a1 + · · · + an)∗.
Write down all strings containing either zero, one, or two occurrences of each
letter. For each such string, insert a starred subexpression in each gap between
adjacent letters. The body of the starred expression inserted into a gap will be
the sum of all letters a such that the gap falls between two occurrences of a.

For example, the second term of (13) is obtained from the string abab. There
are three gaps, into which we insert the indicated starred expressions:

a b a b
↑ ↑ ↑
a∗ (a + b)∗ b∗

16

In the first gap we inserted a∗ because the gap falls between two occurrences of
a but not between two occurrences of b. In the second gap we inserted (a + b)∗

because the gap falls between two occurrences of a and two occurrences of b.
This construction covers all strings whose first and last occurrences of each

letter occur in the order specified by the original string before the insertion. If
a letter occurs twice before the insertion, then after the insertion those two oc-
currences are the first and last, and they occur at the top level. If a letter occurs
once before the insertion, then that is the only occurrence after the insertion,
and it is at the top level. If a letter does not occur at all before the insertion,
then it does not occur after.

For the general case e∗, we first perform the construction inductively on
all starred subexpressions of e, writing e∗ = (e1 + · · ·+ en)∗ where each top-
level ν∗-string ei satisfies (i) and (ii). Now take the sum constructed above for
(a1 + · · ·+ an)∗ and substitute ei for ai in all terms. This gives an expression of
the desired form. 2

4.2 Scope Configuration

For this part of the construction, we first α-convert using (8) to make all bound
variables distinct and different from any free variable. This is called the Baren-
dregt variable convention.

Now we transform each ν∗-string to ensure that every top-level left delim-
iter (

a
occurs immediately to the left of a free occurrence of the variable a that it

binds:

· · · (
a

a · · · (
b

b · · · (
c

c · · ·)
c
· · ·)

b
· · ·)

a
· · · (15)

That occurrence is at the top level due to the preprocessing step of §4.1. We do
this without changing the order of any occurrences of variables in the string,
but we may change the order of quantification.

Starting at the left end of the string, scan right, looking for top-level left
delimiters. For all top-level left delimiters that we see, push them to the right
as long as we do not encounter a variable bound by any of them. Stop when
such a variable is encountered. For example,

· · · (
a
· · · (

b
· · · (

c
· · · b · · ·)

c
· · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
(
c

b · · ·)
c
· · ·)

b
· · ·)

a
· · ·

Here we are using the nominal axiom (10) in the right-to-left direction to skip
over letters and starred expressions. If such a variable is encountered, it will
be at the top level because of the preprocessing step of §4.1.

In this example, we must keep the (
b

to the left of that occurrence of b, but

we wish to move the (
a

and (
c

past the b. The c can be moved in using (10), but to

move the a in, we must exchange the order of quantification of a and b. To do
this, we push the corresponding right delimiter of b up to the right delimiter of

17

a using the nominal axiom (9) in the left-to-right direction.

· · · (
a
(
b
(
c

b · · ·)
c
· · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
(
c

b · · ·)
c
· · ·)

b
)
a
· · ·

This is always possible, as there is no free occurrence of b to the right of the)
b

due to the Barendregt variable convention. Now we can exchange the order of
quantification using the nominal axiom (6).

· · · (
a
(
b
(
c

b · · ·)
c
· · ·)

b
)
a
· · · ⇒ · · · (

b
(
a
(
c

b · · ·)
c
· · ·)

a
)
b
· · ·

This allows us to move the a and c in past the (
b

and continue.

· · · (
b
(
a
(
c

b · · ·)
c
· · ·)

a
)
b
· · · ⇒ · · · (

b
b (

a
(
c
· · ·)

c
· · ·)

a
)
b
· · ·

When looking for the first occurrence of a free variable bound to a left de-
limiter, perhaps no free occurrence is encountered before seeing a right delim-
iter. In this case there is no free occurrence of the variable in the scope of the
binding, so we can just forget the binding altogether.

· · · (
a
· · · (

b
· · · (

c
· · ·)

c
· · · b · · ·)

b
· · ·)

a
· · · ⇒ · · · (

a
(
b
(
c
)
c
· · · b · · ·)

b
· · ·)

a
· · ·

⇒ · · · (
a
(
b
· · · b · · ·)

b
· · ·)

a
· · ·

This uses the nominal axiom (7).
If there exists a free occurrence of a inside a scope (

a
· · ·)

a
, then the leftmost

one occurs at the top level due to the construction of §4.1. Thus, when we are
done, any remaining left delimiters (

a
in the string occur immediately to the left

of a free occurrence of a that is bound to that delimiter, as illustrated in (15).
Now we finish up the construction by moving the right delimiters to the left

as far as possible without exchanging order of quantification. Because of the
preprocessing step of §4.1, the rightmost occurrence of any variable quantified
at the top level occurs at the top level. Thus every right delimiter)

a
occurs

either immediately to the right of an occurrence of a bound to that delimiter or
immediately to the right of another right delimiter)

b
with smaller scope.

At this point we have transformed the expression so that every ν∗-string
satisfies the following properties:

(i) every ν-subformula is of the form νa.ae; that is, the leftmost symbol of
every scope is a variable bound by that scope; and

(ii) the rightmost boundary of every scope is as far to the left as possible,
subject to (i).

18

The position of the scope delimiters is canonical, because scopes are as small
as possible: the left delimiters are as far to the right as they can possibly be,
and the right delimiters are as far to the left as they can possibly be given the
positions of the left delimiters. It follows that if two expressions are equivalent,
then they generate the same ν-strings up to renaming of bound variables.

4.3 Canonical Choice of Bound Variables

Now we would like to transform the expression so that the bound variables
are chosen in a canonical way. This will ensure that if two expressions are
equivalent, then they generate the same ν-strings, not just up to renaming of
bound variables, but absolutely. This part of the construction will thus relax
the Barendregt variable convention, so that variables can be bound more than
once and can occur both bound and free in a string.

Choose a set of variables disjoint from the free variables of the expression
and order them in some arbitrary but fixed order a0, a1, Moving through
the expression from left to right, maintain a stack of variable names corre-
sponding to the scopes we are currently in. When a left scope delimiter (

a
is encountered, and we are inside the scope of n ν-formulas, the variables
a0, . . . , an−1 will be on the stack. We rename the bound variable a to an us-
ing the nominal axiom (8) for α-conversion and push an onto the stack. When
a right scope delimiter is encountered, we pop the stack. This construction
guarantees that every ν-string generated by the expression satisfies:

• For every symbol in the string, if the symbol occurs in the scope of n
nested ν-expressions, then those expressions bind variables a0, . . . , an−1
in that order from outermost to innermost scope.

It follows that two semantically equivalent expressions so transformed gener-
ate exactly the same set of ν-strings.

4.4 Determining Semilattice Identities

After transforming e1 and e2 by the above construction, we know that if e1
and e2 are equivalent, then they generate the same sets of ν-strings; that is,
I(e1) = I(e2). Now we wish to show that any two such expressions can be
proved equivalent using the KA and nominal axioms in conjunction with the
following congruence rule for ν-formulas:

e1 = e2

νa.e1 = νa.e2
. (16)

In order to do this, there is one more issue that must be resolved. Let us
first assume for simplicity that e1 and e2 are of ν-depth one; that is, they only
contain bindings of one variable a. There may be several subexpressions in e1
and e2 of the form νa.d, but all with the same variable a. We will relax this
restriction later.

19

Any substring of the form νa.x of a ν-string generated by e1 or e2 must be
generated by a subexpression of the form νa.d. However, there may be several
different subexpressions of this form, and the string νa.x could be generated
by more than one of them. In general, the sets of ν-strings generated by the
ν-subexpressions could satisfy various semilattice identities, and we may have
to know these identities in order to prove equivalence.

For example, consider the two expressions c1 + c2 and d1 + d2 + d3, where

c1 = νa.a(aa)∗ d1 = νa.a(aaa)∗

c2 = νa.aa(aa)∗ d2 = νa.aa(aaa)∗ (17)
d3 = νa.aaa(aaa)∗

(ci generates strings with i mod 2 a’s and di generates strings with i mod 3 a’s).
Both c1 + c2 and d1 + d2 + d3 generate all nonempty strings of a’s, but in differ-
ent ways. If c1 + c2 occurs in e1 and d1 + d2 + d3 occurs in e2, we would have
to know that they are equivalent to prove the equivalence of e1 and e2.

To determine all semilattice identities such as c1 + c2 = d1 + d2 + d3 that
hold among the ν-subexpressions, we express every ν-subexpression in e1 or e2
as a sum of atoms of the Boolean algebra on sets of ν-strings generated by these
ν-subexpressions. In the example above, the atoms of the generated Boolean
algebra are

bi = νa.ai(a6)∗, 1 ≤ i ≤ 6 (18)

(bi generates strings with i mod 6 a’s). Rewriting the expressions (17) as sums
of atoms, we would obtain

c1 = b1 + b3 + b5 d1 = b1 + b4

c2 = b2 + b4 + b6 d2 = b2 + b5

d3 = b3 + b6.

The equivalences are provable in pure KA plus the nominal axiom (5). Then
c1 + c2 and d1 + d2 + d3 become

c1 + c2 = (b1 + b3 + b5) + (b2 + b4 + b6)

d1 + d2 + d3 = (b1 + b4) + (b2 + b5) + (b3 + b6),

which are clearly equivalent.
Now we observe that any ν-string νa.x generated by e1 or e2 is generated

by exactly one atom. Moreover, if νa. f is an atom and νa.x ∈ I(νa. f), and if
νa.x is generated by νa. f in the context u(νa.x)v ∈ I(νa.e1), then for any other
νa.y ∈ I(νa. f), we have u(νa.y)v ∈ I(νa.e1) as well. This says that we may
treat νa. f as atomic. In fact, once we have determined the atoms, if we like
we may replace each atom νa. f by a single letter aνa. f in e1 and e2, and the
resulting expressions are equivalent, therefore provable. Then a proof of the
two expressions with the letters aνa. f can be transformed back to a proof with

20

the atoms νa. f by simply substituting νa. f for aνa. f . However, note that it is
not necessary to do the actual substitution; we can carry out the same proof on
the original expressions with the νa. f .

For expressions of ν-depth greater than one, we simply perform the above
construction inductively, innermost scopes first. We use the KA axioms and the
semilattice identities on depth-n ν-subexpressions to determine the semilattice
identities on depth-(n − 1) ν-subexpressions, then use the nominal axiom (5)
and the rule (16) to prepare these semilattice identities for use on the next level.

This completes the proof.

4.5 More Detail

For an expression e, define |e|ν to be the ν-height of e. More formally,

|x|ν = 0 |0|ν = 0 |e1 + e2|ν = max{|e1|ν, |e2|ν} |e∗|ν = |e|ν
|1|ν = 0 |e1 · e2|ν = max{|e1|ν, |e2|ν} |νx.e|ν = 1 + |e|ν

If |e|ν = 0, then no ν appears in e; in other words, e is ν-free.

Proposition 4.3 Let e1, e2 be arbitrary expressions. Then, I(e1) = I(e2) implies that
NKA ` e1 = e2.

Proof. The proof proceeds by induction on max{|e1|ν, |e2|ν}. If this quantity
is 0, then both e1 and e2 are ν-free regular expressions. In this case, the interpre-
tations of I(e1) and I(e2) are the standard language interpretations, so by com-
pleteness of Kleene algebra, we have KA ` e1 = e2, therefore NKA ` e1 = e2.

If max{|e1|ν, |e2|ν} > 0, let k = max{|e1|ν, |e2|ν} − 1. According to the
naming scheme of §4.3 for bound variables, there are subexpressions of e1, e2
at depth k + 1 of the form νxk. f , where f is a ν-free. Let νxk. f1, . . . , νxk. fm be
an enumeration of all such subexpressions. Let G1, . . . , GN ⊆ Σ∗ be the atoms
of the Boolean algebra of subsets of Σ∗ generated by the sets I(f1), . . . , I(fm).
Since regular languages are closed under the set-theoretic Boolean operations,
the sets G1, . . . , GN are regular, thus there exist regular expressions g1, . . . , gN
such that I(gj) = Gj, 1 ≤ j ≤ N. Every set I(fi) can be written as the union of
a set of atoms {Gj | j ∈ Ji}, where the index set Ji ⊆ {1, . . . , N}. By complete-
ness of KA, we have KA ` fi = ∑j∈Ji

gj. By the axioms of nominal KA, we then
have that NKA ` νxk. fi = ∑j∈J νxk.gj.

The construction of the previous paragraph allows us to rewrite the expres-
sions e1 and e2 so that every subexpression starting with νxk is of the form
νxk.gj for some 1 ≤ j ≤ N.

Claim 4.4 Let h be an arbitrary expression and let y1, . . . , yN be distinct letters
in Σ that do not appear in h. Let h′ = h[νxk.gj 7→ yj]j be the expression that
results by replacing every subterm νxk.gj in h with yj for 1 ≤ j ≤ N. Then

(i) h = h′[yj 7→ νxk.gj]j, and

21

(ii) I(h′) = I(h)[I(νxk.gj) 7→ yj]j.

Note that the substitution operation [yj 7→ νxk.gj]j allows capture.

Now take any collection y1, . . . , yN of distinct letters in Σ that do not appear
in e1 or e2 and define e′1 = e1[νxk.gj 7→ yj] and e′2 = e2[νxk.gj 7→ yj]. From the
hypothesis I(e1) = I(e2) and Claim 4.4(ii), we obtain that I(e′1) = I(e′2). Since
the ν-height of both e′1 and e′2 is strictly less than k + 1, we can invoke the
induction hypothesis to obtain that NKA ` e′1 = e′2. Using the substitution rule,
we obtain

NKA ` e′1[yj 7→ νxk.gj]j = e′2[yj 7→ νxk.gj]j,

hence NKA ` e1 = e2 by virtue of Claim 4.4(i). 2

5 Conclusion

We have presented results on completeness and incompleteness of nominal
Kleene algebra as introduced by Gabbay and Ciancia [5]. There are various
directions for future work.

We have not defined an automata-theoretic counterpart of nominal Kleene
algebra. Having an adequate automaton model that recognizes the language
denoted by an expression may open the door to a more efficient coalgebraic
decision procedure, which would be of particular interest for the applications
mentioned in the introduction. We note that the normalization procedure pre-
sented in this paper is highly impractical, as the preprocessing step of §4.1
involves an exponential blowup. However, coalgebraic decision procedures
have been devised for KAT and NetKAT and have proven quite successful in
applications, and we suspect that a similar approach may bear fruit here.

Another interesting direction would be to follow recent work by Joanna
Ochremiak [7] involving nominal sets over atoms equipped with both rela-
tional and algebraic structure. This is an extension of the original work of Gab-
bay and Pitts, in which atoms can only be compared for equality.

The proof we have provided is very concrete and does not explore the rich
categorical structure of nominal sets. It would be interesting to understand
whether the proof can be phrased in more abstract terms, which would also be
more amenable to generalizations such as those mentioned above.

Acknowledgments

We are grateful to Jamie Gabbay for bringing the original NKA paper to our at-
tention. We would also like to thank Filippo Bonchi, Daniela Petrisan, Damien
Pous, Paul Brunet, and Fabio Zanasi for various comments and suggestions.

22

References

[1] Mikolaj Bojanczyk, Bartek Klin, and Slawomir Lasota. Automata theory in
nominal sets. Logical Methods in Computer Science, 10(3), 2014.

[2] Maribel Fernández and Murdoch J. Gabbay. Nominal rewriting with name
generation: abstraction vs. locality. In Proceedings of the 7th ACM SIGPLAN
International Symposium on Principles and Practice of Declarative Programming
(PPDP 2005). ACM Press, July 2005.

[3] Murdoch Gabbay and Andrew M. Pitts. A new approach to abstract syntax
involving binders. In 14th Annual IEEE Symposium on Logic in Computer
Science, Trento, Italy, July 2-5, 1999, pages 214–224, 1999.

[4] Murdoch J. Gabbay. A study of substitution, using nominal techniques and
Fraenkel-Mostowski sets. Theoretical Computer Science, 410(12-13), March
2009.

[5] Murdoch J. Gabbay and Vincenzo Ciancia. Freshness and name-restriction
in sets of traces with names. In Foundations of software science and computa-
tion structures, 14th International Conference (FOSSACS 2011), volume 6604
of Lecture Notes in Computer Science, pages 365–380. Springer, 2011.

[6] Murdoch J. Gabbay and Aad Mathijssen. Nominal universal algebra: equa-
tional logic with names and binding. Journal of Logic and Computation,
19(6):1455–1508, December 2009.

[7] Joanna Ochremiak. Nominal sets over algebraic atoms. In Peter Höfner,
Peter Jipsen, Wolfram Kahl, and Martin Eric Müller, editors, Relational and
Algebraic Methods in Computer Science - 14th International Conference, RAM-
iCS 2014, Marienstatt, Germany, April 28-May 1, 2014. Proceedings, volume
8428 of Lecture Notes in Computer Science, pages 429–445. Springer, 2014.

23

	Introduction
	Background
	Kleene Algebra (KA)
	Group Action
	Nominal Sets
	Syntax of Nominal KA

	Models
	Nominal KA
	Nominal Language Model
	Alternative Nominal Language Model
	Summation Model over the Free KA
	Language Summation Model
	Summation Model over an Arbitrary KA K

	Completeness
	Exposing Bound Variables
	Scope Configuration
	Canonical Choice of Bound Variables
	Determining Semilattice Identities
	More Detail

	Conclusion

