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Abstract. Standard conditionals ϕ > ψ , by which I roughly mean variably strict conditionals à
la Stalnaker and Lewis, are trivially true for impossible antecedents. This article investigates three
modifications in a doxastic setting. For the neutral conditional, all impossible-antecedent condi-
tionals are false, for the doxastic conditional they are only true if the consequent is absolutely
necessary, and for the metaphysical conditional only if the consequent is ‘model-implied’ by the
antecedent. I motivate these conditionals logically, and also doxastically by properties of condi-
tional belief and belief revision. For this I show that the Lewisian hierarchy of conditional logics
can be reproduced within ranking semantics, provided we slightly stretch the notion of a ranking
function. Given this, acceptance of a conditional can be interpreted as a conditional belief. The
epistemic and the neutral conditional deviate from Lewis’ weakest system V, in that ID (ϕ >
ϕ) or even CN (ϕ > �) are dropped, and new axioms appear. The logic of the metaphysical
conditional is completely axiomatised by V to which we add the known Kripke axioms T5 for the
outer modality. Related completeness results for variations of the ranking semantics are obtained as
corollaries.

§1. Introduction. In standard conditional logics of the Lewis/ Stalnaker type, a con-
ditional ϕ > ψ is trivially true if ϕ is inaccessible1 or (equivalently) impossible with
respect to the outer modality of >, defined as � θ ≡ ¬θ > ⊥. Thereby impossible-
antecedent conditionals2 (i.e., ϕ > ψ such that ϕ > ⊥) create conditional confusion—
every consequent is as fine as any other.

In the ontic setting, vacuism (cf. Berto, French, Priest, & Ripley (2018)) is the thesis
that counter-possibles are trivially or vacuously true, as defended by Williamson (2007,
2018). Nonvacuism is the thesis that some counter-possibles are true and some are false
(Berto et al., 2018). A usual approach to nonvacuism is to use impossible worlds (cf.
Mares & Fuhrmann (1995), Nolan (1997), Brogaard & Salerno (2013), Bjerring (2014)).
This article investigates nonvacuism in a doxastic setting, where impossibility is doxastic
impossibility. As opposed to usual ontic nonvacuist positions, the present analysis does not
make use of logically impossible worlds, but uses doxastically impossible worlds instead.
Yet, doxastically impossible worlds behave truth-functionally as possible worlds, they are
just judged crazy by the doxastic agent.

The article focuses on three modifications of standard conditionals. Impossible-ante-
cedent conditionals, instead of being always true (standard conditional), could be always
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false (neutral conditional),3 or true or false depending on whether the consequent is
absolutely necessary (doxastic conditional), or depending on whether the consequent nec-
essarily follows from the antecedent (metaphysical conditional) with respect to a uni-
versal necessity. I motivate these modifications by a conditional-belief interpretation of
>. Whereas the standard conditional results in believing everything given an impossible
proposition, the neutral conditional results in believing nothing, the doxastic conditional in
believing only what is absolutely necessary and the metaphysical conditional in believing
only what follows universally from the antecedent.

The conditional-belief interpretation of> is obtained by defining>with respect to ranking
conditionalisation, the most promising version of conditional belief4 (Spohn, 1988, 2012).
The implementation of this in a possible world semantics is what I call ranking semantics,
an idea introduced by Friedman & Halpern (2001) within their plausibility semantics (cf.
Halpern (2003)). It has been philosophically discussed and motivated by Huber (2014, 2015,
2017). Spohn (2015) develops his own version and Lauer (2017) uses it to analyse graded
belief as a graded modality. Friedman & Halpern (2001) prove the completeness of VP
(i.e., Lewis’ V augmented by the axiom P: ¬(� > ⊥)) for the ranking semantics. Raidl
(2018) proves completeness results for the outer modalities (�n θ ≡ ¬θ >n ⊥) and inner
modalities (�n θ ≡ � >n θ ) arising from graded or strength-indexed conditionals ϕ >n ψ
corresponding to strength-indexed ranking-theoretic conditional belief.

To show that standard Lewisian conditionals can generally be interpreted in terms of
conditional belief, I extend Friedman and Halpern’s result and prove that Lewis’ hierarchy
of conditional logics can be reproduced by slightly stretching the notion of a ranking func-
tion. The new truth clauses for impossible-antecedent conditionals can then be related to
modified ranking conditionalisation, suggested by Huber (2007a,b, 2014), which I motivate
by properties of the induced belief revision, in the spirit of Alchourrón, Gärdenfors, &
Makinson (1985) and Darwiche & Pearl (1997). Completeness results are proven for the
new conditionals. Thereby the article relates ranking semantics to Lewis’ logics of ontic
conditionals and also attempts a formal unification of the different existing versions of
ranking semantics.

The plan of the article is as follows: §2 argues for restricting the cases where impossible-
antecedent conditionals come out trivially true. §3 proves the reproducibility of the Lewisian
hierarchy within the generalised ranking semantics and establishes the connection be-
tween conditionals and ranking-theoretic conditional belief. §4 motivates the modified
truth clauses for impossible-antecedent conditionals by properties of conditional belief and
belief revision. §5 discusses the completeness results for the new conditionals, including
also an alternative definition from Huber (2017, footnote 4). §6 makes some concluding
remarks. Appendix §7 contains the completeness proofs and additional material.

§2. Impossible-antecedent conditionals. Standard semantics for variably strict con-
ditionals have a truth condition of the following disjunctive form:5

• ϕ > ψ is true in world w iff ψ is true in all closest ϕ-worlds or ϕ is inaccessible
(i.e., no ϕ-world is accessible from w).

3 Discussed by Kment (2014).
4 Provided one wants belief to be closed under conjunction and invariant under fine-grainings of the

language, a combination which probabilistic belief cannot meet. However, the framework could
be transposed to other plausibility measures.

5 The exact form of the disjuncts depends on the semantics.
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COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 863

By the trivial-truth condition (second disjunct) all conditionals ϕ > ψ are trivially true
for inaccessible antecedents ϕ; in particular, ϕ > ⊥ holds. Conversely, ϕ > ⊥ implies
ϕ > ψ for any ψ , by the rule of right-monotonicity (RCM). Thus ϕ > ψ is trivially true
for impossible antecedents ϕ.

One might hold that the trivial truth of impossible-antecedent conditionals is an expected
feature in certain contexts. For example, to mock someone, or more generally, to underline
the implausibility of the antecedent, often by a consequent judged even more implausible,
or conversely to highlight the necessity (or regularity) of a consequent by stating that not
even an absurd antecedent can trump it:

(1) If you pass the exam, I am the Queen of England. (mocking)

(2) If I win the lottery, then 2 + 2 = 5. (a-improbability)

(3) If aliens invade the earth tomorrow, I will [still] walk to university. (c-regularity)

Or in particular situations:

(4) If [were] 2 + 2 = 5, [then would be] 2 + 2 + 1 = 6.6 (partial truth)

In (4) the speaker could indicate that a student, although having arrived at a false result,
did something right, namely she correctly computed that 5 + 1 = 6. The wrong result
2 + 2 + 1 = 6 would be right, if 2 + 2 were 5 (provided 5 + 1 were still 6).

However, one can also reject impossible-antecedent conditionals. First, analysing the
effects in (1)–(4) in terms of an impossible antecedent is not mandatory—it suffices that
the antecedent is judged highly implausible. Second, if the above contextual intention is
absent (mocking, underlining improbability or regularity or partial truth), one would rather
reject impossible-antecedent conditionals. In (1), a speaker without intentions of mocking
would manifest crazy beliefs concerning the relation between herself being the Queen of
England and her friend passing the exam. Similarly in (2). Removing ‘still’ in (3), the
speaker expresses an irrational decision attitude, since it would be much better to hide.
Taken seriously, the speaker in (4) just says ⊥ > ⊥, which is trivially valid, if we accept
the axiom ID (ϕ > ϕ), but which we may want to reject if we want to avoid ⊥ > ψ for
any ψ in presence of RCM.

Third, whether we should accept certain variations of the above seems less clear:

(5) � If you pass the exam, you don’t pass the exam.

(6) � If I win the lottery, you will pass the exam.

(7) � If the sun explodes tomorrow, we will have an exam tomorrow.

(8) � If [were] 2 + 2 = 5, [then would be] 2 + 2 = 4.

(9) � If [were] 2 + 2 = 5, [then would be] 5 − 2 = 1.

Yet, if acceptance of (1)–(4) were due to the trivial-truth condition, then

• the speaker in (1) must accept (5), which has no mocking effect;
• the speaker in (2) must also accept (6), which does not underline any antecedent-

improbability;
• the speaker in (3) must also accept (7), which does not underline any consequent-

regularity;

6 One needs to treat arithmetic statements as nonanalysable propositional variables or introduce
contradictory worlds.
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864 ERIC RAIDL

• and the speaker in (4) must also accept (8) and (9), which do not recover any partial
truth.

For these reasons, restricting trivial truth of impossible-antecedent conditionals seems not
as unreasonable as standard conditional logics suggest. Later on, I will justify this, based on
the connection between the conditional and conditional belief. To establish that connection,
I now turn to ranking semantics for conditionals.

§3. Ranking semantics. This section introduces the implementation of ranking the-
ory in ranking semantics and proves the reproducibility of Lewis’ hierarchy of conditional
logics.

The idea of ranking theory is informally as follows: Propositions are subsets of a
nonempty set of worlds W . Each world w ∈ W gets assigned a rank k(w) which is either
a natural number or infinity, such that at least one world has rank 0. Positive numbers
represent disbelief of increasing strength, 0 represents absence of disbelief (which is not
equivalent to full belief!) and ∞ represents maximal disbelief. The rank κ(A) of a propo-
sition A ⊆ W is the minimal rank among A-worlds. Believing A means to disbelieve the
negation (complement of A). Thus the set of 0-worlds is the strongest believed proposition.
Conditionalising on a (finite) proposition A throws non-A-worlds to infinity and uniformly
displaces A-worlds such that the minimum sits at zero again. Conditional belief given A is
belief after conditionalising by A.

In what follows, W is a nonempty set of worlds, ℘(W ) is the powerset algebra over W
and N∞ = N ∪ {∞} are the extended natural numbers.7

DEFINITION 3.1. A ranking mass over W is a function k : W −→ N∞ with k−1[0] �= ∅.

DEFINITION 3.2. κ is a complete negative ranking function (n.r.f.) over ℘(W ) iff it is a
function κ : ℘(W )−→N∞ that satisfies: (1) κ(W ) = 0, (2) κ(∅) = ∞ and (3) for all
S ⊆ ℘(W ): κ(

⋃S) = minA∈S κ(A) (complete minimativity).

Ranking masses and ranking functions are interdefinable.8 Thus, writing κ(w) instead of
κ({w}) will do no harm. A negative ranking function κ is regular iff κ(A) = ∞ only for
A = ∅. κ represents a grading of disbelief.

DEFINITION 3.3. Let κ be a n.r.f. over ℘(W ). For A ∈ ℘(W ) such that κ(A) < ∞, the
conditionalisation κA of κ by A is defined as follows: for all B ∈ ℘(W ),

κA(B) := κ(B ∩ A)− κ(A) (1)

with ∞ − n := ∞ for n ∈ N.

DEFINITION 3.4. The belief set corresponding to κ is Bel(κ) := {A ∈ ℘(W ) : κ(A) > 0}.
If κ(A) < ∞, the conditional belief set given A, is Bel(κ A), otherwise conditional belief
is undefined in Spohn’s account.

Bel(κ) is a proper principal filter, generated by the belief core [0]κ := {w ∈ W : κ({w}) =
0} as Bel(κ) = {A ∈ ℘(W ) : [0]κ ⊆ A}. Analogously for Bel(κ A), provided κ(A) < ∞.
If defined, conditional belief in B given A, i.e., B ∈ Bel(κ A), can be interpreted as the
acceptance of a Stalnaker-type conditional, yielding A > B iff the closest A-worlds are

7 Cf. Spohn (2012, chap. 5) for the definitions.
8 Setting κk(A) := minw∈A k(w) if A �= ∅, and κk(∅) := ∞. Conversely: kκ (w) = κ({w}).

bib-hiwi-kops-01
Notiz
None festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
MigrationNone festgelegt von bib-hiwi-kops-01

bib-hiwi-kops-01
Notiz
Unmarked festgelegt von bib-hiwi-kops-01



COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 865

B-worlds, or as a Lewis-type conditional, yielding A > B iff there is an (A ∩ B)-world w
such that no (A ∩ B)-world is at least as close as w.

Let me transform the latter allusion to conditional logic into concrete definitions. The
conditional language is L> = L∪{>}, where L = Var ∪{¬,∧,∨,→} ∪ {), (} and Var is
a set of propositional variables. The set of sentences S(L>) is defined inductively as usual.

DEFINITION 3.5. R = 〈 W, (κw)w∈W , V 〉 is a ranked model for L> iff (1) W �= ∅, (2)
each κw is a complete ranking function over ℘(W ), (3) V : Var −→℘(W ) is a valuation.

R is (κmp)9 iff (κwA(B) > 0 or κw(A) = ∞) implies w ∈ A ∪ B; weakly centered
(κcw) iff κw(w) = 0; strongly centered (κcs) iff w is the only zero-world of κw; reflexive
(κt) iff κw(w) < ∞; symmetric (κiv) iff κw(v) < ∞ implies κv(w) < ∞; euclidean (κv)
iff κw(v), κw(u) < ∞ implies κv(u) < ∞; pointed (κcem) iff every finite value of κw is
taken by at most one world; point-centered iff centered and pointed; it is regular (κreg)
iff all κw are regular; uniform (κu) iff κw(v) < ∞ implies κv = κw; and global (κg) iff
κw = κv for all w, v; it is carnapian iff W are exactly all truth-functions w : Var −→{0, 1}
and w ∈ V (p) iff w(p) = 1.

R is a generalised ranked model10 iff instead of (2), we have (2′) each κw is a complete
generalised ranking function over ℘(W ), i.e., kw : W −→N∞ is just a function,11 and
κw(A) = κwk , κwA remain defined as above.12

Centering implies weak centering, regular implies reflexive and euclidean, global implies
uniform, which implies symmetric and euclidean. Truth for propositional variables and the
standard connectives are defined as usual, and the standard conditional is defined by

(1) w �R ϕ > ψ iff κw([ϕ]) = ∞ or κw[ϕ]([¬ψ]) > 0. (standard conditional)

The sets [ψ] := [ψ]R = {v ∈ W : v �R ψ} are co-inductively defined. I abbreviate
κw(ϕ) = κw([ϕ]) and κwϕ = κw[ϕ]. For R a class of ranked models, ϕ ∈ S(L>) is valid in
R, written R� ϕ, iff for every world w of every model R ∈ R, w �R ϕ.

Huber (2014) considers regular ranked models, Spohn (2015) global-carnapian ranked
models, and both restrict the language to the fragment with non-nested conditionals.
Friedman & Halpern (2001, Theorem 8.6(c)) prove that VP—i.e., Lewis’ V, augmented by
the axiom P,13 that is ¬(� > ⊥)—is complete for ranked models. However, they did not
develop the correspondence theory for the hierarchy of conditional logics. Spohn (2015)
claimed V to be complete for his semantics, and Huber (2014) for the regular ranking
semantics, where in each case at least P is missing. This motivates the completeness proofs
in this section.14

We consider the following axiomatisation of Lewis’ weakest logic V: V is the smallest
subset of S(L>) which is

9 (κx) is the ranking semantics version of the property (x) of a selection model (see §7.2) which
corresponds to conditional axiom (X), with the exception of (reg) which has no corresponding
axiom and (cw) which is equivalent to (mp) and has corresponding axiom (MP). (t), (iv), (v) are
the properties corresponding to the known Kripke Axioms (T), (4), (5) for the outer modality. For
the properties (t), (iv), (v) extended to graded inner modalities and the correspondence theory of
these, see Raidl (2018, Definition 3, Corollary 2).

10 Only used in Theorem 3.6.
11 Where possibly κ−1[0] = ∅!
12 Thus (1) of Definition 3.3 might fail for κw , but κwA remains a n.r.f. if κw(A) < ∞!
13 C6 in Friedman & Halpern (2001), or Lewis’ (1973) normality N.
14 For a comparison, see §7.1.
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• closed under modus ponens for → (MoPo) and the rules

ϕ↔ ϕ′
(RCEA, LLE, RC1)15

(ϕ > χ)↔(ϕ′ > χ)

ϕ → ϕ′
(RCM, RW, RC2)

(χ > ϕ) → (χ > ϕ′)

• and contains all substitution instances of propositional tautologies (PT)
and all instances of

ϕ > ϕ (ID, Refl, C1)
((ϕ > ψ) ∧ (ϕ > χ)) → (ϕ > (ψ ∧ χ)) (CC, AND, C2)
((ϕ > χ) ∧ (ψ > χ)) → ((ψ ∨ ϕ) > χ) (CA, Or, C3)
((ϕ > χ) ∧ (ϕ > ψ)) → ((ϕ ∧ ψ) > χ) (CMon, CM, C4)16

((ϕ > χ) ∧ ¬(ϕ > ¬ψ)) → ((ϕ ∧ ψ) > χ) (CV, RM, C5)

THEOREM 3.6. V is sound and complete for generalised ranked models. VP = V + P is
sound and complete for ranked models.

Proof. See p. 880. �
V is equivalent to the axiom system C0 used by Lewis (1971).17 The inner modality
(� ϕ ≡ � > ϕ) represents actual belief and the outer modality (� ϕ ≡ ¬ϕ > ⊥)18

represents a background assumption which I will call doxastic necessity. We have � ϕ →
� ϕ. P is the probabilistic consistency axiom, imposing ¬�⊥, which implies ¬�⊥, and
since both necessities act like a Kripke necessity, we obtain the better-known axiom D
(� ϕ → ♦ ϕ) for both modalities.19 From now on, when not mentioned otherwise, we
restrict considerations to ranked models and drop the generalised ranked models.

Extending this result, we obtain

THEOREM 3.7. For ranked models with property (κ x), VP augmented by X is sound and
complete.20

Property (κ x) Scheme VP + X Equivalent

reflexive (κt) (ϕ > ⊥) → ¬ϕ T V+T≡ VT
symmetric (κiv) (ϕ > ⊥) → (¬(ϕ > ⊥) > ⊥) 4
euclidean (κv) ¬(ϕ > ⊥) → ((ϕ > ⊥) > ⊥) 5
weakly centered (κcw or mp) (ϕ > ψ) → (ϕ → ψ) MP V+MP≡ VW
strongly centered (κcs) MP + (ϕ ∧ ψ) → (ϕ > ψ) MP+CS VT+CS≡ VC
pointed (κcem) (ϕ > ψ) ∨ (ϕ > ¬ψ) CEM
point-centered (κcem, cw) MP+CEM VT+CEM≡ C2
uniform (κu) (ϕ > ψ) → (¬(ϕ > ψ) > ⊥) U

15 In (X, Y, Z), X refers to Chellas’ notation used here, Y to the KLM-tradition and Z to Friedman
and Halpern’s notation.

16 (CSO) ((ϕ > ψ) ∧ (ψ > ϕ)) → ((ϕ > χ)↔(ψ > χ)) is equivalent, given RCEA, RCM, CC,
ID, CA (see Lemma 7.6).

17 An earlier version of the article proved equivalence. The reader is now referred to Unterhuber
(2016, Theorem 27), where our V is denoted as the KLM-system R for the full language and
Lewis’ C0 is denoted as V.

18 Equivalent to ¬ϕ > ϕ, given ID, CC, RCM.
19 For this reason P was simply called “D” in Raidl (2018).
20 Given T, the axiom P becomes redundant.
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COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 867

Proof. See p. 881, Appendix. �
P, T, MP, CS, and CEM are ever stronger centering assumptions. MP implies T, which
implies P; CS+T implies MP, and CEM+T implies CS and therefore MP. VW and VC are
used by Lewis, and C2 is Stalnaker’s system. The above result shows that Lewis’ hierarchy
can be reproduced using ranking functions instead of systems of spheres,21 by slightly
stretching the notion of a ranking function to allow for generalised ranking functions.22

Therefore that hierarchy can be interpreted as a collection of logics for belief-conditionals,
i.e., conditionals based on conditional belief. Let me briefly explain the axioms in terms of
conditional belief.

RCM expresses upwards closure of conditional belief, CC closure under conjunction,
and CN (ϕ > �), implied by RCM and ID, expresses that the tautology is conditionally be-
lieved. P expresses consistency of actual belief. Let us write Bel∗X = Bel(κX ). Then RCEA
expresses that conditional belief is extensional, i.e., concordant for logically equivalent
sentences, ID that the conditionalisation is successful, i.e., after conditionalising on ϕ, ϕ is
believed. CMon imposes that conditional belief satisfies cautious monotonicity: if C and
B are believed in Bel∗A then C remains believed in Bel∗A∩B . CV expresses that conditional
belief satisfies rational monotonicity: if C is believed in Bel∗A and B is compatible with
Bel∗A then C remains believed in Bel∗A∩B . Finally, CA expresses: if C ∈ Bel∗A and C ∈ Bel∗B
then C ∈ Bel∗A∪B .23,24

Furthermore, CEM says that conditional belief is complete, CS that conjunctive truth
implies conditional belief, and MP that conditional belief is at least as strong as the material
implication. Reinterpreting these for the inner modality, we would obtain that actual belief
is true (MP), complete (CEM) or implied by truth (CS), respectively. Therefore, MP, CS,
and CEM only make sense if actual belief is knowledge-like. T says that doxastic necessity
is factual, 4 that it is positively and 5 that it is negatively introspectible. U means that the
agent knows (in the sense of �) her conditional beliefs. Axioms 4, 5 and U are the only
axioms involving a nested conditional.

COROLLARY 3.8. VT5 is sound and complete for regular ranked models, and VPU for
global (and even global-carnapian) ranked models.

Proof. See p. 881 in the Appendix. �

In the non-nested fragment used by Huber and Spohn, the regular ranking semantics is in-
distinguishable from the reflexive ranking semantics (VT) and the global ranking semantics
is indistinguishable from the ranking semantics simpliciter (VP).25

21 Reflexivity is Lewis’ total reflexivity, globality Lewis’ local absoluteness, (iv) and (v) correspond
to Lewis’ local uniformity.

22 It would have sufficed to extend ranking functions by the abnormal κ⊥(A) = ∞ for all A ∈
℘(W ).

23 Given success, rational monotonicity is equivalent to the AGM postulate of super-expansion, and
CA is equivalent to the AGM postulate of sub-expansion.

24 Instead of using conditionalisation in the truth clause for the conditional, one could have chosen
any other revision having these properties, e.g., for fixed n > 0: κn

A(w) = κ(w)−κ(A) if w ∈ A,
and κn

A(w) = κ(w)− κ(A)+ n if w /∈ A.
25 Over the non-nested fragment of S(L>) we obtain as a consequence: VT is sound and complete

for the regular ranking semantics used by Huber (2014) and VP is sound and complete for Spohn’s
(2015, pp. 10–11) semi-epistemic validity, provided his incomplete truth-condition (1e) is read
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868 ERIC RAIDL

If we proceed to nonstandard belief with threshold z > 0, defining Belzκ := {A ∈
℘(W ) : κ(A) > z} and w �R ϕ > ψ iff κw([ϕ]) = ∞ or κwϕ ([¬ψ]) > z, everything
remains the same, except that CV is lost.26 Correspondence and completeness results for
the outer and inner modalities of these graded or strength indexed conditionals (with z ∈ N)
are analysed in Raidl (2018). I conjecture that the complete axiomatisation for the ranking
semantics with z-belief (z > 0) is B+P+M, where B is Burgess’ (1981) axiomatic system
(V − CV) and M is

((ϕ ∨ ψ) > χ) → ((ϕ > χ) ∨ (ψ > χ)). (M)27

This casts doubt on the interpretation freedom, suggested by Matthias Hild (cf. Spohn
(2012, 76–77)), and is a counterexample to the claim of Spohn (2015, 9) that shifting the
belief threshold from 0 to z > 0 would not essentially change the theory: CV-violation
proves it does.

The point was to show that, in the framework of ranking semantics, conditionals can
be interpreted as corresponding to conditional beliefs and the Lewisian hierarchy of (stan-
dard) conditional logics can be reproduced, provided we slightly stretch the notion of a
ranking function. Based on this, I will now investigate impossible-antecedent conditionals
as counter-doxa conditionals, meaning that the antecedent is impossible with respect to the
outer doxastic modality. I will justify different modifications of the standard conditional by
properties of conditional belief.

§4. Counter-doxa conditionals. This section introduces and justifies the new condi-
tionals by semantic and doxastic considerations.28

In the standard ranking semantics, the conditional ϕ > ψ is true in w iff in w either ϕ is
doxastically impossible (κw(ϕ) = ∞) or ψ is believed conditional on ϕ. In the exceptional
case (i.e., if ϕ is doxastically impossible), the conditional could be either undefined, or
uniformly true (standard conditional), or uniformly false (neutral conditional), or true
or false depending on whether the consequent is absolutely necessary, i.e., [ψ]R = W
(doxastic conditional), or true or false depending on whether the consequent is implied by
the antecedent (metaphysical conditional). The latter three yield the following new truth
clauses (replacing clause (1) on p. 865):

(2) w �R ϕ�ψ iff κwϕ (¬ψ) > 0 & κw(ϕ) < ∞. (neutral)

(3) w �R ϕ�ψ iff
(κwϕ (¬ψ) > 0 & κw(ϕ) < ∞) or ([ψ] = W & κw(ϕ) = ∞). (doxastic)

(4) w �R ϕ�ψ iff
(κwϕ (¬ψ) > 0 & κw(ϕ) < ∞) or ([ϕ] ⊆ [ψ] & κw(ϕ) = ∞). (metaphysical)

� implies �, which implies �, which implies the standard conditional >.29

as (1e.1) (see the Appendix, p. 877 for these). If regularity is imposed instead, it would be VT.
Furthermore, VW (not VC) is sound and complete for Spohn’s epistemic validity �e.

26 Consider W = {w0, w1, w2, w3} and threshold z = 1. Consider A = {w1, w2, w3}, B =
{w2, w3} and C = {w1, w2}, where the indices are the ranks of the worlds. For κ A, C is believed
and B is possible (B is not believed). But in κ A∩B , C is not believed any more.

27 M is weaker than CV. M was discussed by Loewer (1979) and Mayer (1981).
28 Similar modifications could be given in a Lewis-, Chellas-, or Segeberger-semantics.
29 Generally, a neutral conditional is definable from a standard conditional by ϕ�ψ ≡ (ϕ > ψ) ∧

¬(ϕ > ⊥), and in the presence of an absolute-necessity �, defined by a universal relation R =
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COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 869

The neutral conditional rejects all impossible-antecedent conditionals. The doxastic and
the metaphysical conditional accept only some impossible-antecedent conditionals. A dox-
astic impossible-antecedent conditional can only be true for a consequent reflecting a
strong background assumption (here model-truth). This is suitable for the cases of ‘under-
lining the regularity or necessity of the consequent’ (cf. §2). A metaphysical impossible-
antecedent conditional is only true for consequents model-implied by the antecedent (i.e.,
[ϕ]R ⊆ [ψ]R). Model implication is weaker than logical implication. The metaphysical
conditional thus preserves (ID) ϕ > ϕ as well as the idea that a conditional is a kind of
implication. Since the semantics has no way to differentiate between grades of doxastic
impossibility,30 the only option is closure under model-implication (RCM). The meta-
physical conditional is then obtained by imposing ID and RCM. In fact, the metaphysical
conditional is the smallest RCM-extension of the doxastic conditional that validates ID.

A modified conditionalisation, defined in the case κ(A) = ∞, would allow adopting the
generalised truth condition

(0) w �R ϕ > ψ iff κwϕ (¬ψ) > 0. (conditional belief)

Spohn (2012, Definition 5.15) bans conditionalisation on impossible propositions, presum-
ably for philosophical reasons. A rational agent should never remove a maximal (infinite)
doubt. This is unsatisfactory in two respects. From a philosophical point of view, there are
situations where maximal disbelief actually was removed (e.g., the doubt of speed nonad-
ditivity or the noneuclideanity of physical space) and if maximal disbelief is not equivalent
with logical impossibility, it should be possible to remove such disbeliefs if disbelief is
fallible. From a formal point of view, all concepts defined in terms of conditionalisation are
undefined in the exceptional case; in particular, we had to invoke an exceptional definition
for the conditional.

There are several options for the exception, besides the option of undefinedness:

DEFINITION 4.1. For κ(A) = ∞ and B ∈ ℘(W ),31 exceptional conditionalisation is
called . . ..32

abnormal iff κA(B) = ∞, doxastic iff κA(B) =
{

∞ if B = W,

0 otherwise.

neutral iff κA(B) = 0, metaphysical iff κA(B) =
{

∞ if A ⊆ B,

0 otherwise.

Call the resulting conditionalisations each by the same name, respectively. Only the doxas-
tic and metaphysical conditionalisation always yield a new ranking function (except when
A = ∅ for the metaphysical conditionalisation). Using the uniform scheme (0), abnormal,
neutral, doxastic and metaphysical conditionalisation produce the truth condition (1), (2),
(3) and (4), respectively. The exceptional clauses can then be motivated doxastically, by

W 2 (or at least implying the outer modality � of >), the doxastic conditional is definable by
ϕ�ψ ≡ (ϕ�ψ) ∨ �ψ and the metaphysical conditional by ϕ�ψ ≡ (ϕ�ψ) ∨ �(ϕ → ψ).

30 Unless ordinal-valued ranking functions are used.
31 Taking B simplifies the relation to the conditional.
32 Goldszmidt & Pearl (1996, 63) used the abnormal, Huber (2007a, 517) the neutral, Huber

(2006, 464) and Huber (2007b, 303) the doxastic, and Huber (2014, 2185) the metaphysical
conditionalisation.
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870 ERIC RAIDL

properties of conditionalisation, conditional belief and belief revision. This perspective
yields the following.

The abnormal exception coincides with the inconsistent belief set K⊥ in AGM-revision
theory (cf. Alchourrón et al., (1985)) as well as with the inconsistent probability P⊥
(1 everywhere) in probabilistic revision theory (Gärdenfors, 1982). This is based on the
idea that if the agent accepts a doxastically impossible proposition according to her current
state, everything becomes believed, even the contradiction.

The neutral exception has the opposite result. Conditionalising on a doxastically impos-
sible proposition, the agent loses all her beliefs, even that in the tautology, and becomes
completely belief-abstemious. These two exceptional definitions (together with undefined-
ness) are break-downs of the belief system and yield a uniform treatment of the exceptional
conditional. By contrast, the doxastic and metaphysical conditionalisation result in new
ranking functions (if A �= ∅ for the latter) and the exceptional value is not uniform.

The doxastic conditionalisation refines the neutral conditionalisation, by setting κ A(∅) =
∞, ensuring that the result remains a ranking function. Thereby an agent conditionalising
on a doxastically impossible proposition resets her belief to consistent neutrality, i.e.,
believes only the tautology. The agent loses all her beliefs, except for the weakest one.

The metaphysical conditionalisation further refines κ A(B) = ∞ if A ⊆ B, which
ensures that the result remains a ranking function, except for A = ∅, in which case the
result coincides with the abnormal conditionalisation. By this, an agent conditionalising on
a doxastically impossible but noncontradictory proposition will believe at least this propo-
sition and everything which follows logically.33 The agent resets her belief to the accepted
antecedent proposition A, which becomes inconsistent only if A is a contradiction.

A dynamical motivation can now be given by considering the induced AGM belief
revision Bel �→ Bel ∗A (Alchourrón et al., 1985), where Bel = Bel(κ) and Bel ∗A =
Bel(κ A). For X ⊆ ℘(W ), let Cl(X) be the filter spanned by X (i.e., the smallest filter
containing X ). Algebraic AGM expansion is then defined as Bel +A = Cl(Bel ∪{A}).
Rank-conditionalisation does in fact reproduce a kind of AGM belief revision:

THEOREM 4.2. If κ and κ ′ are regular, conditionalisation satisfies the following algebraic
AGM postulates:34

(*1) Bel(κ A) is a quasi-filter (i.e., is closed under ∩ and ⊆),35 (closure)
(*2) A ∈ Bel(κ A), (success)
(*3) Bel(κ A) ⊆ Bel(κ)+ A, (inclusion)
(*4) if A /∈ Bel(κ) then Bel(κ) ⊆ Bel(κ A), (preservation)
(*5) if A �= ∅ then

⋂
Bel(κ A) �= ∅, (consistency)

(*6) if κ and κ ′ are order-isomorphic, then Bel(κ A) = Bel(κ ′
A), (extensionality)

(*7) Bel(κ A∩B) ⊆ Bel(κ A)+ B, (sub-expansion)
(*8) if B /∈ Bel(κ A), then Bel(κ A)+ B ⊆ Bel(κ A∩B). (super-expansion)

33 This is the most natural extension of conditionalisation. Conditionalisation (where defined) may
be characterised as the only categorical rank update (i.e., setting A to infinity, by remaining a
ranking function) which preserves all distances within A. Extending conditionalisation to κ(A) =
∞ by this characterisation yields the metaphysical conditionalisation.

34 These are algebraic versions of the reformulation by Darwiche & Pearl (1997). Vacuity (i.e.,
A /∈ Bel(κ) implies Bel(κ)+ A = Bel(κ A)) was replaced by the weaker preservation.

35 In view of *5 and the latter comparison, this translation is more useful than to ask for Bel(κ A) to
be a filter.
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COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 871

If κ is not regular, Bel(κ A) is only defined for κ(A) < ∞ and then the postulates remain
valid (provided κ(A ∩ B) < ∞ for *7 and *8).

Proof. Standard exercise. �
Exceptional conditionalisations extend the induced belief revision to propositions A with
κ(A) = ∞ and therefore generally to all ranking functions (not just regular ones). They do
so in different ways:

THEOREM 4.3. The abnormal, the neutral, the doxastic and the metaphysical conditional-
isation satisfy *1, *3, *4, *7, *8 over all ranking functions. But they differ with respect to
*2 and *5:

Abnormal conditionalisation satisfies *2 and

(*5.1)
⋂

Bel(κ A) �= ∅ if κ(A) < ∞, else Bel(κ A) = ℘(W ). (partially improper)

Neutral conditionalisation violates *2, but satisfies

(*5.2)
⋂

Bel(κ A) �= ∅ if κ(A) < ∞, else Bel(κ A) = ∅. (partially empty)

Doxastic conditionalisation violates *2, but satisfies

(*5.3)
⋂

Bel(κ A) �= ∅ if κ(A) < ∞, else Bel(κ A) = {W }. (minimally proper)

Metaphysical conditionalisation satisfies *2 and

(*5.4)
⋂

Bel(κ A) �= ∅ if κ(A) < ∞, else Bel(κ A) = Cl(A). (minimal success)

Proof. Clear. �
Therefore the abnormal and the neutral conditionalisation violate *5, and the neutral con-
ditionalisation does not always produce a belief filter. Exceptional conditionalisations can
then be justified as different extensions of conditionalisation to κ(A) = ∞, preserving
certain AGM-axioms. Metaphysical conditionalisation preserves all axioms, including *2
and *5. Abnormal conditionalisation preserves all axioms except *5. Doxastic condition-
alisation preserves all axioms except *2. Neutral conditionalisation preserves all axioms,
except *2 and *5.

We have thus obtained a certain convergence of the semantic and the doxastic motivation
for the four conditionals. The complete axiomatisations for the new conditional logics
provide an additional characterisation.

§5. Completeness. I here provide and discuss the complete axiomatisations of the
three new conditional logics (§5.1–5.3) and an alternative truth definition of the conditional
(§5.4). The proofs can be found in §7.4.

5.1. Neutral ranking semantics.

THEOREM 5.1. AXn is sound and complete for the neutral ranking semantics, where AXn
is V − ID (i.e., MoPo,RCEA,RCM, PT,CC,CA,CMon,36 CV), augmented by

¬(ϕ�⊥) (Con)37

(ϕ��) → (ϕ� ϕ) (ID1)

36 Now CSO is equivalent to CMon + CA2, given the remaining axioms.
37 Con stands for conditional consistency. Con is weaker than Aristotle’s Thesis (AT): ¬(ϕ > ¬ϕ),

used in Unterhuber (2016). But here AT holds by RCM + ID1 + CC.
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872 ERIC RAIDL

��� (ID2)
((ϕ ∧ ψ)��) → (ϕ��) (CMon2)
(¬(ϕ� ϕ) ∧ (ψ �χ)) → ((ϕ ∨ ψ)�χ) (CA2)

Proof. Theorem 7.10 and 7.12.38 �
If one wants to reject the trivial truth of impossible-antecedent conditionals, in particular
ϕ > ⊥ when ϕ is impossible, the radical option is to simply impose ¬(ϕ >⊥). Thus ID
(ϕ > ϕ) must fail, since ⊥ > ⊥ fails. This suggests removing ID from the axioms, by
which we also remove CN (ϕ > �).39 The neutral conditional can then be motivated by
arguing that ID should fail only for doxastically impossible propositions.40 Con entails
P. However, Con is stronger since it excludes all contradictory conditionals ϕ > ⊥. We
thereby lose the standard characterisation of impossible antecedents! Let us therefore say
that ϕ is doxastically possible (in the neutral ranking semantics) iff the ignorant conditional
ϕ�� holds (this is the new outer possibility � ϕ). Then ID1 restores ID for doxastically
possible antecedents, as desired. By RCM, ID1 can be strengthened to the principle that CN
and ID are equivalent and thus indistinguishable. Therefore ID holds exactly for doxasti-
cally possible propositions. Hence ϕ�� and ϕ� ϕ, both express that ϕ is doxastically
possible. ID2 then posits that at least � is doxastically possible. CMon2 is a closure
requirement on doxastic possibility: any conjunct in a doxastically possible conjunction
is also possible.41 Dually, doxastic necessity 	 ϕ = ¬(¬ϕ��) is upwards closed42 and
has the remaining proper filter properties, i.e., 	� (by Con), ¬	⊥ (equivalent to ID2)
and (	 ϕ ∧ 	ψ) → 	(ϕ ∧ ψ).43 For regular ranking functions, ϕ�ψ deviates from the
standard conditional ϕ > ψ only because CN and ID fail when ϕ ≡ ⊥. Finally, CA2 says
that the antecedent in a conditional can be weakened by an impossible disjunct.44

In a nutshell: In the neutral ranking semantics all contradictory conditionals ϕ�⊥ are
false (Con). ϕ�� expresses that ϕ is doxastically possible and the dual necessity is
belief-like (of the Kripke type KD). Only doxastically possible propositions validate ID
(ID1, RCM) and at least the tautology � is doxastically possible (ID2). For doxastically
impossible antecedents, all conditionals are false.45

5.2. Doxastic ranking semantics.

THEOREM 5.2. AXd is sound and complete for the doxastic ranking semantics, where
AXd is V − ID, augmented by

38 This also yields completeness of AXn in the non-nested fragment for Spohn’s (2015) semi-
epistemic validity, if his incomplete truth condition (1e) is read as (1e.2) (see the Appendix,
p. 877 for these).

39 ID implies CN, given RCM.
40 Semantically, ϕ is doxastically impossible for κw iff κw(ϕ) = ∞. Logically, ϕ is doxastically

impossible iff ϕ > ⊥.
41 By the CN–ID equivalence, CMon2 is equivalent to F in Theorem 5.2.
42 Assume 	 ϕ, i.e., ¬(¬ϕ��), thus ¬((¬ϕ ∧ ¬χ)��) (CMon2). Suppose ϕ logically implies
χ . Then ϕ ∨ χ ≡ χ and (¬ϕ ∧ ¬χ) ≡ ¬(ϕ ∨ χ) ≡ ¬χ . Thus ¬(¬χ ��) (RCEA). Hence 	χ .

43 Suppose (ϕ ∨ ψ)�� and (for reductio) ¬(ϕ��) and ¬(ψ ��). Thus (CV) (ϕ ∨ ψ)�¬(ϕ ∨
¬ψ), hence (ϕ ∨ ψ)�(ψ ∧ ¬ϕ) (RCM). Similarly deduce (ϕ ∨ ψ)�(¬ψ ∧ ϕ). This implies
(ϕ ∨ ψ)�⊥ (CC, RCM), contradicting (Con).

44 If we replace CMon by CSO, CA2 is redundant (see footnote 36).
45 Generally, a neutral conditional is definable from a standard conditional by ϕ�ψ ≡ ((ϕ >
ψ) ∧ ¬(ϕ > ⊥)). This is equivalent to Lewis’ (1973, p. 438) definition of ϕ�⇒ ψ which he
interprets deontically, temporally, and egocentrically.
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¬(ϕ�⊥) (Con)
ϕ�� (CN)
(¬(ϕ� ϕ) ∧ (ϕ�ψ)) → (⊥�ψ) (A)
((ϕ�χ) ∧ ¬(ψ �ψ)) → (¬(⊥�χ) → ((ϕ ∨ ψ)�χ)) (B)
(⊥�ψ) → (ϕ�ψ) (C)
((ϕ ∨ ψ)�(ϕ ∨ ψ)) → ((ϕ� ϕ) ∨ (ψ �ψ)) (E)
((ϕ ∧ ψ)�(ϕ ∧ ψ)) → (ϕ� ϕ) (F)
(⊥�(ϕ → ψ)) → ((⊥�ϕ) → (⊥�ψ)) (K∗)
(⊥� ϕ) → ϕ (T∗)
¬(⊥�¬ϕ) → (⊥�¬(⊥�¬ϕ)) (5∗)

Proof. Theorem 7.18 and Corollary 7.21. �
This axiomatisation also drops ID, by imposing Con, but restores CN and comes with
new axioms which handle two implicit modalities—the new outer doxastic possibility
� ϕ ≡ ϕ� ϕ46 and the absolute (or metaphysical) necessity � ϕ ≡ ⊥� ϕ.47 Metaphysical
necessity implies doxastic necessity 	 (by C, CC, Con). E and F amount to 	 being closed
under conjunction and upwards closed (Con + CN establish that 	 has the remaining filter
properties). K∗, T∗ and 5∗ are the obvious Kripke axioms for �, imposing that metaphys-
ical necessity is knowledge-like, i.e., closed under modus ponens, factual and negatively
introspectible and thus also positively introspectible. A, B and C are interaction axioms. C
says that conditionals with metaphysically necessary consequents are true. A says that true
conditionals have either a doxastically possible antecedent or a metaphysically necessary
consequent. B is equivalent (by A, C) to CA2. Thus the antecedent in a conditional can
be disjunctively weakened by a doxastically impossible proposition. For regular ranking
functions, � collapses to 	 (by which E and F become redundant) and ID holds, except
for ϕ ≡ ⊥.

As opposed to the neutral conditional, the doxastic conditional restores all ignorant
conditionals ϕ > � (CN) and has the means to model a knowledge-like (KT5) necessity �
in addition to the belief-like (KD) outer modality 	. Thus the doxastic conditional requires
one axiom involving a nested conditional (5*).48

The above logic is interesting in view of the following result (Unterhuber, 2016, Theo-
rem 11): any normal conditional logic (PT, MoPo, RCEA, RCM, CC, CN) which contains
AT ¬(ϕ > ¬ϕ) is either inconsistent or incomplete in Chellas (!) semantics.49 However,
the above logic is normal, can be shown to contain AT50 and yet it is consistent and
complete in the doxastic ranking semantics.

5.3. Metaphysical ranking semantics.

THEOREM 5.3. VT5 is sound and complete for the metaphysical ranking semantics.

Proof. Theorem 7.24 and Corollary 7.27. �

46 Doxastic possibility again reduces semantically to κw(ϕ) < ∞. But now ϕ� ϕ differs from
ϕ��.

47 Semantically, ϕ is metaphysically necessary in R iff �R ϕ.
48 Generally, a doxastic conditional is definable from a standard conditional and an ‘absolute’

necessity �, provided (IA) � ϕ → (¬ϕ > ⊥), by ϕ�ψ ≡ ((ϕ > ψ)∧¬(ϕ > ⊥))∨(�ψ∧(ϕ >
⊥)).

49 Chellas’ models are essentially selection models.
50 Suppose ϕ�¬ϕ. Either ϕ� ϕ or ¬(ϕ� ϕ). In the first case ϕ�⊥ (CC), thus ⊥ (Con), in the

second case ⊥�⊥ (CMon) thus ⊥ (T*). Hence ¬(ϕ�¬ϕ).
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874 ERIC RAIDL

This is not astonishing, since metaphysical conditionalisation preserves all features of
standard conditionalisation (i.e., conserving ranking-differences within A) and acts as if
the ranking functions were regular. We therefore have three different ranking semantics for
VT5: the reflexive-euclidean ranking semantics, the sub-semantics of regular models and
the metaphysical ranking semantics. Hence, on the level of validity, it makes no difference,
whether we impose the semantic properties (t) and (v) on rankings, whether we consider
them to be regular (i.e., dynamically open-minded) or whether we change abnormal con-
ditionalisation to metaphysical conditionalisation. However, on the level of truth, the outer
modality of the metaphysical and the regular ranking semantics represents an absolute
necessity � (with underlying R = W 2), whereas for a (t,v)-ranking semantics it represents
just a knowledge-like necessity (R is an equivalence relation). Contrary to the neutral and
the doxastic ranking semantics, the metaphysical ranking semantics rejects contradictory
conditionals ϕ > ⊥, except when the antecedent ϕ is equivalent to a contradiction (in the
model). And as for the doxastic ranking semantics, one axiom with a nested conditional is
required (5).

5.4. Alternative ranking semantics.51 An alternative truth definition was suggested
by Huber (2017, footnote 4). The idea is that if κw(ϕ) ≥ κw(w), the closest ϕ-worlds (ac-
cording to κw) should be selected, and the sufficiently close ϕ-worlds otherwise, where suf-
ficient closeness means at least as close as κw(w). In short, instead of selecting [κw(ϕ)]κ ∩
[ϕ], one selects [≤ max{κw(w), κw(ϕ)}]κ ∩ [ϕ], where [≤ x]κ := {w ∈ W : κ(w) ≤ x}.
This yields

(A) w �*
R ϕ > ψ iff [≤ max{κw(w), κw([ϕ]R)}]κw ∩ [ϕ]R ⊆ [ψ]R.

(alternative conditional)

If κw(w) = ∞ (or κw([ϕ]) = ∞), the conditional becomes very demanding. In fact,
it transforms into a strict implication, since ϕ > ψ then means that all ϕ-worlds are
ψ-worlds.

THEOREM 5.4. VW5 is sound and complete for the alternative ranking semantics.

Proof. See p. 888. �
Since 5 is the only nested axiom, the logic in the non-nested fragment will be indistin-
guishable from VW for that fragment, as Huber (2017) conjectured.

One may want to combine the above alternative definition with either the standard, the
neutral, the doxastic or the metaphysical clause.52 As an example, let us indicate how to
do this for the standard ranking semantics, where we obtain

(1A) w �R
∗ ϕ > ψ iff κw([ϕ]) = ∞ or κw[ϕ]([¬ψ]) > max{0, κw(w)− κw([ϕ])}.

(alternative standard conditional)

Consider the axiom:

¬(ϕ > ⊥) → ((ϕ > ψ) → (ϕ → ψ)) (MP♦).

Intuitively this means that if ϕ is possible in w, then κw behaves as if it were weakly
centered.

51 This subsection was added for reasons of exhaustiveness. I thank an anonymous referee for
suggesting to treat this case, and Franz Huber for earlier discussions on this idea.

52 Replacing only the disjunct for κ([ϕ]R) < ∞ by the above alternative clause, and conserving the
other disjunct.
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THEOREM 5.5. VP + MP♦ is sound and complete for the alternative standard ranking
semantics.

Proof. See p. 888. �
By a similar reasoning, the complete and sound logic for the alternative neutral ranking
semantics should then be AXn, augmented by

(ϕ��) → ((ϕ�ψ) → (ϕ → ψ)) (MP�).

The complete and sound logic for the alternative doxastic ranking semantics should be
AXd, augmented by

(ϕ� ϕ) → ((ϕ�ψ) → (ϕ → ψ)) (MP�).

And the complete and sound logic for the alternative metaphysical ranking semantics is
VWT5 = VW5, since the alternative metaphysical truth condition is equivalent to the
above truth condition (A).53

§6. Conclusion. This article has extended the analysis of (standard) ranking semantics
(Friedman & Halpern, 2001) in three directions: First, by allowing ranking functions to
not have their minimum at 0, we obtained that Lewis’ V is complete for this generalised
ranking semantics. Second, I showed that the Lewisian hierarchy of conditional logics—
involving axioms such as MP, CS, CEM, or T, 4, 5 for the outer modality, as well as
the postulate U (comparable to Lewis’ absoluteness)—can be reproduced in the ranking
semantics by imposing corresponding properties on the ranking functions. As a conse-
quence these logics, which are often understood as logics for ontic (or counterfactual)
conditionals, can in principle be reinterpreted doxastically. As corollaries, we obtained
the completeness of VP for the ranking semantics, of VT5 for Huber’s (2014) regular
ranking semantics and of VPU for Spohn’s (2015) global-carnapian ranking semantics.
When restricting to the non-nested conditional language, the latter two semantics are in-
distinguishable from VT and VP, respectively, correcting the claimed completeness of V
in Huber (2014) and Spohn (2015). The third direction investigated modifications of the
trivial-truth clause for impossible-antecedent conditionals, as suggested by Huber (2014,
2015, 2016).

A standard conditional is trivially true for an impossible antecedent. But one might also
set it to be always false (neutral conditional), to be true or false depending on whether
the consequent is absolutely necessary (doxastic conditional), or depending on whether the
antecedent implies the consequent (metaphysical conditional).

In addition to the semantic considerations, I also provided a doxastic and an axiomatic
argument for these modifications: The doxastic argument was based on interpreting the
conditional as a conditional belief induced by ranking conditionalisation. The standard
conditional then corresponds to believing everything when abnormally conditionalising
on a doxastically impossible proposition, the neutral conditional to believing nothing, the
doxastic conditional to believing only what is absolutely necessary, and the metaphysical
conditional to believing only what follows from the antecedent. Correspondingly, abnormal
conditionalisation (corresponding to the standard conditional) is AGM only over regular

53 Because when κw(ϕ) = ∞, the condition [≤ max{κw(w), κw(ϕ)}]κ ∩ [ϕ] ⊆ [ψ] is equivalent
to [ϕ] ⊆ [ψ].
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ranking functions and else violates consistency. The metaphysical conditionalisation is
fully AGM, the doxastic conditionalisation violates success and the neutral conditional-
isation violates success and consistency.

The modifications affect the logic. The metaphysical conditional rejects ϕ > ⊥ except
for contradictory antecedents ϕ, has the sound and complete logic VT5 and thus agrees
with the regular ranking semantics. The neutral and the doxastic semantics reject all con-
tradictory conditionals ϕ > ⊥ and thus drop ID. In both semantics the antecedent of
a conditional can be disjunctively weakened by an impossible proposition (CA2 or B).
The neutral ranking semantics also drops CN, restores ID for the tautology (ID2) and
for doxastically possible antecedents (ID1), and requires the dual doxastic necessity to be
closed under conjunction (CMon2), consistent and upwards closed. The doxastic ranking
semantics additionally models a knowledge-like metaphysical necessity which implies the
outer doxastic necessity. It also requires that a conditional with metaphysically necessary
consequent is true (C) and that a true conditional has either a doxastically possible an-
tecedent or a metaphysically necessary consequent (A).

Finally, I also analysed an alternative ranking semantics, in which ϕ > ψ in w iff ψ
in the sufficiently closest ϕ-worlds, where sufficient closeness is maximal closeness if ϕ is
more implausible thanw from the perspective of κw, and else sufficient closeness means to
be at most as implausible as w. The resulting logic is VW5 ≡ VWT5, which strengthens
the logic VT5 by the axiom MP. I then implemented this alternative ranking semantics
within the different above variations. For the standard, neutral and doxastic alternative
ranking semantics this lead to a weakening of the axiom MP, which needed to be restricted
to the cases where the antecedent is already possible.

The ranking-theoretic simulation of the Lewisian hierarchy suggests that a doxastic
reinterpretation of so-called ontic conditionals is in principle possible. The philosophical
consequences of this could not be analysed here.54 It remains for example an open question
whether the ranking-theoretic (or more generally, plausibilistic) reinterpretation of the
Lewisian similarity can avoid those problems which are due to Lewis’ understanding of
similarity and his world-internal determinism, such as the future-similarity objection (Fine,
1975). Furthermore, the following questions remain: How do the new conditionals behave
when generated from standard conditionals in weaker logics than VP (see footnote 29)?
How does the conditional logic change if ranking-theoretic belief is defined as sufficient
disbelief in the negation (cf. p. 3)? What is to be gained when ranking functions are prop-
erly ordinal-valued (see footnote 30), enabling to define realms of doxastic impossibility?
And how should the semantic framework be extended in order to explicitly treat in the
object language the tenses and moods appearing in conditionals?

§7. Appendix

7.1. Related work. Friedman & Halpern (2001) consider ranking functions κw over
Ww ⊆ W and define55

(1a) w,R� ϕ > ψ iff κw(ϕ ∧ ψ) < κw(ϕ ∧ ¬ψ) or κw(ϕ) = ∞.56

54 A philosophical analysis of the ranking-theoretic simulation of Lewis’ hierarchy and a discussion
of the here presented counter-doxastic conditionals in scientific settings is attempted in Raidl &
Skovgaard-Olsen (2017).

55 Cf. Halpern (2003, 311).
56 Adapted notation.
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COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 877

Huber (2014) defines

(1b) w,R� ϕ > ψ iff [0]κwϕ ⊆ [ψ] [ or κw([ϕ]) = ∞ ].57

A last reformulation yields

(1c) w,R� ϕ > ψ iff [κw(ϕ)]κw ∩ [ϕ] ⊆ [ψ] or κw([ϕ]) = ∞.

Here [x]κ := {w ∈ W : κ(w) = x}. In a ranked model, all are equivalent to (1) from p.
865, for (1a), provided one extends κw to W , setting κw(v) = ∞, when v ∈ W \ Ww.

Define a selection function by F(w, ϕ) := [κw(ϕ)]κw ∩ [ϕ] if κw(ϕ) < ∞, and else
F(w, ϕ) := ∅. (1c) is then equivalent to the truth clause for the selection model M =
〈 W, F, V 〉:
(1d) w,M� ϕ > ψ iff F(w, ϕ) ⊆ [ψ].

Spohn (2015, 10–11) considers W to be all truth functions over Var(L), with 〈w, κ〉� p iff
w(p) = 1, and defines (for ϕ,ψ conditional-free):

(1e) 〈w, κ〉� ϕ > ψ iff κ [ϕ]([ψ]) > 0.

Semi-epistemic validity is defined as �se χ iff 〈w, κ 〉�χ for all w ∈ W and all ranking
functions κ . However, (1e) is incomplete, since it is not specified what happens if κ([ϕ]) =
∞. There are at least two options: (1e.1) use the standard trivial truth condition (adding ‘or
κ([ϕ]) = ∞’ on the right side of (1e)), or (1e.2) if κ [ϕ] is undefined assume not κ [ϕ]([ψ]) >
0, by which (1e) reduces to the neutral conditional (i.e., add ‘and κ([ϕ]) < ∞’ on the right
side of (1e)).

7.2. Selection models. M = 〈 W, F, V 〉 is a selection model for Var = Var(L>)
iff (1) W �= ∅ is a set of worlds, (2) V : Var −→℘(W ) is a valuation, (3) F : W ×
℘(W )−→℘(W ) is an (extensional) selection function, i.e., total over W × {[ϕ]M : ϕ ∈
S(L>)}, where standard connectives are defined as usual and > by

• w,M� ϕ >ψ iff F(w, [ϕ]M) ⊆ [ψ]M.

F is a total selection function iff it is total over ℘(W ).
A conditional logic 	 is normal iff 	 contains CN and is regular, i.e., contains PT,

CC and is closed under MoPo, RCEA and RCM.58 Write CK the smallest normal con-
ditional logic and CK X1 . . .Xn the smallest normal conditional logic containing axioms
X1, . . . ,Xn .

THEOREM 7.1. CK is sound and complete for selection models.

Proof. Cf. Chellas (1975). Soundness: PT, CC, CN are valid and MoPo, RCEA, RCM
preserve validity. Completeness, by a canonical model construction: Let 	 be a normal
conditional logic. Its canonical model is M	 = 〈 W	, F	, V	 〉, where W	 are the
maximal 	-consistent theories V	(p) = {w ∈ W	 : p ∈ w} and v ∈ F	(w, [ϕ]) iff
{ψ ∈ S(L>) : ϕ > ψ ∈ w} ⊆ v (well defined by RCEA). We have: (1) M	 is a selection
model (∅ is 	-consistent and thus has a maximal consistent extension by the Lindenbaum
Lemma, the rest by definition), (2) ϕ > ψ ∈ w iff for every v , if {χ : ϕ > χ ∈ w} ⊆ v
then ψ ∈ v (normality of 	 is needed here), (3) the truth Lemma holds: w,M	 � ϕ iff

57 Brackets are added since Huber considers regular ranking functions.
58 For an equivalent definition, see Chellas (1975).
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878 ERIC RAIDL

ϕ ∈ w (induction, using (2)), (4) M	 determines 	, i.e., M	 � ϕ iff �	 ϕ (M	 � ϕ,
thus w,M	 � ϕ for all w, hence ϕ ∈ w for all w (3), therefore �	 ϕ, since in general:

 �	 ϕ iff ϕ ∈ � for each maximal 	-consistent� ⊇ 
). Suppose �CK ϕ, then MCK � ϕ
(determination), hence ϕ is not valid. �

LEMMA 7.2. The canonical model of CK X1 . . .Xn satisfies the corresponding proper-
ties (xi ) over sentence classes59:

(1) F(w, A) ⊆ A, (id)

(2) F(w,W ) �= ∅, (p)

(3) if F(w, A) ⊆ C and F(w, B) ⊆ C, then F(w, A ∪ B) ⊆ C, (ca)

(4) if F(w, A) ⊆ C and F(w, A) ⊆ B, then F(w, A ∩ B) ⊆ C, (cmon)

(5) if F(w, A) ⊆ C and F(w, A) � B, then F(w, A ∩ B) ⊆ C, (cv)

(6) if F(w, A) ⊆ B and F(w, B) ⊆ A, then F(w, A) = F(w, B), (cso)

(7) if F(w, A) = ∅, then w ∈ A, (t)

(8) if F(w, A) �= ∅, then F(w, {v ∈ W : F(v, A) = ∅}) = ∅, (v)

(9) if F(w, A) = ∅, then F(w, {v ∈ W : F(v, A) �= ∅}) = ∅, (iv)

(10) if F(w, A) ⊆ B, then w ∈ A ∪ B, (mp)

(11) F(w, A) ⊆ B or F(w, A) ⊆ B, (cem)

(12) if F(w, A) ⊆ B, then F(w, {v ∈ W : F(v, A) � B}) = ∅, (u)

(13) if F(w, A) = ∅ then F(w, B) ⊆ A, (mod)

(14) if w ∈ A, then w ∈ F(w, A), [cw]60

(15) if w ∈ A, then F(w, A) = {w}. [cs]

Additionally [cw] follows from (MP) and [cs] from (MP, CS).

Proof. Using (2) and the truth Lemma (3) from Theorem 7.1. E.g:

(p) ¬(� > ⊥) ∈ w (P), i.e., (� > ⊥) /∈ w (consistency). Thus not all v extend-
ing {ϕ : � > ϕ ∈ w} have ⊥ ∈ v . Hence there is a consistent extension, i.e.,
F(w, [�]) �= ∅.

(u) Suppose F(w, [ϕ]) ⊆ [ψ]. Then ϕ > ψ ∈ w. Thus ¬(ϕ > ψ) > ⊥ ∈ w (U).
Therefore F(w, {v : F(v, [ϕ]) � [ψ]}) = ∅.

(cw) from MP: Suppose ϕ ∈ w. ϕ > ψ ∈ w implies ϕ → ψ ∈ w (MP). Thus, if
ϕ > ψ ∈ w, then ψ ∈ w (since ϕ ∈ w). Hence w extends {ψ : ϕ > ψ ∈ w}, i.e.,
w ∈ F(w, [ϕ]).

(cs) from MP and CS: Suppose ϕ ∈ w, i.e., w ∈ F(w, [ϕ]) (cf., cw). Assume (for
reductio) that there is v ∈ F(w, [ϕ]), such that v �= w. Then there is ψ , such that
ψ ∈ v but ψ /∈ w, i.e., ¬ψ ∈ w, hence (ϕ ∧ ¬ψ) ∈ w. Thus ϕ > ¬ψ ∈ w (CS).
But then ¬ψ ∈ v , contradicting CK+MP+CS-consistency. �

If M is an (id, ca, cmon) selection model then

59 Properties are quantified overw ∈ W and classes A = [ϕ], B = [ψ],C = [χ ], where one verifies
that W = [�], ∅ = [⊥], B = [¬ψ], A ∪ B = [ϕ ∨ ψ], A ∩ B = [ϕ ∧ ψ], {v ∈ W : F(v, A) =
∅} = [ϕ > ⊥].

60 Properties with no corresponding direct axiomatisation are written [x] instead of (x).
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COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 879

• F(w, [ϕ]) = ∅ iff R(w) ∩ [ϕ] = ∅. [a]

By RCEA, we may write F(w, ϕ) = F(w, [ϕ]).

COROLLARY 7.3. The canonical model of CK+ ID + CA + CMon + U satisfies

• if v ∈ R(w), then F(w, A) = F(v, A). [u’]

Proof. Suppose v ∈ R(w) and ϕ > ψ ∈ w. Thus F(w, ϕ) ⊆ [ψ]. Therefore F(w,¬(ϕ >
ψ)) = ∅ (u). Hence, ϕ > ψ ∈ v [a]. Assume now that u ∈ F(v, ϕ). Then {ψ : ϕ > ψ ∈
v} ⊆ u, hence {ψ : ϕ > ψ ∈ w} ⊆ u, i.e., u ∈ F(w, ϕ). Thereby F(v, ϕ) ⊆ F(w, ϕ).
(U) implies (u), which implies (iv). Thus, since v ∈ R(w), we have w ∈ R(v), leading to
F(w, ϕ) ⊆ F(v, ϕ). �
A selection model is Lewisian iff it satisfies (id, ca, cv, cmon)61 and ranky iff it satisfies
additionally (p).

COROLLARY 7.4. CK X1 . . .Xn is sound and complete for the x1, . . . xn-selection mod-
els. In particular, in the following table, the logic on the left is sound and complete for the
class of selection models on the right:

Logic Frame Property Name Equivalent
V id, ca, cmon, cv Lewisian
VP id, ca, cmon, cv, p ranky (p)-Lewisian
VT id, ca, cmon, cv, t (t)-ranky (t)-Lewisian
VW id, ca, cmon, cv, cw (cw)-ranky (cw)-Lewisian
VC id, ca, cmon, cv, cw, cs (cw, cs)-ranky (cw, cs)-Lewisian
C2 id, ca, cmon, cv, t, cem (t,cem)-ranky (t, cem)-Lewisian

Proof. Soundness is clear (note cw implies mp, which implies t which implies p).
Completeness: by Lemma 7.2 with the argument in Theorem 7.1. �

LEMMA 7.5. MOD (¬ϕ > ϕ) → (ψ > ϕ) follows from CK + ID + CA + CMon.

Proof. Assume ¬ϕ > ϕ. But ¬ϕ > ¬ϕ (ID), thus ¬ϕ > ⊥ (CC), i.e., ¬ϕ > ψ (RCM).
Therefore (¬ϕ ∧ ψ) > ⊥ (CMon), i.e., (¬ϕ ∧ ψ) > ϕ; (ϕ ∧ ψ) > ϕ (ID, RCM) and thus
ψ > ϕ (RCEA, CA). �

LEMMA 7.6. CMon and CSO are equivalent, given CK+ ID + CA.

Proof. (⇐) Assume ϕ > χ, ϕ > ψ . Thus ϕ > (ϕ ∧ ψ) (ID, CC). But (ϕ ∧ ψ) > ϕ
(ID, RCM). Thus (ϕ ∧ ψ) > χ (CSO). (⇒) Suppose ϕ > ψ , ψ > ϕ and ϕ > χ . Thus
(ϕ ∧ψ) > χ (CMon) and (ϕ ∧ψ) > ψ (ID, RCM). Hence (ϕ ∧ψ) > (χ ∧ψ) (CC). But
(¬ϕ ∧ ψ) > (¬ϕ ∧ ψ) (ID). Hence ψ > ((χ ∧ ψ) ∨ (¬ϕ ∧ ψ)) (RCM, RCEA, CA). Yet
ψ > ϕ, thus ψ > ((χ ∧ ψ) ∧ ϕ) (CC, RCM). Therefore ψ > χ (RCM). �

7.3. Generalised and standard ranking semantics. Let M = 〈 W, . . . , V 〉, M′ =
〈 W ′, · · ·, V 〉 be two models for S(L>), possibly with different interpretations for >, and
W ′ ⊆ W . M′ is faithful to M iff for all ϕ and all w ∈ W ′, w,M′ � ϕ iff w,M� ϕ.

61 Equivalent to Lewis’ (1971) α-models. (id) is Lewis’ (α.0.6), (cmon) is equivalent to
(cso)=(α.0.7), given (id, ca), and (ca, cv) is equivalent to (α.0.8).
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Proof of Theorem 3.6. For the terminology on selection models, see §7.2.62

Soundness: Let R = 〈 W, (κw)w∈W , V 〉 be a generalised ranked model. Define
F(w, A) = [κw(A)]κw ∩ A if κw(A) < ∞ and = ∅ otherwise. Then M(R) := 〈 W, F, V 〉
is a Lewisian (id, ca, cv, cmon) selection model and faithful to R. Since M(R) validates V
(Corollary 7.4), R does as well (faithfulness). If R is a standard ranked model, then M(R)
is ranky (id, ca, cv, cmon, p). Then M(R) validates VP (Corollary 7.4) and thus R does as
well (faithfulness).

Completeness: Suppose �	 ϕ (where 	 = V). Then there is a (canonical) Lewisian
selection model M = M	 such that M� ϕ (Theorem 7.1, Lemma 7.2). Thus there is a
ϕ-filtration M∗ of M such that M∗ � ϕ (cf. Lewis (1971)). ϕ-filtrations preserve truth (in
the reduced language) and properties, i.e., M∗ remains Lewisian. Additionally, it is finite,
nonredundant (two worlds satisfying the same propositional variables are the same world)
and the selection function is total. From M∗ = 〈 W, F, V 〉 one constructs R(M∗) :=
〈 W, (κw)w∈W , V 〉, by defining R(w) := ⋃

A∈℘(W ) F(w, A), [∞] := W \ R(w); and if
R(w) �= ∅ then recursively:

• W0 := R(w), [0] := F(w,W0),
• Wn+1 := Wn \ [n], [n + 1] := F(w,Wn+1) if [n] �= Wn . If [n] = Wn stop,
• κw({v}) = x if v ∈ [x], and κw(A) = minv∈A κ

w({v}) and κw(∅) = ∞.

Note: F(w, [∞]) = ∅ (otherwise R(w) ∩ [∞] �= ∅, contradicting [∞] = W \ R(w)).
One shows that (1) R(M∗) is a generalised ranked model, where κw is a standard ranking
function if R(w) �= ∅ and else κw(A) = ∞ for all A. Additionally, (2) for all w ∈ W and
all A ∈ ℘(W )we have F(w, A) = [κw(A)]κw∩A if F(w, A) �= ∅ (and then κw(A) < ∞),
and else κw(A) = ∞. (3) R(M∗) is faithful to M∗. Thus R(M∗)� ϕ (3). Therefore � ϕ
in the generalised ranking semantics (1).

Let us show (2): if F(w, A) = ∅, then R(w) ∩ A = ∅ (a). Therefore κw(A) =
∞. Conversely, if κw(A) = ∞ then A ⊆ [∞] = W \ R(w) (definition), hence A ∩
R(w) = ∅, i.e., F(w, A) = ∅ (a). Suppose F(w, A) �= ∅. Since F(w, A) ⊆ R(w),
there is a first n, such that [n] ∩ A �= ∅. Since [n] = [κw(A)]κw it suffices to prove
F(w, A) = [n] ∩ A.

(⊆) Split A′ = A ∩ R(w) and A′′ = A ∩ [∞]. Since [n] = F(w,Wn) and [n] ∩ A′ =
[n] ∩ A �= ∅, we have F(w,Wn) � A′. Yet F(w,Wn) ⊆ F(w,Wn). By (cv)
F(w,Wn ∩ A′) ⊆ F(w,Wn). But A′ ⊆ Wn and thus F(w, A′) ⊆ F(w,Wn). By
F(w, A′) ⊆ A′ (id), we have F(w, A′) ⊆ [n] ∩ A′ = [n] ∩ A. But F(w, A′′) =
∅ ⊆ [n] ∩ A and thus F(w, A) ⊆ [n] ∩ A (ca).

(⊇) Every F(w, B) is a fixed point (for B ⊆ R(w)): F(w, F(w, B)) ⊆ F(w, B) ⊆ B
(id) and F(w, B) ⊆ F(w, B). Thus F(w, B) = F(w, F(w, B)) (cso; by cmon,
id, ca). [n] ∩ A is also a fixed point, F(w, [n] ∩ A) = [n] ∩ A: Suppose not (for
reductio). Then F(w, [n] ∩ A) � [n] ∩ A (id). Therefore there is v ∈ [n] ∩ A
such that F(w, [n] ∩ A) ⊆ [n] \ {v}. But F(w, [n] ∩ A) ⊆ [n] ∩ A (id) and since
v /∈ [n] ∩ A, we have F(w, [n] ∩ A) ⊆ [n] \ {v}. Thus F(w, [n]) ⊆ [n] \ {v} (ca),
i.e., F(w, [n]) � [n], contradicting that [n] = F(w,Wn) is a fixed point. Thus
F(w, [n] ∩ A) = [n] ∩ A. But F(w, [n] ∩ A) ⊆ A and F(w, A) ⊆ [n] ∩ A (cf.
above). Thus F(w, A) = F(w, [n] ∩ A) (cso). Therefore F(w, A) = [n] ∩ A.

62 We cannot use Friedman–Halpern’s (2001) result for V, since all their models validate P!
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COMPLETENESS FOR COUNTER-DOXA CONDITIONALS 881

If 	 = VP everything is the same, except that now M is a ranky selection model and
thus all κw of R(M∗) are standard (F(w, [�]) �= ∅ (p), thus R(w) �= ∅ (a), hence [0] =
F(w, R(w)) �= ∅, by (ca), because F(w, [∞]) = ∅). �

Proof of Theorem 3.7. Adapt the above proof to the extended properties. Soundness:
show that property (κ x) of κw implies property (x) of F(w, .) induced by κw. Complete-
ness: show that property (x) of F(w, .) which in the canonical model follows from axiom
(X) (Lemma 7.2) implies property (κ x) for κw constructed as above.63 �

Proof of Corollary 3.8. There is a twist for completeness.

Regular: Suppose �	 ϕ, where 	 = VT5. For M∗ = 〈 W, F, V 〉 a ranky, (t, v)-
selection model (obtained as ϕ-filtration from the canonical model), the relation R induced
from F (cf. above) is an equivalence relation on W . For C an equivalence cell, define the
restriction of M to C , MC := 〈 C, FC , VC 〉, in the obvious manner. Then (1) MC is a
selection model, FC (w, A) = F(w, A) for w ∈ C, A ⊆ C , and RMC (v) = R(v) for
v ∈ C . (2) MC preserves properties of M and (3) is faithful to M. Now reproduce the
completeness proof: Since M∗ � ϕ, there is w ∈ W (M∗) such that w,M∗ � ϕ. Let C be
the class of w. Thus M∗

C � ϕ and therefore R(M∗
C )� ϕ. Since RM∗

C (w) = R(w) = C =
W (M∗

C ), all ranking functions are regular (i.e., [∞] = ∅). Therefore � ϕ in the regular
ranking semantics.

Global: Suppose �	 ϕ, for 	 = VPU. For M∗ = 〈 W, F, V 〉 a ranky (u)-selection
model (obtained as a ϕ-filtration of the canonical model), the relation R is a serial shift-
equivalence relation on W and: if v ∈ R(w) then F(w, ϕ) = F(v, ϕ) (Corollary 7.3).
Consider w ∈ W and C = R(w) ∪ {w}. Then (1)–(3), cf. above, still hold, and (4)
FM∗

C (w, ϕ) = FM∗
C (v, ϕ) for all w, v ∈ W (M∗

C ) (trivially for v = w and because v �= w
implies v ∈ R(w)). Since M∗ � ϕ, there is w ∈ W (M∗) such that w,M∗ � ϕ. Set C =
R(w) ∪ {w}. Thus M∗

C � ϕ and therefore R(M∗
C )� ϕ. Since FM∗

C (w, ϕ) = FM∗
C (v, ϕ),

all ranking functions agree, i.e., R(M∗
C ) is global. Therefore � ϕ in the global ranking

semantics.

Global-carnapian: Enrich the global ranked model R = R(M∗
C ) from above to obtain

a global-carnapian ranked model R∗, where w,R∗ � ϕ still holds. �

7.4. Proofs for impossible-antecedent conditionals.

DEFINITION 7.7. Let L�,L> be two conditional languages.

(1) A map of � to > is a total function ∗ : S(L�)−→ S(L>).
(2) A map is a translation, if p∗ = p, (¬ϕ)∗ = ¬ϕ∗, (ϕ ◦ ψ)∗ = (ϕ∗ ◦ ψ∗) for

◦ ∈ {∧,∨,→} and there is A[p, q] ∈ S(L>) such that (ϕ�ψ)∗ = (ϕ∗ > ψ∗) ◦
A[ϕ∗, ψ∗].

(3) � is covariantly (and, resp. or) definable in L> iff there is a translation ∗, such that
(◦ = ∧, resp. ◦ = ∨, and) for all models M = 〈 W, . . . , V 〉 for ��, there is a
model M∗ = 〈 W, · · · , V 〉 for �>, such that w,M�� ϕ iff w,M∗ �> ϕ∗.

7.4.1. Neutral Conditional.

LEMMA 7.8. The neutral conditional � is covariantly and-definable in the ranking
semantics for L> by (ϕ�ψ)∗ = ((ϕ∗>ψ∗) ∧ ¬(ϕ∗>⊥)).

63 Notation, see Definition 3.5.
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Proof. R∗ = R. Covariance by induction, e.g:

w,R�� ϕ�ψ iff κwϕ (¬ψ) > 0 & κw(ϕ) < ∞ (def.�)
iff κwϕ∗(¬ψ∗) > 0 & κw(ϕ∗) < ∞ (IH, covariance)
iff w,R�>(ϕ∗ > ψ∗) ∧ ¬(ϕ∗ > ⊥) (def. >)

�

LEMMA 7.9. Given V − CV, A[ϕ] = ¬(ϕ > ⊥) together with > validate:

(1) From ϕ ↔ ψ infer A[ϕ] → A[ψ], (SLE)64

(2) A[ϕ] → A[ϕ ∨ ψ], (ACA)
(3) (¬(ϕ > ¬ψ) ∧ A[ϕ]) → A[ϕ ∧ ψ]. (ACV)

Proof. SLE by RCEA for >. The contraposition of ACA by (RCM, CMon, RCEA).
ACV: Assume ¬(ϕ > ¬ψ), ¬(ϕ > ⊥) and suppose (for reductio) (ϕ ∧ ψ) > ⊥. Then
(ϕ ∧ ψ) > ¬ψ (RCM). But (ϕ ∧ ¬ψ) > ¬ψ (ID, RCM). Thus ϕ > ¬ψ (CA, RCEA).
Contradiction. �

THEOREM 7.10. AXn (see p. 871) is sound for the neutral ranking semantics.

Proof. One shows that the translated axioms are true in the standard � and the translated
inference rules preserve truth in �, using covariance (Lemma 7.8 and 7.9). E.g:

RCEA Suppose R�� ϕ↔ψ, ϕ�χ . Then R� ϕ∗ ↔ψ∗, ϕ∗ > χ∗ ∧ A[ϕ∗]. Therefore
R�ψ∗ > χ∗ (RCEA), A[ψ∗] (SLE). Hence R�(ψ �χ)∗ and thus R�� ψ �χ (co-
variance). (RCM similarly.)

CC Suppose w,R�� ϕ�ψ, ϕ�χ . Then w,R�(ϕ∗ > ψ∗)∧ A[ϕ∗], (ϕ∗ > χ∗)∧ A[ϕ∗].
Thus w,R� ϕ∗ > (ψ∗ ∧ χ∗) (CC, >). (for CA, CV use ACA, ACV, for CMon use CV,
CC.)

¬(Con)∗ is a contradiction, (ID1)∗ is a tautology (by ID), similarly (ID2)∗ (by ID, P),
(CMon2)∗ (by CMon, RCM) and (CA2)∗ (by CN, CA). �
Conversely: > is covariantly or-definable by � as (ϕ > ψ)◦ ≡ ¬(ϕ◦ ��) ∨ (ϕ◦ �ψ◦),
and the translations are inverses of each other, i.e., (χ∗)◦ = χ and (χ◦)∗ = χ (proof
omitted65).

THEOREM 7.11. If �> ϕ then �� ϕ◦.

Proof. We show, by induction on the length of the proof, that if there is a proof of θ in
AX = VP(>), then there is a proof of θ◦ in AX◦ = AXn(�).

n = 1: Thus θ is PT, ID, CC, CA, CMon, CV or P. We prove that the corresponding θ◦
can be deduced from AX◦. We assume classical laws of reasoning and we make free use of
the deduction Lemma, all of which can be obtained by MoPo(�) and PT(�). X (left) refer
to axioms in AX, those in the proof (X) to AX◦! E.g:

PT by PT(�).
ID Suppose θ = ϕ > ϕ. But (ϕ◦ ��) → (ϕ◦ � ϕ◦) (ID1), thus θ◦ = ¬(ϕ◦ ��) ∨
(ϕ◦ � ϕ◦).

64 “Substitution of logical equivalents”.
65 Cf. Lemma 7.19.
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P Suppose θ = ¬(� > ⊥). But ¬(��⊥) (Con) and ��� (ID2), thus ¬(��⊥) ∧
(���), i.e., ¬((��⊥) ∨ ¬(���)) = θ◦.

CC Suppose θ = ((ϕ > ψ) ∧ (ϕ > χ)) → (ϕ > (ψ ∧ χ)). Set A = ϕ◦ �ψ◦, B =
ϕ◦ �χ◦, C = ϕ◦ �(ψ◦ ∧ χ◦), D = ¬(ϕ◦ ��). Assume (A ∨ D) ∧ (B ∨ D), i.e.,
(A ∧ B)∨ D. From (A ∧ B) deduce C (CC) thus C ∨ D; from D deduce C ∨ D. Hence,
((A ∨ D) ∧ (B ∨ D)) → (C ∨ D) = θ◦.

CV, CMon similarly, using (CV, CMon).
CA Suppose θ = ((ϕ > χ) ∧ (ψ > χ)) → ((ϕ ∨ ψ) > χ). Set A = ϕ◦ �χ◦, B =
ψ◦ �χ◦, C = (ϕ◦ ∨ ψ◦)�χ◦, D = ¬(ϕ◦ ��), E = ¬(ψ◦ ��), F = ¬((ϕ◦ ∨
ψ◦)��). Suppose (A ∨ D) ∧ (B ∨ E), yielding four cases:66 (11) A ∧ B implies C
(CA), thus C ∨ F . (12) A∧ E implies C (CA2), (21) D∧ B similarly. (22) D∧ E implies
F , by closure under conjunction of 	, see footnote 43.

n + 1. Suppose θ1, . . . , θn, θn+1 is a proof of θn+1 = θ in AX. We show that there is a
proof of θ◦

n+1 = θ◦ in AX◦. Our induction hypothesis is that there is a proof of θ◦
i in AX◦

for all i ≤ n.

MoPo clear.
RCEA Suppose θn+1 = ψ > χ and there are θi = ϕ↔ψ and θ j = ϕ > χ (i, j ≤ n)

and the property holds for i, j . Thus (IH) there is a proof of θ◦
i = ϕ◦ ↔ψ◦ and of

θ◦
j = (ϕ > χ)◦ = (ϕ◦ �χ◦) ∨ ¬(ϕ◦ ��) in AX◦. Assume ϕ◦ �χ◦. Thus ψ◦ �χ◦

(RCEA). Assume ¬(ϕ◦ ��). Thus ¬(ψ◦ ��) (RCEA). Hence θ◦
n+1 = (ψ > χ)◦ in

both cases.
RCM similarly (using RCM). �

THEOREM 7.12. AXn is complete for the neutral ranking semantics.

Proof. Assume ��
AXn θ , thus ��

AXn(θ
∗)◦ (∗, ◦ are inverses), hence �>VP θ

∗ (Theorem
7.11). Thus there is a ranked model s.t. M� θ∗. Hence M�� θ (covariance for ◦). �

7.4.2. Doxastic Conditional. Consider a ranked model R with doxastic truth relation
�� and standard truth relation �. The absolute ranked model is R∗ = 〈R, R 〉, where
R = W 2 defines � and �∗ = ��,> its truth relation.

THEOREM 7.13. The sound and complete axiomatics for absolute ranked models is VP for
> and KT5 for � together with:

• � ϕ → � ϕ (IA)

where � ϕ = ¬ϕ > ⊥.

Proof. Soundness: clear. Completeness: modify the proof leading to completeness of
VP (Theorem 7.1, Corollary 7.4), assuming that 	 also contains axiom K and N (��) for
�. Show standard facts such as: for 
 maximally 	-consistent, with 	 containing K and
N: � ϕ ∈ 
 iff for every maximally 	-consistent �, {ψ : �ψ ∈ 
} ⊆ � implies ϕ ∈ �.

The canonical model (cf. Theorem 7.1) is enriched by 〈w, v 〉 ∈ R	 iff {ϕ : � ϕ ∈ w} ⊆
v . Then M	 = 〈 W	, F	, R	, V	 〉 is a ranky selection model, augmented by a Kripke

66 For a conjunction of two disjunctions we denote i j the conjunction of the i-th disjunct in the
first conjunct and the j-th disjunct in the second conjunct. Similarly for longer conjunctions of
disjunctions.
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relation. One shows that if 	 contains the axioms T, 5 for �, then R	 is reflexive and eu-
clidean and if	 contains IA, then RF (w) ⊆ R	(w) (where RF = ⋃

ϕ∈S(L(�,>) F(w, [ϕ])):
Suppose v ∈ RF (w), then there is θ such that {ψ : θ > ψ ∈ w} ⊆ v . But {ϕ : ¬ϕ >
ϕ ∈ w} ⊆ {ψ : θ > ψ ∈ w}: Let ϕ be in the first set. Then ¬ϕ > ϕ ∈ w thus
θ > ϕ ∈ w (MOD, cf. Lemma 7.5) for any θ , thus ϕ ∈ {ψ : θ > ψ ∈ w}. Thereby
{ϕ : � ϕ ∈ w} ⊆ v , i.e., {ϕ : � ϕ ∈ w} ⊆ v (IA). Hence 〈w, v 〉 ∈ R	 . Then restrict the
model with equivalence relation R	 for � to an absolute equivalence relation (cf. proof of
Corollary 3.8 for regular ranked models, p. 881). The transfer to absolute ranked models
goes as before. �

LEMMA 7.14. The doxastic conditional � is covariantly definable in the absolute
ranking semantics for L>,� by (ψ �χ)∗ := ((ψ∗ > χ∗)∧¬(ψ∗ > ⊥))∨ (�χ∗ ∧ (ψ∗ >
⊥)).

Proof. To a ranked model R associate R* = 〈R, R 〉, where R = W 2 defines �.
Covariance by induction. For (ψ �χ)∗ consider the (induced) selection function F in R∗
and G generating the conditional clause in the doxastic model R. Then:

G(w, A) =
{

F(w, A) if F(w, A) �= ∅,
W otherwise.

(2)

Thus

w,R��(ψ �χ)
iff G(w, [ψ]) ⊆ [χ ] (def.)
iff G(w, [ψ∗]) ⊆ [χ∗] (IH)
iff (∅ �= F(w, [ψ∗]) ⊆ [χ∗]) or ([χ∗] = [�∗] & F(w, [ψ∗]) = ∅) (def. G)

iff w,R* �*((ψ∗ > χ∗) ∧ ¬(ψ∗ > ⊥)) ∨ (�χ∗ ∧ (ψ∗ > ⊥)) (def. >,�)
iff w,R* �*(ψ �χ)∗ (∗) �

LEMMA 7.15. In the absolute ranking semantics �∗:

1. (ϕ� ϕ)∗ ≡ ¬(ϕ∗ > ⊥) [= ♦ ϕ∗]. 2. �ψ∗ ≡ (⊥�ψ)∗ [≡ (¬ψ �ψ)∗].

Proof.

(1) Suppose ¬(ϕ∗ > ⊥). ϕ∗ > ϕ∗ (ID) implies (ϕ� ϕ)∗. Suppose (ϕ� ϕ)∗, i.e., (ϕ∗ >
ϕ∗ ∧¬(ϕ∗ > ⊥)) or (� ϕ∗ ∧(ϕ∗ > ⊥)). The first implies ¬(ϕ∗ > ⊥). The second is
contradictory, since � ϕ → � ϕ (IA), � ϕ → ♦ ϕ (D by P), but ♦ ϕ∗ = ¬(ϕ∗ > ⊥)
contradicts ϕ∗ > ⊥.

(2)

(⊥�ψ)∗ = ((⊥ > ψ∗) ∧ ¬(⊥ > ⊥)) ∨ (�ψ∗ ∧ (⊥ > ⊥)) (∗)
≡ ((⊥ > ψ∗) ∧ ⊥) ∨ (�ψ∗ ∧ �) (ID)
≡ �ψ∗ (Logic)

(¬ψ �ψ)∗
= ((¬ψ∗ > ψ∗) ∧ ¬(¬ψ∗ > ⊥)) ∨ (�ψ∗ ∧ (¬ψ∗ > ⊥)) (∗)
≡ ⊥ ∨ (�ψ∗ ∧ �ψ∗) (ID, CC, RCM)
≡ �ψ∗ (IA)

�
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DEFINITION 7.16. A conditional � and a two-place operator O are antecedent
disjunctive (resp., cross disjunctive), iff (ϕ�ψ) ∧ O[ϕ, χ ] (resp. ϕ�ψ ∧ O[ψ, ϕ]) is
inconsistent.

LEMMA 7.17. In the absolute ranking semantics and for ϕ�ψ = ((ϕ > ψ) ∧ ¬(ϕ >
⊥)) and O[ϕ,ψ] = �ψ ∧ (ϕ > ⊥): (1) �, O are antecedent and cross disjunctive, (2)
O validates RCEA and CC; and (CO): O[ϕ,ψ] → ((χ �ψ) ∨ O[χ,ψ]).

Proof. (1) (ϕ > ψ) ∧ ¬(ϕ > ⊥) contradicts �χ ∧ (ϕ > ⊥). And (ϕ > ψ) ∧ ¬(ϕ >
⊥) contradicts � ϕ ∧ (ψ > ⊥): ψ > ⊥ implies ψ > ϕ (RCM). But since ϕ > ψ :
ϕ > ⊥ (CSO, cf. Lemma 7.6). Contradiction. (2) RCEA O: �,� satisfy SLE (RCEA, >).
CC O: � is closed under conjunction. CO: Suppose (�ψ ∧ ϕ > ⊥). �ψ implies �ψ
(IA), i.e., ¬ψ > ⊥ thus ¬ψ > ψ (RCM). Hence (MOD, cf. Lemma 7.5) χ > ψ . But
(χ > ⊥) ∨ ¬(χ > ⊥). ¬(χ > ⊥) and χ > ψ yields (χ �ψ). χ > ⊥ and �ψ yields
O[χ,ψ]. �

THEOREM 7.18. AXd (see p. 872) is sound for the doxastic ranking semantics.

Proof. Using the sound axiomatisation of the neutral conditional � (Theorem 7.10)
within the absolute ranking semantics �∗, covariance of � (Lemma 7.14), and Lemma
7.17. MoPo, PT are clear.

RCEA Suppose R�� ϕ↔ψ, ϕ�χ . Thus R∗ �∗ ϕ∗ ↔ψ∗, (ϕ∗ �χ∗) ∨ O[ϕ∗, χ∗] (co-
variance). Hence R∗ �∗(ψ∗ �χ∗) ∨ O[ψ∗, χ∗] (RCEA: �, O). RCM similarly.

CC Suppose w,R�� ϕ�ψ , ϕ�χ . Thus w,R∗ ��(ϕ∗ �ψ∗) ∨ O[ϕ∗, ψ∗], (ϕ∗ �χ∗) ∨
O[ϕ∗, χ∗]. This yields 4 cases (coding see footnote 66): 11 ϕ∗ �ψ∗, ϕ∗ �χ∗; 12
ϕ∗ �ψ∗, O[ϕ∗, χ∗]; 21 O[ϕ∗, ψ∗], ϕ∗ �χ∗ or 22 O[ϕ∗, ψ∗], O[ϕ∗, χ∗]. 11, 22 yield
ϕ∗ �(ψ∗ ∧ χ∗), resp. O[ϕ∗, ψ∗ ∧ χ∗] (CC: �, O). 12, 21 are inconsistent (antecedent-
disjuntive – cf. Lemma 7.17).

CV, CA, CMon, C Similarly, using, (CO) for O (Lemma 7.17). Con, CN, A are obvious.
B Suppose: ϕ�χ , ¬(ψ �ψ) and ¬(⊥�χ). ϕ�χ has 2 or-clauses. But ¬(⊥�χ),

yielding ¬�χ∗, excludes the second. Thus (ϕ∗ > χ∗)∧¬(ϕ∗ > ⊥). ¬(ψ �ψ) implies
ψ∗ > ⊥ (Lemma 7.15). Thus ψ∗ > χ∗ (RCM) and hence (i) (ϕ∗ ∨ψ∗) > χ∗ (CA) and
(ii) ¬((ϕ∗ ∨ ψ∗) > ⊥) [otherwise (ϕ∗ ∨ ψ∗) > ϕ∗ (RCM) and thus ϕ∗ > ⊥ (CMon) –
contradiction]. Therefore (i, ii) (ϕ ∨ ψ)�χ .

E, F Similar to B, using Lemma 7.15. K∗,T∗, 5∗ using K, T, 5 for �. �
Define the translation • : S(L>,�)−→ S(L�) by p• := p, (¬ψ)• := ¬ψ•, (ψ ◦ χ)• :=
(ψ• ◦ χ•), (� ϕ)• := ⊥� ϕ•, and (ϕ > ψ)• := (ϕ• �ψ•)∨ (¬(ϕ• � ϕ•)∧ ¬(⊥�ψ•)).

LEMMA 7.19. The translations are inverses to each other:

1. For every ϕ ∈ S(L�), (ϕ∗)• = ϕ, 2. For every ϕ ∈ S(L>,�), (ϕ•)∗ = ϕ.

Proof. (1.) Consider ϕ�ψ (7.15 refers to Lemma 7.15):

((ϕ�ψ)∗)•
= (((ϕ∗ > ψ∗)• ∧ ¬(ϕ∗ > ⊥)•) ∨ ((�ψ∗)• ∧ (ϕ∗ > ⊥)•)) (∗, •)
= ((((ϕ∗• �ψ∗•) ∨ (¬(ϕ∗• � ϕ∗•) ∧ ¬�ψ∗•)) ∧ (ϕ∗• �ϕ∗•))

∨((⊥�ψ∗•) ∧ ¬(ϕ∗• � ϕ∗•))) (•, 7.15)
= ((((ϕ�ψ) ∨ (¬(ϕ� ϕ) ∧ ¬�ψ)) ∧ (ϕ� ϕ)) ∨ ((⊥�ψ) ∧ ¬(ϕ� ϕ))) (IH)
= ((ϕ�ψ) ∧ (ϕ� ϕ)) ∨ ⊥ ∨ ((⊥�ψ) ∧ ¬(ϕ�ϕ)) (logic)
= ((ϕ�ψ) ∧ (ϕ� ϕ)) ∨ ((ϕ�ψ) ∧ ¬(ϕ� ϕ)) (C, A)
= ϕ�ψ (logic)
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(2.) Similarly. �

Denote �>,� the deduction relation for VP(>)+ KT5(�)+ IA and �� for AXd(�).

THEOREM 7.20. If �>,� ϕ then �� ϕ•.

Proof. By induction on the length n of the proof (cf. Theorem 7.11):
n = 1: Then θ is PT, K, T, 5, IA, ID, CC, CA, CMon, CV, or P from AX = VP(>)+

KNT5(�)+IA). Then θ• is provable in AX• = AXd: PT from PT(�), KT5(�) are axioms.
P from T(�). For ID use C, for CC use CC(�) and RCM(�), for CA use CA(�), B and
E, for CV use CV(�) and F. Eg.:

IA Suppose θ = � ϕ → (¬ϕ > ⊥). Assume (i) ⊥� ϕ•. We show (¬ϕ• �⊥) ∨
(¬(¬ϕ• �¬ϕ•) ∧ ¬(⊥�⊥)). (ii) ¬(⊥�⊥) by Con. From (i) we obtain ¬ϕ• � ϕ•
(C). Suppose (for reductio) ¬ϕ• �¬ϕ•. Then ¬ϕ• �⊥ (CC), contradicting (Con). Thus
(iii) ¬(¬ϕ• �¬ϕ•). (ii, iii) yield (¬ϕ > ⊥)•.

CMon Let θ = ((ϕ > χ) ∧ (ϕ > ψ)) → ((ϕ ∧ ψ) > χ). Assume ((ϕ• �χ•) ∨
(¬(ϕ• � ϕ•)∧ ¬(⊥�χ•)))∧ ((ϕ• �ψ•)∨ (¬(ϕ• � ϕ•)∧ ¬(⊥�ψ•))). This yields 4
cases (coding see footnote 66). 11 yields (ϕ• ∧ψ•)�χ• (CMon �). 12 yields ϕ• �χ•,
¬(ϕ• � ϕ•) and ¬(⊥�ψ•). The first two imply ⊥�χ• (A) thus (ϕ•∧ψ•)�χ• (C). 21
yields ϕ• �ψ•, ¬(ϕ• � ϕ•) and ¬(⊥�χ•). The second yields ¬((ϕ•∧ψ•)�(ϕ•∧ψ•))
(F), and hence ¬((ϕ•∧ψ•)�(ϕ•∧ψ•))∧¬(⊥�χ•). 22 yields ¬(⊥�χ•), ¬(⊥�ψ•)
and ¬(ϕ• � ϕ•), and one proceeds as in 21.

n +1. Cf. Theorem 7.11. Necessitation N from (CN, RCM), RCM similar to RCEA (using
RCM(�) and C), eg.:

RCEA Let θn+1 = ψ > χ and there are θi = ϕ↔ψ and θ j = ϕ > χ (i, j ≤ n) and
the property holds for i, j . By (IH) we have a proof of θ•

i = ϕ• ↔ψ• and of θ•
j =

(ϕ > χ)• = ((ϕ• �χ•) ∨ (¬(ϕ• � ϕ•) ∧ ¬(⊥�ψ•))) in AX•. Assume ϕ• �χ•. Thus
ψ• �χ• (RCEA). Assume (¬(ϕ• � ϕ•)∧¬(⊥�χ•)). Thus (¬(ψ• �ψ•)∧¬(⊥�χ•))
(RCEA). Therefore θ•

n+1 = (ψ > χ)• in both cases. �

COROLLARY 7.21. AXd is complete for the doxastic ranking semantics.

Proof. Suppose �
�
ϕ. Then �

�
(ϕ∗)• (Lemma 7.19). Thus �

>,�
ϕ∗ (Theorem 7.20). Hence

there is an absolute ranked model R∗, where R∗ �∗ ϕ∗ (completeness, Theorem 7.13).
Yet, the underlying ranked model R of R∗, with the doxastic semantics, covaries in truth
(Lemma 7.14). Thus R�

�
ϕ. Hence �

�
ϕ. �

7.4.3. Metaphysical Conditional. Denote the metaphysical truth relation by �� . To a
ranked model R associate the absolute ranked model R* with truth relation �* (see p. 883).

LEMMA 7.22. The metaphysical conditional is covariantly definable in �∗ by
(ϕ�ψ)∗ ≡ (ϕ∗ > ψ∗ ∧ ¬(ϕ∗ > ⊥)) ∨ (�(ϕ∗ → ψ∗) ∧ (ϕ∗ > ⊥)).
Proof. By induction on the complexity of the formula. Cf. Lemma 7.14. �

LEMMA 7.23. In the absolute ranking semantics and for ϕ�ψ = ((ϕ > ψ) ∧ ¬(ϕ >
⊥)) and O[ϕ,ψ] = �(ϕ → ψ)∧(ϕ > ⊥). (1) O validates RCEA,RCM,CC,CMon,CA,CV
and (2) �, O are antecedent and cross disjunctive and (3) validate

• ((ϕ�χ) ∧ O[ψ, χ ]) → ((ϕ ∨ ψ)�χ) (cross-CA)
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Proof.

(1) RCEA, RCM, CC, CMon, CA: Since the strict conditional and > validate these.
CV: Suppose �(ϕ → χ) ∧ (ϕ > ⊥) and ¬�(ϕ → ψ) or ¬(ϕ > ⊥). The second
combination is inconsistent. The first yields �((ϕ∧ψ) → χ) (CV, strict conditional).
And ϕ > ⊥ implies (ϕ ∧ ψ) > ⊥ (CMon, RCM).

(2) as (1) in Lemma 7.17.
(3) Suppose ϕ > χ,¬(ϕ > ⊥), �(ψ → χ), ψ > ⊥. Thus (ϕ ∨ ψ) > χ (RCM, CA).

Additionally ¬((ϕ ∨ ψ) > ⊥), since ¬(ϕ > ⊥). �

THEOREM 7.24. VT5 is sound for �� .

Proof. Using the sound axiomatisation of the neutral conditional � (Theorem 7.10),
covariance � (Lemma 7.22) and Lemma 7.23 (cf. Theorem 7.18). MoPo, PT, RCEA,
RCM, CC work similarly. P from T. For CMon, CV, CA, use Lemma 7.23. Eg.:

CMon Suppose w,R�� ϕ�χ, ϕ�ψ . Thus (covariance) w,R∗ �∗(ϕ�χ)∗ ∨
O[ϕ∗, χ∗], (ϕ�ψ)∗ ∨ O[ϕ∗, ψ∗]. 1167 yields (ϕ ∧ ψ)�χ (CMon: �). 12,
21 are inconsistent (antecedent-disjuntive, Lemma 7.23.2). 22 yields O[ϕ∗, χ∗]
and O[ϕ∗, ψ∗] thus O[ϕ∗ ∧ ψ∗, χ∗] (CMon, O).

CV Case 1 by CV(�). Case 2 O[ϕ∗, χ∗], ¬(ϕ∗ �¬ψ∗) ∧ ¬O[ϕ∗,¬ψ∗] yields
O[ϕ∗ ∧ ψ∗, χ∗] (CV, O).

CA Case 11 by CA(�). Case 12 ϕ∗ �χ∗, O[ψ∗, χ∗] yields (ϕ∗ ∨ψ∗)�χ∗ (cross-
CA). 21 similarly. 22 O[ϕ∗, χ∗], O[ψ∗, χ∗] yields O[ϕ∗ ∨ ψ∗, χ∗] by (CA,
O).

ID We have ϕ > ϕ as well as �(ϕ → ϕ). Hence ϕ� ϕ, since (ϕ > ⊥)∨¬(ϕ > ⊥).
T Suppose ¬ϕ�⊥. Thus (1) (¬ϕ∗ > ⊥) ∧ ¬(¬ϕ∗ > ⊥) or (2) �(¬ϕ∗ →

⊥) ∧ (¬ϕ∗ > ⊥). (1) is inconsistent and (2) reduces to � ϕ∗(IA, �). But then
ϕ∗ (T, �), i.e., ϕ (covariance).

5 � ϕ ≡ �� ϕ =: ¬ϕ�⊥ (Lemma 7.25.1).
Suppose ¬(ϕ�⊥). Thus ¬((ϕ∗ > ⊥) ∧ ¬(ϕ∗ > ⊥)) (a tautology) and
¬(�(ϕ∗ → ⊥) ∧ (ϕ∗ > ⊥)). Therefore (1) ¬�(ϕ∗ → ⊥) or (2) ¬(ϕ∗ > ⊥).
(1) implies ♦– ϕ∗ and thus �♦– ϕ∗ (5, �), establishing 5 for �, since � ϕ ≡
(�� ϕ)

∗ =: (¬ϕ�⊥)∗ (Lemma 7.25) (2) implies ♦ ϕ∗ and thus ♦– ϕ∗ (IA),
establishing 5 for �. �

LEMMA 7.25. In the absolute ranking semantics: � ϕ ≡ (¬ϕ�⊥)∗.

Proof. �(ϕ → ⊥) implies ϕ > ⊥ (IA). Therefore ((ϕ > ⊥) ∧ ¬(ϕ > ⊥)) ∨ (�(ϕ →
⊥) ∧ (ϕ > ⊥)) ≡ (�(ϕ → ⊥) ∧ (ϕ > ⊥)) ≡ �(ϕ → ⊥) ≡ �¬ϕ. �

But ϕ > ψ is not definable by �. Thus we adopt another strategy for completeness,
using the finite model property of VT5. Let R = 〈 W, (κw)w∈W , V 〉 be a finite ranked
model. Thus there is N ∈ N, such that for all n ∈ N and all w, v ∈ W , if κw(v) < ∞ then
κw(v) < N . Hence we may regularise R by

ρw(v) =
{
κw(v) if κw(v) < ∞,

N otherwise.
(3)

67 Coding see footnote 66.
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Denote R+ = 〈 W, (ρw)w∈W , V 〉 the regularisation of the above R, �+ its standard truth
relation. Consider the trivial translation p+ = p, (¬ψ)+ = ¬ψ+, (ψ ◦ χ)+ = ψ+ ◦
χ+, (ψ �χ)+ = ψ+ > χ+, which we may ignore:

LEMMA 7.26. If R is a finite ranked model, then for all ϕ ∈ S(L>) and all w ∈ W ,
w,R�� ϕ iff w,R+ �+ ϕ.

Proof. Clear. �

COROLLARY 7.27. VT5 is sound and complete for the metaphysical ranking semantics.

Proof. Soundness: Theorem 7.24. Completeness: Suppose �� ϕ. Then this holds for
finite metaphysical ranked models, especially for regular ones. Thus �+ ϕ for finite regular
ranked models (Lemma 7.26). Thus �VT5 ϕ (by the finite model property). �

7.4.4. Alternative Conditional. Proof of Theorem 5.4. Let �� be the metaphysical
truth relation, �∗ the alternative truth relation and � the standard truth relation. For every
ranked model R = 〈 W, (κw)w∈W , V 〉, there is a squeezed model Rs = 〈 W, (λw)w∈W , V 〉,
where λw(v) := κw(v) if κw(v) > κw(w) and λw(v) := 0 otherwise. The squeezed model
is a weakly centered (κcw) ranked model, since λw(w) := 0. Additionally ��Rs is faithful
to �*

R. This is clear for nonconditional sentences. Now consider ϕ > ψ and assume the

property for ϕ,ψ , so that we can write [ϕ] = [ϕ]�
*
R = [ϕ]�

�
Rs and [ψ] = [ψ]�

*
R =

[ψ]�
�
Rs , and abbreviate κw(ϕ) = κw([ϕ]�

*
R) and λw(ϕ) = λw([ϕ]�

�
Rs ) etc. Let λwϕ denote

the metaphysical conditionalisation of λw. Then

w �*
R ϕ > ψ

iff [≤ max{κw(ϕ), κw(w)}]κw ∩ [ϕ] ⊆ [ψ] (def.)
iff ([κw(ϕ)]κw ∩ [ϕ] ⊆ [ψ] and κw(w) < κw(ϕ))

or ([≤ κw(w)]κw ∩ [ϕ] ⊆ [ψ] and κw(w) ≥ κw(ϕ)) (case distinction)
iff ([λw(ϕ)]λw ∩ [ϕ] ⊆ [ψ] and 0 < λw(ϕ))

or ([0]λw ∩ [ϕ] ⊆ [ψ] and 0 = λw(ϕ)) (squeezing)
iff [λw(ϕ)]λw ∩ [ϕ] ⊆ [ψ] (λw(w) = 0)
iff λwϕ (¬ψ) > 0 (meta. con)

iff w ��Rs ϕ > ψ (def.)

Soundness: Suppose �∗ ϕ. Thus there is a ranked model R = 〈 W, (κw)w∈W , V 〉 and
w ∈ W such that w �*

R ϕ. Hence (by faithfulness) w �
�

Rs ϕ holds for the squeezing Rs of

R. But Rs is a cw-ranked model and thus �
�
ϕ holds in the cw-metaphysical ranking se-

mantics. Therefore �VWT5 ϕ (completeness for VWT5 w.r.t. the cw-metaphysical ranking
semantics), hence �VW5 (VW5 is equivalent to VWT5).

Completeness: Suppose �VW5 ϕ. Hence �VWT5 ϕ. Thus there is a regular cw-ranked
model R and w ∈ W such that w �R ϕ (completeness for regular cw-ranked models). But
for a regular cw-ranked model R, �R and �*

R agree (since max{κw(w), κw(A)} = κw(A)
and κw(A) = ∞ only for A = ∅). Thus w �*

R ϕ. Therefore �∗ ϕ in the alternative ranking
semantics. �

Proof of Theorem 5.5. Let � the standard truth definition (1) and �∗ the alternative
standard truth definition (1A). Let R = 〈 W, (κw)w∈W , V 〉 be a ranked model. Define the
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selection model M = 〈 W, F, V 〉, where

F(w, A) :=
{

[≤ max{κw(w), κw(A)}]κw ∩ A if κw(A) < ∞,

∅ if κw(A) = ∞.

Note: if κw(w) = ∞ and κw(A) < ∞, we obtain F(w, A) = A! One verifies that this
is a selection function which is p, id, ca, cmon, cv and additionally mp♦: If F(w, A) �= ∅
then (F(w, A) ⊆ B implies w ∈ A ∪ B). Indeed F(w, A) �= ∅ implies κw(A) < ∞.
F(w, .) will then be weakly centred, since F(w, A) = [≤ max{κw(w), κw(A)}]κw ∩ A =
[≤ λw(A)]λw ∩ A, for the squeezing λw of κw, since λw is weakly centred (compare the
proof of Theorem 5.4).

Additionally M� is faithful to R�∗ (by induction). Consider the case ϕ > ψ and
assume the property for ϕ,ψ (IH). Then

w �*
R ϕ > ψ

iff κw
[ϕ]R

([¬ψ]R) > max{0, κw(w)− κw([ϕ]R)} or κw([ϕ]R) = ∞ (def. �*
R)

iff ([≤ max{κw([ϕ]R), κw(w)}]κw ∩ [ϕ]R ⊆ [ψ]R and κw([ϕ]R) < ∞)

or κw([ϕ]R) = ∞ (Transformation)
iff F(w, [ϕ]R) ⊆ [ψ]R or F(w, [ϕ]R) = ∅ (def. F)
iff F(w, [ϕ]R) ⊆ [ψ]R (Logic)
iff F(w, [ϕ]M) ⊆ [ψ]M (IH)
iff w �M ϕ > ψ (def. �M)

Soundness: Suppose �∗ ϕ. Thus there is a ranked model R and w ∈ W such that w �*
R ϕ.

Hence for the corresponding selection model M, w �M ϕ (faithfulness). But M is an
(mp♦)-ranky selection model and thus � ϕ in the (mp♦)-ranky selection semantics. There-
fore �VP+MP♦ ϕ (one shows: completeness for VP+MP♦ w.r.t. the (mp♦)-ranky selection
semantics as in Corollary 7.4).

Completeness: Suppose �VP+MP♦ ϕ. Thus there is an (mp♦)-ranky selection model M
and w ∈ W such that w �M ϕ. Through ϕ-filtration we obtain a (κmp♦)-ranked model R
which is faithful, i.e., w �R ϕ. (κmp♦) is equivalent to the property (κcw♦): If κw(ϕ) <
∞ then κw(w) = 0. This implies (*): when κw([ϕ]�R) < ∞, then max{0, κw(w) −
κw([ϕ]�R)} = 0! Thus, for a model R with this property � and �∗ agree: Let us verify this
for ϕ > ψ

w �R ϕ > ψ

iff κw([ϕ]�R) = ∞ or (κw
[ϕ]�R

([¬ψ]�R)) > 0 and κw([ϕ]�R) < ∞) (def. �R)

iff κw([ϕ]�R) = ∞ or κw
[ϕ]�R

([¬ψ]�R) > max{0, κw(w)− κw([ϕ]�R} (∗)
iff κw([ϕ]�

*
R) = ∞ or κw

[ϕ]�
*
R

([¬ψ]�
*
R) > max{0, κw(w)− κw([ϕ]�

*
R)} (IH)

iff w �*
R ϕ > ψ (def. �*

R)

But then w �*
R ϕ. Thus �∗ ϕ in the alternative standard ranking semantics. �
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