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COMPLETENESS IN THE SEQUENTIAL CASE 
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University of California, Berkeley 

1. Summary. Recently, in a series of papers, Girshick, Mosteller, Savage and 

Wolfowitz have considered the uniqueness of unbiased estimates depending only 

on an appropriate sufficient statistic for sequential sampling schemes of binomial 

variables. A complete solution was obtained under the restriction to bounded 

estimates. This work, which has immediate consequences with respect to the 

existence of unbiased estimates with uniformly minimum variance, is extended 

here in two directions. A general necessary condition for uniqueness is found, 

and this is applied to obtain a complete solution of the uniqueness problem when 

the random variables have a Poisson or rectangular distribution. Necessary 

and sufficient conditions are also found in the binomial case without the restric

tion to bounded estimates. This permits the statement of a somewhat stronger 

optimum property for the estimates, and is applicable to the estimation of 

unbounded functions of the unknown probability. 

2. Introduction. The notions of completeness and bounded completeness of 

a family of distributions were introduced in [1, 2] in connection with the prob

lems of similar regions and unbiased estimation. The question of whether either 

of these two properties pertains to various families of distributions that are of 

interest in statistics was discussed in [2] under the assumption of fixed sample 

size. The only sequential problems of this kind that have been treated in the 

literature (with quite different terminology) refer to the binomial case. For 

this case Girshick, Mosteller and Savage [3] found necessary (and also certain 

sufficient) conditions on the sequential sampling scheme for completeness, while 

Wolfowitz [4] and Savage [5] gave necessary and sufficient conditions for bounded 
completeness. 

If T is a random variable distributed over an additive class of sets in some 

space according to a distribution PJ with 0 in some set w, then the family 
gr = {PJ I 0 E w} of possible distributions of Tis said to be complete if 

(1) f f(t) dPJ (t) = 0, for all 0 E w, 

implies 

(2) f(t) = 0, 

that is, for all t except possibly in a set N for which PJ (N) = 0 for all () E w. 

The family gr is said to be boundedly complete if this implication holds under 

the assumption that f is bounded. 

The relation of these concepts to the problem of unbiased estimation is an 
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immediate consequence of a theorem of Blackwell [6]. Let X be a random vari

able with distribution p; , 0 e w, and let T be a sufficient statistic for 0. Denote 

by PJ the distribution of T, and suppose that g>1' is complete. Then every func

tion g(O) for which there exists an unbiased estimate, that is, a function tJ> such 

that 

E6 q,(X) = g(O), for all 0 e w, 

possesses an unbiased estimate with uniformly minimum variance. One can say 

furthermore that if ¢(X) is any unbiased or bounded unbiased estimate of g(O), 

then the optimum estimate guaranteed by the above statements is the condi

tional espectation of ¢(X) given T. 

The aim of the present paper is to obtain certain results concerning complete

ness in sequential sampling schemes. Some necessary conditions for complete

ness are given in section 3, and these are used to obtain necessary and sufficient 

conditions for completeness when the random variable being sampled has a 

Poisson or rectangular distribution. In section 4 it is shown that certain neces

sary conditions given in [3] for the binomial case are also sufficient. 

3. A necessary condition for completeness. The sequential sampling schemes 

with which we are concerned are of the following nature. There is given a sequence 

of real valued random variables xl 'x2 ' ... with a joint distribution depending 

on a real parameter 0, which ranges over a set w. We shall assume that for 

each m the set of variables X1 , · · · , X m admits a real valued sufficient statistic 

T m = tm(Xl' ... 'Xm) for e, and that for each m the family g>Tm of distribu

tions of T m is complete. We next suppose that there is given a stopping rule, 

which is such that after m observations have been taken, the decision of whether 

or not to take an m+ 1st observation depends only on the value of 

tm(X1 , • • • , X m). It follows (see [6]) that if the total number of observations is n 

(a random variable which may be infinite), then (T,., n) is a sufficient statistic 

for e. We shall say that the sequential procedure is complete if the family of 

distributions of (T,., n) is complete. Throughout, we shall assume that all 

sequential procedures in question are closed, i.e. that for each (J e w, n is finite 

with probability 1. 

Let Y be a random variable distributed over a Euclidean space according to 

a distribution Pr with 0 in w. We shall say that a point y lies in the positive 

sample space of Y if there exists 0 e w such that every open set containing y 

has positive probability for this e, and that y is an impossible point if it lies in 

the complement of the positive sample space. Consider now a sequential sampling 

scheme as described above. For any integers m < p we shall denote by w; the 

positive sample space of T P given the first m steps of the stopping rule, that is, 

given fori = 1, · · · , m the setS, of values of Ti for which sampling is discon

tinued after the ith observation. Since all the T's are real valued, the sets w; 
are sets of real numbers satisfying the obvious condition w;-1 ~ w; . The 

union U Sm (Sm is the set of points of w;::-1 for which no m+ 1st observation is 
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taken) will be called the set of stopping or boundary points, the points belonging 

to some w:;:-t - Sm are the continuation points. 

We need the following 

LEMMA 1. A necessary condition for a sequential procedure of the type described 

above to be complete is that every procedure obtained from the given one by trunca

tion be complete.1 

This is an immediate consequence of the following more general 

LEMMA 2. Let Xt , X2, · · · be as before a sequence of random variables such 

that for each m the set X1 , · • • , Xm admits a real valued sufficient statistic 

T m = t.n (X 1 , • • • , X m). Let ~~ , ~2 , • • • , ~r each be a complete, closed, sequential 

procedure based on these sufficient statistics. Let ~~ u ~2 u · · · u ~r denote the sequen

tial procedure according to which we continue taking observations until at least one 

of the stopping rules ~~ , · · · , ~r tells us to stop. Then the procedure ~~ u · · · u ~r 

is complete. 

This clearly implies Lemma 1. For if one takes for ~~ any closed, complete 

sequential procedure and for ~ 2 a procedure of fixed sample size, then ~~ u ~2 

is the associated truncated procedure. 

PROOF OF LEMMA 2. It is sufficient to prove the result for the case r = 2. 

Let n1 , n2 , n denote the number of observations taken under ~~ , ~2 , ~~ u ~2 

respectively. Then n = nt if nt ~ nz, n = n~ if n1 ~ n~. Let f be any function 

on ~~ u ~2 such that 

Eef(Tn, n) = 0 for all () E w. 

Then 

Ee E[f(Tn' n) I Tnt' nt] = ol 
~ for all () E w. 

Ee E[f(Tn, n) I Tnz, n2] = OJ 

Since ~~ and ~2 are complete it follows that 

E[f(Tn' n) I Tnl = lt' nt = 'Ytl = ErJ(Tn ' n) I Tnz 

Hence 

0, a.e. 

(3) 0 = P(nt ~ n2l Tn 1 = t1, n1 = 'Yt)f(tt, 'Yt) 

+ P(nt > n2l Tn 1 = t1, n1 = 'Yt)E[f(Tn 2 , n2) I Tnt = t1, n1 = 'Yt, n1 > n2], 

and the analogous condition holds with the subscripts 1 and 2 interchanged . 

We shall prove that f(T n , n) = 0, a.e., by induction over the possible values 

of n. Suppose, therefore, that for some integer m 

Pe(n ~ m,f(Tn, n) ~ 0) = 0. 

(This is certainly true for m = 0.) It then follows that if we take 'Yt = m + 1 

in (3) the second term of the right hand side vanishes, so that 

0 = P(n = n1 I Tnt = t1, n1 = m + l)f(tt, m + 1). 

1 The authors would like to thank Mr. E. Fay for pointing out an errQr in the original 

proof of this Lemma. 
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Hence, 

Pe(n = n1 = m + 1,f(Tn1 , n1) ~ O) 

~ Pe(n = n1 = m + 1, P(n = n1 I Tn 1 , n1) = 0) = 0. 

Analogously we see that 

Pe(n = n2 = m + 1, f(Tn2 , n2) ~ 0) = 0 

and, adding, that 

Pe(n = m + 1, f(Tn, n) ~ 0) = 0. 

This completes the induction. 

We need further the notion of strong completeness. Consider a random 

variable W = (U, V), suppose that the distribution of W depends on 8, and that 

U is a sufficient statistic for 8. Let P~ be the conditional distribution of V given 

U = u-this is independent of 8 since U is a sufficient statistic for 8-and let 

gv• = (g>~J. We say that the pair gw, gv• is strongly complete if the conditions 

(i) Ee f(V) exists for all 8, 

(ii) E(f(V) I U = u) = 0 for almost all u, 

imply 

f(v) = 0, a.e. gv. 

For brevity, we shall then usually say that (g>~} is strongly complete. 

We can now state the following necessary condition for completeness. 

THEOREM. If a closed sequential procedure of the type considered above is com

plete, then 

(i) S"' is almost empty for every m for which w;;::;:~ - w;;:+l is almost empty, 

(ii) for each m for which Sm is not almost empty, the family of conditional dis

tributions ofT m given T m+I = t (as t ranges over w;;::;:~ - W:::+I) is strongly complete. 

PROOF. For any t e: W ;;::;:~ - W:::+I the positive sample space of T m given T m+I = t 

is clearly contained in Sm . Suppose first that (ii) is violated and consider the 

sequential procedure obtained from the given one by truncation after m + 1 ob

servations. By the lemma it will be enough to show that the truncated procedure 

is not complete. For this purpose let us assume that regardless of the stopping 

rule all m + 1 variables X1, · · · , Xm+I are observed. We want to construct an 

estimate of zero based on the sufficient statistic for the tnmcated procedure. 

This estimate must be a function of Tl for Tl f sl ' of T2 for T2 E 82 ' etc. That is, 

although we may imagine that the full sample of size m + 1 is taken, we must 

be careful not to use observations that are impossible when the stopping rule 

is followed. 

We shall now show that there exists an unbiased estimate of zero which is 

zero over 81 , · · · , Sm-1 , equal to f(T m) on Sm and g(T m+l) on W:::+l where f 

and g will be defined below. Since expectation equals expectation of conditional 

expectation, a statistic is an unbiased estimatP of zero if its expectation exists 
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and its conditional expectation given T m+1 = t is zero for almost all t. In our 

case this condition is equivalent to 

(5) 

for almost all t E w:+1 1 

0 

for almost all t • w:+l 1 i.e. for almost all t E w::;:~ - w:+l 1 since 

t ~ w::;:~ implies P(Sml T m+1 = t) = 0, 

together with the existence of Ee(j(T m) I n = m) and Ee(g(T m+1) I n = m + 1). 

Since (ii) does not hold there exists f not vanishing a.e. such that 

Ee(f(T m) In = m) exists and (5) is satisfied. If g is defined by (4), 

Ee(g(T m+1) I n = m + 1) exists, and this completes the proof of the necessity 

of (ii). 

The necessity of (i) is now obvious. For if (i) is violated, then (5) is satisfied 

vacuously, and we can take f to be an arbitrary positive valued function (for 

example) and (4) will then be satisfied. 

As immediate consequences of this theorem ·we shall obtain two conditions, 

which are easier to apply than condition (ii). 

CoROLLARY 1. A necessary condition for completeness is that for no m there 

exists a subset A of S m such that 

Pe(A) > 0 for some () 

and 

P(A I T m+l = t) = 0 for almost all t E w::;:~ - w:+l . 
CoROLLARY 2. Suppose that the sequence of X's is such that in the non-sequential 

case for all m, p with m < p the positive sample space of T m given Tv = t is the 

intersection of the unconditional positive sample space ofT m with the interval [0, t]. 

Then a necessary condition for a sequential procedure to be complete is that each 

Sm differ from a half-open interval (possibly empty) [am , bm) with am ~ bm , a1 = 0, 

am+l = bm, by a set of probability 0. 

PRooF. Let r be the first value of m for which this condition is not satisfied. 

Then there exists c > br-1 such that the sets Sr n [c, oo) and S, n [br-1 , c) both 

have positive probability. The result now follows from Corollary 1 if one puts 

A = Sr n [c, oo ). 

Next we consider some examples. 

EXAMPLE 1. Let x1' x2' . .. be independently normally distributed with 

known variance and unknown mean 0. In this case T m = .2:7'-lX; , and since 

the positive sample space of T m+l is the infinite interval regardless of the values 

of T1 , · · · , T m it follows from condition (i) of the theorem that no sequential 

procedure is complete, with the trivial exception of the procedures with fixed 

sample size. 
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EXAMPLE 2. Let x1' x2' ... be independently uniformly distributed over 

the interval (0, 0), 0 < o < oo. Then T m = max (X 1 , · • · , X m) and Corollary 2 

gives a necessary condition for completeness. If the procedure is truncated we 

can deduce sufficiency of this condition from (5). However, this proof does not 

apply to the general case. The following proof of sufficiency is similar to some 

of the proofs in [3, 4, 5]. 

Suppose 81 , 82 , • · · form a set of adjoining intervals (some of them possibly 

empty), Sm = [am , bm), and suppose there is a non-zero unbiased estimate of 

zero, <I> = cf>(Tn, n) . Let m be the smallest integer for which cf> is not zero almost 

everywhere on Sm. Then 

~ (8} 

E8(<I>) = P8(n = m)E9(<I> I n = m) + L P8(n = j)E9(<1> I n = j) = 0, 
i-m+l 

and hence 

(6) 

(8) 

P8(n = m)E9(<I> I n = m) = 
~ 

L P8(n = j)E~(<I> I n = j). 
i-m+l 

Now the right hand side of (6) is zero when 0 ~ bm, since it is then impossible 

that Tj E sj for any j > m. Hence 

E8[c/J(T m ' m) I am ~ T m < bm] = 0 for all () ~ b,. ' 

and therefore 

8 

1 cf>(x, m)xm-1 dx = 0 for all 0 in [a,. , b,.]. 
a,. 

But this implies cf>(x, m) = 0 almost everywhere inS,., which is a contradiction. 

ExAMPLE 3. Let Xt, X2, · · · be independently distributed according to a 

Poisson distribution with mean fJ. Then T,. = L~-~ X, and again we can apply 

Corollary 2. To prove sufficiency we proceed as in example 2. If the condition of 

Corollary 2 is satisfied we may write without ambiguity Y,.(T,.) for cf>(T,., n). 

Let c be the smallest value of T,. for which Y,.(T ,.) ;:C 0. Then if the probability 
(8} 

of Tn = j is k(j)Oie-8m;, the identity Ee(<I>) = Oimplies 

(8} ~ ~ 

cjJ(c)k(c)Ocp = L cf>(j)k(j)cjJi · ~;?(c)k(c)Oce- 8 mc = L ~;?(j)k(j)Oie-Bm;. 
j-c+1 j=c+l 

Dividing this equation by (Jc and letting ·o tend to zero we see that the right 

hand side tends to zero, which implies cf>(c) = 0 and hence a contradiction. 

4. The binomial case. As was mentioned in section 1, the problem of bounded 

completeness was solved for the binomial case in [3, 4, 5]. Since presumably one is 

unwilling to estimate the bounded parameter p by means of an unbounded 

estimate, further work here may seem unnecessary. However, the problem of 

completeness seems to be of interest for two reasons. If the procedure is bound-
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edly complete without being complete then, even though one may be reluctant 
to use such an estimate, there may exist an unbounded unbiased estimate of p , 

which for some values of p has smaller variance than the minimum variance 

bounded estimate. (An example of this is given in [2]). Since this possibility is 

ruled out when the procedure is complete it is seen that completeness permits 
statement of a stronger optimum property. Apart from this one may be interested 
in estimating some unbounded function of p such as 1/ p. In this case bounded 

completeness does not permit any statements concerning existence of optimum 
estimates. 

In the present section we shall change our notation somewhat. We are con

cerned with a sequence of independent trials with constant probability p of 
success. On the basis of m trials the total number y of successes is a sufficient 
statistic for p. Instead of representing the sufficient statistic for the sequential 

procedure by (y, n), we shall use the representation (x, y) where x is the total 

number of failures, so that x + y = n. The couples (x, y) may be thought of as 
making up the points with integral-valued coordinates of the first quadrant 
of an xy-plane, and as before may be classified as boundary points, continuation 
points, and impossible points. Adopting the terminology of [3], we shall call 
the value of x + y the index of the point (x, y), so that the points of index m 

lie on the line x + y = m. 

Girshick, Mosteller and Savage defined a sequential procedure to be simple 

if for each m the continuation points of index m form an interval. They proved 
that a necessary and sufficient condition for a bounded procedure to be com
plete is that it be simple. (A procedure is said to be bounded if there exists N 

so that the number of observations is 1i:,N.) They also showed that in general 
simplicity is not sufficient for completeness. However, it was shown later [4, 5] 
that simplicity is sufficient for bounded completeness. 

A sequential procedure is said to be closed if the probability of termination is 
unity for every p with 0 < p < 1. It was proved by Girshick, Mosteller and 

Savage that a necessary condition for completeness of a closed sequential pro
cedure is that no procedure obtained from the given one by removing a boundary 
point be closed. (Removing a boundary point here means converting it into a 
continuation point.) We shall prove below that this condition together with 
simplicity is also sufficient for completeness. An interesting question is whether 
these two conditions are sufficient for completeness for the general sequential 
schemes considered in section 2, when simplicity is replaced by the condition 

that every procedure obtained from the given one by truncation is complete, 
and when the second condition is modified by the appropriate null set qualifica
tions. It is easily seen that both of these conditions are necessary. 

The following definitions will be needed below. A boundary point (a, b) is a 
lower (upper) boundary point if for some x < 0 (>0) the point (a + x, b - x) 

is a continuation point. An impossible point (a, b) is a lower (upper) impossible 

point if for some x < 0 (>0) the point (a + x, b - x) is either a continuation 
point or a boundary point. 
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If the procedure is unbounded every boundary point is either a lower or an 

upper boundary point. If it is simple, no point can be both an upper and a lower 

boundary point. The same remarks apply to impossible points . 

THEOREM. A necessary and sufficient condition for completeness of a closed 

procedure in the binomial case is that 

(i) the procedure is simple, 

and 

(ii) the removal of any boundary point destroys closure. 

PROOF . Necessity was proved in [3] as was sufficiency for bounded procedures. 

Sufficiency for unbounded procedures will follow from the following two facts, 

which we shall prove below. 

I. Suppose (i) holds and there exist numbers a, M > 0 such that for all boundary 

points (x, y) of index m ~ M the ratio y/x ~ a. Let f(x, y) be a non-zero un

biased estimate of zero defined over the set B of boundary points, and let mo 

be the smallest index for which there are points withf(x, y) .:P 0. Thenf(x, y) = 0 

for all lower boundary points of index mo . 
II. If (i) holds and if for every positive number a there exist infinitely many 

boundary points (x, y) with y/x ~ a, then one may remove any lower h>oundary 

point without destroying closure. 

Suppose now that a sequential procedure satisfies (i) and (ii). Then, since no 

lower boundary point can be removed without destroying closure, it follows 

from II. that there exist a and M such that y/x ~ a for all boundary points of 

index ~ M. Hence if f(x, y) is an unbiased estimate of zero, and if m.o is defined 

as in I., f(x, y) = 0 for all lower boundary points of index mo . Because of sym

metry the statements concerning upper boundary points analogous to I. and II. 

also hold. It then follows analogously that f(x, y) = 0 for all upper boundary 

points of index mo . But for a simple unbounded procedure every boundary 

point is either an upper or a lower boundary point, and hence we obtain a con

tradiction with the definition of mo . 

Before proving I. and II. we state the following corollary, which generalises 

an example given in [3] . 

CoROLLARY. A sequential procedure that is not bounded and that has a finite 

non-zero number of lower boundary points is not complete. The analogous result 

holds for upper boundary points. 

PROOF OF CoROLLARY. This follows easily from II., since if a procedure of 

this type is to be closed there must exist for each a > 0 infinitely many upper 

boundary points (x, y) with y/ x ~ a. 

In the remainder of the paper we are concerned with the proofs of I. and II. 

PROOF OF I. Assume I. to be false, and let (xo , yo) be the lowest boundary 

point of index mo for which f(xo, Yo) .:P 0. Then y > Yo for all other_ boundary 

points (x, y) for which f(x, y) T- 0. Hence if the probability of a point (x, y) 

is c(x, y)pyqz and if k(x, y) = c(x, y)f(x, y), 
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where the summation extends over all boundary points of index ~ mo for which 

y > Yo . Dividing both sides by p110 we see that 

k(xo, Yo)q"'0 = -p'I,k(x, y)p'~~- 110 - 1 q"'. 

If we can show that the expression multiplying - p on the right hand side 

remains bounded as p tends to zero, we have a contradiction. For letting p 

tend to zero, we would then see that the right hand side tends to zero and the 

left hand side to k(xo , Yo), and hence that j(xo , Yo) = 0. 

To prove this, note that 

I 'I,k(x, y)pll-llo-lq"' I ~ r, I k(x, y) I Pll-llo-1. 

The right hand side is a power series in p. We shall show that this series con

verges for some Po > 0. This implies uniform convergence for I p I < Po , and 

therefore the series remains bounded at p = 0. By assumption there exist num

bers a and M' such that yjx ~ a for all boundary points with y > M'. From 

now on we shall consider all series as being summed over the set of boundary 

points for which y > M' and hence qz ~ q111a. Since only a finite number of 

terms are omitted this does not affect any convergence properties. 

Let 0 < Pt < 1. Then! since f is an unbiased estimate of zero, the series 

'I,k(x, y)p~q~ 

converges absolutely. Hence, so does 
1 1 

"f, I k(x , y) I P~-~~o-lq~-<i(llo+l) ~ "f, I k(x, y) I (qtPta)ll-llo-1 = "f, I k(x, y) I P~-yo-t, 

and consequently the last series is convergent. 

PROOF OF II. Let R be any closed simple procedure satisfying the conditions 

of II., and let (xo, yo) be any lower boundary point of R. We denote by R* the 

procedure obtained from R by taking (Xo , Yo) to be a continuation point and 

by n* the number of observations for R*. 

We first prove that any upper impossible point of R is also an impossible 

point of R*. The negation of this would imply that one can get from a lower 

boundary point to an upper impossible point going only through impossible 

points. This would require at least one step of either of the following kinds: 

Lower impossible point- upper impossible point; 

Lower boundary point - upper impossible point. 

One can easily convince oneself with the aid of a diagram that any procedure 

under which such steps are permitted cannot be simple. 

Let 0 < p, 1r < 1, and let a be such that 0 < a < pjq. If pis the true prob

ability of success, y j x tends in probability to p/ q, and hence there exists N 

such that 

P(y/x ~ a I p) > 1r 

whenever the index of (x, y) exceeds N. By assumption there exists N1 > N 

and a boundary point (Xt, Yt) of R* of index N1 such that yi/Xt ~ a. Then the 
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probability exceeds 1r that the random point (x, y) of index N1 will lie above 

(x1 , Y1). Since (x1 , Y1) is a boundary point, the probability is therefore greater 

than 1r that the point (x, y) of index N is either an upper impossible point for 

R and hence impossible for R*, or a stopping or continuation point for R. We 

have therefore proved that the probability is >1r that either n* ~ N1 or the 

point (x, y) of index N1 is a continuation point of R. 

But given that one has reached a continuation point (a, b) of R, there exists 

N2 such that 

P(n* ~ N2 I p, (a, b)) ~ 1r. 

For 

P(n* > N2 I (a, b)) = P(n > N2l (a, b)) ~ 0 as N2 ~ oo. 

Since there are only a finite number of continuation points of index N1, it is 

now clear that there exists No such that 

P(n* ~ No I p) ~ 1r + 1r2 - 1, 

which can be made arbitrary close to 1 by proper choice of r. Therefore R* 

is closed. 
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