
DOI: 10.1007/s00145-006-0346-4

J. Cryptology (2006) 19: 521–552

© 2006 International Association for
Cryptologic Research

Completeness in Two-Party Secure Computation:
A Computational View∗

Danny Harnik, Moni Naor, and Omer Reingold
Department of Computer Science and Applied Mathematics,

Weizmann Institute, Rehovot, 76100 Israel
{danny.harnik,moni.naor,omer.reingold}@weizmann.ac.il

Alon Rosen
DEAS, Harvard University,

Cambridge, MA 02138, U.S.A.
alon@eecs.harvard.edu

Communicated by Ran Canetti

Received 7 September 2003 and revised 30 November 2005
Online publication 24 May 2006

Abstract. A Secure Function Evaluation (SFE) of a two-variable function f (·, ·) is
a protocol that allows two parties with inputs x and y to evaluate f (x, y) in a manner
where neither party learns “more than is necessary”. A rich body of work deals with
the study of completeness for secure two-party computation. A function f is complete
for SFE if a protocol for securely evaluating f allows the secure evaluation of all
(efficiently computable) functions. The questions investigated are which functions are
complete for SFE, which functions have SFE protocols unconditionally and whether
there are functions that are neither complete nor have efficient SFE protocols.

The previous study of these questions was mainly conducted from an information
theoretic point of view and provided strong answers in the form of combinatorial prop-
erties. However, we show that there are major differences between the information
theoretic and computational settings. In particular, we show functions that are con-
sidered as having SFE unconditionally by the combinatorial criteria but are actually
complete in the computational setting.

We initiate the fully computational study of these fundamental questions. Somewhat
surprisingly, we manage to provide an almost full characterization of the complete
functions in this model as well. More precisely, we present a computational criterion

∗ A preliminary version of this work appeared in Proceedings of the 36th Annual ACM Symposium on
Theory of Computing (STOC 04). Danny Harnik’s research was supported in part by a grant from the Israel
Science Foundation. Moni Naor is an Incumbent of the Walter and Elise Haas Career Development Chair,
whose research was supported in part by a grant from the Israel Science Foundation. Omer Reingold is an
Incumbent of the Walter and Elise Haas Career Development Chair, most of whose research was performed
while at AT&T Labs and the Institute for Advanced Study, Princeton, NJ. Most of this by research by Alon
Rosen was performed while at the Weizmann Institute of Science, Israel.

521

522 D. Harnik, M. Naor, O. Reingold, and A. Rosen

(called computational row non-transitivity) for a function f to be complete for the
asymmetric case. Furthermore, we show a matching criterion called computational
row transitivity for f to have a simple SFE (based on no additional assumptions).
This criterion is close to the negation of the computational row non-transitivity and
thus we essentially characterize all “nice” functions as either complete or having SFE
unconditionally.

Key words. Oblivious transfer, One-way function, Secure function evaluation.

1. Introduction

A Secure Function Evaluation (SFE) of a two-variable function f (·, ·) is a protocol
between two parties Alice and Bob, where Alice holds an input x and Bob holds an input
y. Loosely speaking, at the end of the protocol Alice should learn the value f (x, y) but
learn nothing more (other than what can be efficiently deduced from x and f (x, y)).
Bob, on the other hand, must learn nothing.

There are various definitions and models for SFE, and indeed the above definition
describes just one of them. For example, one may consider a symmetric version where
both parties learn the value f (x, y). However, in this work we choose to concentrate on
this asymmetric version, where only Alice receives the output.1 Furthermore, as a first
step, we conduct our work in the “semi-honest” model where Alice and Bob follow the
protocol honestly, but may later try to extract more information from the transcript of
the protocol. The results are then examined in the real world where malicious behavior
is allowed.2

1.1. Completeness in SFE

A major component in the construction of SFE protocols is the Oblivious Transfer (OT)
protocol, Rabin’s brainchild [44]. OT refers to several different versions of SFE protocols,
all of which turned out to be equivalent. For instance, consider the 1-2-OT [15], where
Bob has two secret bits b0, b1 and Alice has a choice bit c. At the end of the protocol
Alice learns bc but learns nothing about b1−c, while Bob learns nothing about Alice’s
choice. This can be viewed as an SFE protocol for the function fOT(c, (b0, b1)) = bc.

OT plays a key role in secure computation since it was shown to be complete for
SFE [45], [47], [22], [25], [32] (see Section 2.3 for details), i.e. the SFE of every effi-
ciently computable function f can be efficiently reduced to OT. In other words, an SFE
protocol for f can be constructed using calls to an OT protocol,3 and, indeed, several
implementations of OT protocols have been suggested relying on various computational
assumptions.4

1 The choice of the asymmetric model can be justified by the fact that a symmetric protocol seems problematic
to achieve (as brought forth in [2]). This is since the first party to receive its output may maliciously end the
protocol, thus preventing the other party from learning its output.

2 Secure protocols in the semi-honest model can later be transformed to be secure in a malicious model (see
Section 1.5).

3 The notions of completeness and reductions are made formal in Section 2.2.
4 For example, OT was based on general assumptions (e.g. [15], [20], and [18]) or on specific assumptions

(e.g. the Diffie–Helman assumptions [3], [41])

Completeness in Two-Party Secure Computation 523

The fact that there exists a simple complete function for secure evaluation is intriguing
in its own right and has led to the natural question of what other functions are complete.
We denote by SFE-C the set of functions which are complete for SFE. This set in
particular contains the function fOT. We also denote by Eff-SFE the set of functions
for which there exists (efficient) SFE. The set Eff-SFE is also non-empty as there are
functions for which trivial SFE exists (such as functions f (x, y) which only depend on
x). There are many fundamental open problems regarding these sets, in particular, the
following questions are the foci of our paper:

1. Which functions other than fOT are complete for SFE? Is there a natural way of
characterizing the functions in SFE-C? The ability of identifying functions in
SFE-C can be particularly useful as a tool for implementing OT: If we are able to
design SFE for a function f which is SFE-C we are immediately guaranteed an
implementation of OT (we show a specific example in Section 6.1).

2. How do the two sets relate? One possibility which is consistent with our current
knowledge is that SFE-C = Eff-SFE and they both contain every efficiently
computable function. This is indeed implied by the existence of OT. If however
OT does not exist, we have that SFE-C∩Eff-SFE = ∅. In this case the picture is
not as clear: Are there interesting functions that can still have “non-trivial” SFE?
Consider in this case the variety of possible assumptions of the sort f ∈ Eff-SFE
for functions f
∈ SFE-C. Are any of these assumptions useful “fall backs” in the
unfortunate scenario where OT does not exist?

1.2. Related Work

The above questions were investigated in a large body of work [4], [11], [36], [33],
[2], [37], [35], [34], [16].5 This study was mainly conducted from an information the-
oretic point of view. Specifically, most of these papers consider computationally un-
bounded parties. Matching the definition of SFE, the notion of completeness is usually
information theoretic as well. From this perspective this line of research obtains very
strong results. Loosely, these papers classify functions as either complete or in Eff-SFE
unconditionally6 and provide combinatorial properties for separating the two. Formal-
izing the various models considered by this line of work (and specifically the various
notions of SFE and completeness) is beyond the scope of this paper.7 Instead, we con-
centrate here on the most relevant combinatorial criteria provided by these works:

Imbedded OR. The papers initiating this area of research are those of Chor and Kushile-
vitz [11], [36] and Kilian [33]. They consider the symmetric version of SFE and give
criteria for having unconditional SFE and for completeness. In particular, Kilian [33]
proves that a function f is complete iff it contains an imbedded OR. An imbedded OR
of a function f consists of inputs x0, x1 and y0, y1 such that f (x0, y0) = f (x0, y1) =

5 It should be noted that many of these works do not mention completeness explicitly.
6 By unconditionally we mean that no hardness assumption is needed.
7 Section 6.3 contains a discussion on different models of security.

524 D. Harnik, M. Naor, O. Reingold, and A. Rosen

Table 1. Imbedded OR and
insecure minor.

Imbedded Insecure
OR minor

y0 y1 y0 y1

x0 a a a a
x1 a b b c

f (x1, y0)
= f (x1, y1) (see Table 1).8 When discussing Boolean functions, it turns
out that the non-complete functions (functions not containing an imbedded OR) are in
Eff-SFE unconditionally [11].

Insecure Minor. Beimel et al. [2] discuss the asymmetric model (which is the focus of
our work). They defined an insecure minor to consist of inputs x0, x1 and y0, y1 such that
f (x0, y0) = f (x0, y1) but f (x1, y0)
= f (x1, y1) (see Table 1),9 and showed that every
function with an insecure minor is complete, while every other function has a trivial
SFE. This work was conducted under computational definitions of security, using the
compiler of Goldreich et al. [23] to assure security against malicious parties rather than
semi-honest parties (as we do in this work, see Section 1.5). In order to assure polynomial
running time of all parties, this work was restricted to functions over a domain of small
(or constant) size. This provides a very complete answer to the questions posed above
under this restriction.

Other Work. Other works include the generalization of the criteria to the case of multi-
parties (in the symmetric case) [37], [35] and probabilistic functionalities [34] (as op-
posed to deterministic functions). Completeness in multi-party computation was also
studied with regard to a measure of cardinality (the number of participating parties)
[16]. Another work that discusses a computational property rather than a combina-
torial one is [9], where a criterion for universally composable secure computation is
given.

1.3. Computational Considerations Make a Difference

While the information theoretic approach gives very elegant and tight answers when no
computational aspects are discussed (as the case is when discussing computationally
unbounded parties or functions that are only defined on a constant domain size), this is
not satisfactory when computational considerations are taken into account. Particularly,
functions with no insecure minor do not necessarily have efficient SFE protocols. In fact,
such functions can even be complete!

8 The name “imbedded OR” comes from the fact that the function projected to these four inputs looks like
an OR or an AND gate.

9 Note that every imbedded OR is also an insecure minor but not vice versa.

Completeness in Two-Party Secure Computation 525

The problem can be illustrated nicely by looking at a special case of functions with
no insecure minor—the one-to-one functions.10 By the insecure minor criterion a one-
to-one function f has an SFE unconditionally. This is justified by the following simple
protocol: Let Bob send y to Alice. Indeed, Bob learns nothing and Alice learns f (x, y).
Furthermore, Alice’s view could be simulated from x and f (x, y) as y is fully determined
by these values. A priori, however, the running time of this simulator is exponential in n.
This is acceptable if we think of n as small (as Beimel et al. [2] did) but is impermissible
when considering a large domain size. For general functions with no insecure minor (not
necessarily one-to-one) the situation may even be worse. Not only may the simulator’s
running time be large, but the running time of the SFE protocol given in [2] may in itself
be exponential in the input’s length.

We show an example, where the insecure minor classification does not hold when
considering a function on large input size under the assumption that one-to-one one-way
functions exist.11

Example 1. Let g be a one-to-one one-way function (g: {0, 1}n → {0, 1}n for all n).
The function f : {0, 1}1 × {0, 1}2n → {0, 1}2n+1 is defined by

f (c, (y0, y1)) = (c, yc, g(y1−c)).

As f is one-to-one it does not have an insecure minor. On the other hand, we claim
that f is actually complete. As a proof sketch we present the following construction
of OT from an SFE for f . Let Alice hold the choice bit c and Bob hold the secrets
b0, b1. Alice and Bob run the SFE protocol for f with the bit c as Alice’s input and
random strings y0, y1 ∈ {0, 1}n as Bob’s inputs. Now Bob sends to Alice b0 ⊕ hg(y0)

and b1 ⊕ hg(y1), where hg is a hardcore bit of the function g (recall that g is one-way).
Clearly Bob learns nothing from the protocol, since other than participating in the SFE
he only sends information and receives none. Alice, on the other hand, learns yc and
hence she also learns hg(yc) and subsequently the secret bc (as required). However, due
to the computational hardness of inverting g, Alice cannot guess the bit b1−c with more
than negligible advantage over a coin toss (even though she learns g(y1−c)).

1.4. Our Results

Realizing that a combinatorial characterization does not suffice for categorizing all effi-
ciently computable functions, one wonders whether there exist simple criteria at all that
can capture the above notions in the general computational scenario? We answer this
question positively.

This paper presents computational criteria for being in SFE-C and Eff-SFE . These
criteria are computational in nature and hold for functions of unbounded input length.
Also, they are very close to being complementary to each other, thus almost fully cate-
gorizing all efficiently computable functions.

10 In one-to-one functions f (x0, y0)
= f (x0, y1) for all x0, y0, y1. So no insecure minor can exist.
11 Under the existence of OT every function is complete for SFE. Nevertheless, the existence of one-to-one

one-way functions seems a much weaker assumption and in particular does not imply OT with respect to
black-box reductions [30].

526 D. Harnik, M. Naor, O. Reingold, and A. Rosen

We define the following properties on a function f (the following are high-level
descriptions, for the full details see Definitions 4.1 and 3.1):

• f is called (Computational) Row Transitive if one can efficiently compute
f (x1, y) when given x0, x1 and f (x0, y) for every x0, x1 and y.

• f is said to be (Computational) Row Non-Transitive if for some x0, x1 it is (some-
what) hard to compute f (x1, y) from x0, x1 and f (x0, y) for a random (unknown) y.

Comment. We call this property computational row transitivity since given a value of
f taken from the row f (x0, ·) (viewing f as a table), Alice can efficiently deduce the
corresponding value in row f (x1, ·). In essence this means that for Alice, learning a
value at one row is equivalent learning it at any other row.

Superficially, the two properties may seem exactly complementary to each other.
However the exact formulations (Definitions 4.1 and 3.1) leave a gap between the two.

Main Theorem. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a polynomial time computable
function.

1. If f is row transitive then it has an efficient SFE protocol (f ∈ Eff-SFE).
2. If f is row non-transitive then it is complete (f ∈ SFE-C).

Outline of Proof. In the following discussion we try to present the main ideas for
the proofs. The proofs are conducted in the semi-honest model but the statements have
implications in the malicious model as well (see Section 1.5).

(1) We show an efficient SFE protocol for a computational row transitive f . In general,
the protocol simply consists of Bob choosing any input x̂ and sending it to Alice along
with f (x̂, y). Alice can then compute f (x, y) by the row transitivity property. Also, the
view of Alice can be simulated by choosing x̂ and computing f (x̂, y) from her output
f (x, y) (again by the transitivity property).

(2) As for the row non-transitive functions, consider the following toy example: Sup-
pose that we are given x0, x1 such that computing f (x1, y) from f (x0, y) is hard. Then
using an SFE protocol for f we construct a version of OT we call Naive-OT, where the
sender Bob has a secret bit b and the receiver Alice has a bit c that chooses whether she
should learn Bob’s secret or not (Bob learns nothing).12 Let Bob choose y and Alice
choose either x0 or x1. The two parties run the SFE protocol for f with their chosen
inputs. Now Bob sends b⊕ h(f (x1, y)), where h is the Goldreich–Levin (GL) hardcore
bit [21]. If Alice chose x1, then she learned f (x1, y) in the SFE and hence can learn
Bob’s secret bit, however, if she chose x0 she only learned f (x0, y) and cannot predict
the hardcore bit with better than negligible probability. Bob learns essentially nothing in
the process.

The actual proof of security calls for a more careful treatment: To begin with, we note
that our use of the GL hardcore bit is somewhat more involved as it is not applied to a
one-way function.13 Furthermore, the proof that the GL bit is hard to predict requires

12 In the semi-honest model, Naive-OT is equivalent to the so-called Noisy-OT, that in turn was shown to
be equivalent to 1-2-OT [12].

13 We assume that it is hard to compute f (x1, y) given f (x0, y), but have no guarantee that it is easy to
compute f (x0, y) from f (x1, y), thus, this is a computation that might be hard in both ways.

Completeness in Two-Party Secure Computation 527

the hardness of computing f (x1, y) to be “strong hardness” (as is the case with one-
way functions where strong one-way functions are needed), but our definition of row
non-transitivity guarantees only “weak hardness” (this is crucial in order to avoid a big
gap between the criteria for SFE-C and Eff-SFE). To overcome this we show that the
GL bit is only “weakly hard” to predict, and thus create an OT with weakened security
(called Weak-OT14 in this paper). We then show how one can use this weakened version
of OT to construct a fully secure OT. This is shown by an amplification argument using
Yao’s XOR lemma [46] (see [24]).

Note that an implementation of OT was shown to guarantee secure computation in
further computational models such as multi-party secure computation [22] (as opposed
to two parties), symmetric versions of secure computation and secure computation of
probabilistic functionalities. Thus the completeness theorem can be informally stated
as: The existence of an SFE protocol for any row non-transitive function implies a wide
range of multi-party secure computation.

1.5. The Results in the Malicious Model

Our paper and results concentrated thus far on the semi-honest model (sometimes referred
to as the “Honest but Curious” model). This means Alice and Bob follow the protocol
exactly as specified (they are honest), but after the protocol is executed, the parties may
try to extract more information than actually intended by inspecting the transcript of
the protocol (they are curious). A major justification for this assumption stems from
the compiler of Goldreich, Micali and Wigderson (GMW) [23], that showed how every
protocol that is secure in the semi-honest model, can be transformed into a protocol
secure in the malicious model (assuming (non-uniform) one-way functions exist). This
means that assuming one-way functions do exist, the results presented also carry over to
the real world where parties may be malicious. More precisely:

Theorem 1.1. If one-way functions exist then:

• All row-transitive functions have efficient SFE protocols secure against malicious
parties.
• If a row non-transitive function has an efficient SFE protocol in the semi-honest

model, then all functions have SFE protocols secure against malicious adversaries.

It is important to point out that in the above statements the notion of an SFE protocol
must refer only to sending messages and tossing coins, without the use of “magic boxes”
such as third parties, noisy channels or quantum channels, where the GMW compiler
does not apply.

Note that, on the other hand, the malicious and semi-honest worlds differ from one
another under information theoretic security definitions, as implied in [2] and [34].15

Theorem 1.1 relies on the fair assumption that one-way functions exist. We further
ask what can be said about the malicious model without this assumption? We point out
that the existence of an SFE for a complete function implies semi-honest OT that in turn

14 The notion of Weak-OT in this paper (defined in Section 3) is different from various versions of OT with
the same name defined in other papers (e.g. [14] and [34]).

15 For example the OR of two bits is complete in the semi-honest case, but not so in the malicious model.

528 D. Harnik, M. Naor, O. Reingold, and A. Rosen

implies the existence of one-way functions (e.g. [29]). So the completeness part of the
theorem holds unconditionally:

Theorem 1.2. If a row non-transitive function has an efficient SFE protocol in the
semi-honest model, then all polynomial time functions have SFE protocols that are
secure against malicious adversaries.

On the other hand, if one-way functions are not guaranteed, we do not know if there
exists an SFE in the malicious model for all row transitive functions. Moreover, we show
a possible scenario (under certain plausible assumptions) in which there are functions
that have SFE in the semi-honest model but not in the malicious model. This example
along with the other statements raised in this subsection are thoroughly discussed in
Section 5.

1.6. Paper Organization

In Section 2 we present some relevant definitions and notations, including the notions
of reductions and completeness. In Sections 3 and 4 we present our criteria and main
theorems. Section 5 elaborates on the applicability of our results in the malicious model.
Section 6 contains a discussion on the meaning of the results in this paper as well as a
general discussion regarding the computational model versus information theoretic ones.
Section 7 mentions some further issues and questions.

2. Formal Setting

Some general notations for this paper: PPTM stands for Probabilistic Polynomial Time
Turing Machine. By a Distribution Ensemble we mean a series {Ds}s∈S where S is an
infinite set of strings and Ds is a distribution.

A Samplable Distribution is a PPTM D accepting a unary number and outputting
a binary string of polynomially related length, i.e. D(1n) ∈ {0, 1}l(n) where l(n) is
bounded by a polynomial. This corresponds to a distribution ensemble {Dn}n∈N that can
be efficiently sampled by a uniform Turing machine.

In this paper we choose to define security to be against non-uniform adversaries.
These are presented as Turing machines that also receive an auxiliary information string,
a formulation equivalent to that of circuits. Formally: a PPTMA is a PPTM with aux-
iliary information, that is, a probabilistic Turing machine that is required to run in time
polynomial in the length of its first input (usually this is the security parameter) and has
access to an auxiliary information string w ∈ {0, 1}∗.

The choice of non-uniform adversaries is essential when working in the malicious
adversaries model (it is necessary, for example, for Theorem 1.2). On the other hand,
most results hold also with definitions of security against uniform adversaries (definitions
that also leave a smaller gap between the criteria, see Section 6.2 for more details).

Let S be an unbounded set of strings and let {Xs}s∈S and {Ys}s∈S be distribution
ensembles. We say that {Xs} and {Ys} are computationally indistinguishable (denoted

{Xs}
c≈ {Ys}) if for every PPTMA M , every polynomial q(·), all sufficiently large n, all

Completeness in Two-Party Secure Computation 529

s ∈ S ∩ {0, 1}n and all auxiliary information w ∈ {0, 1}∗ we have

|Pr[M(1n, Xs, w) = 1]− Pr[M(1n, Ys, w) = 1]| < 1

q(n)
.

The probability is taken over the distributions Xs, Ys and the randomness of M .

2.1. SFE

Discussing the various definitions of SFE is beyond the scope of this paper. The reader
is referred to [8] and [20] for a good overview of possible definitions. In this work we
focus on a specific version of SFE, namely the semi-honest computational asymmetric
version, where only one party gets the output of the deterministic function f (as opposed
to probabilistic functionality). The definitions we present here are along the lines of
[20]. Unlike the discussion of functions of constant input size, we allow the functions to
receive very long inputs. This is done in the standard fashion by relating the complexity
and security parameters to the function’s input length. In order to accommodate this
convention, we make the following assumptions:

• f is computable in time polynomial in the security parameter for the SFE protocol
(usually denoted n).
• The input length (combined length of the inputs) is bounded by a polynomial of the

security parameter.
• For sake of simplicity and without loss of generality, assume that for input length l(n)

the output is always of length m(n) (where m(·) is a polynomial). This assumption
is justified by a padding argument.16

• Assume that all parties know n and the length of the inputs. Also, when giving
partial inputs to various PPTMs, one should also give 1n as an extra input. However
we omit this extra parameter for ease of notation.

Let � be a protocol between Alice and Bob. Denote Alice’s output by �A(x, y) and
Bob’s output by �B(x, y). In our case we simply denote �(x, y) = �A(x, y) (since
�B(x, y) is always empty). Denote Alice’s view of the protocol by VIEW�

A (x, y) (this
includes Alice’s local input, local randomness, her output and all of the messages received
from Bob). Similarly Bob’s view is VIEW�

B (x, y).
The formal definition of an SFE protocol requires that each party’s view of the protocol

can be efficiently simulated, even when only seeing the party’s local input and output.
Hence, practically nothing is gained by seeing the view of the protocol.

Definition 2.1 (SFE Protocol (in the Semi-Honest Model)). Let f : {0, 1}∗×{0, 1}∗→
{0, 1}∗ be a poly-time function. A polynomial time protocol � is a Secure Function
Evaluation (SFE) for f if the following holds:

1. Correctness: For every x, y ∈ {0, 1}∗, �(x, y) = f (x, y).

16 Any general function can be turned into such a function—if the output is too short, we simply pad it with
zeros to the appropriate length.

530 D. Harnik, M. Naor, O. Reingold, and A. Rosen

2. Security:
• Bob’s Privacy: There exists a PPTM SA such that

{SA(x, f (x, y))}x,y∈{0,1}∗
c≈ {VIEW�

A (x, y)}x,y∈{0,1}∗ .
• Alice’s Privacy: There exists a PPTM SB such that

{SB(y)}x,y∈{0,1}∗
c≈ {VIEW�

B (x, y)}x,y∈{0,1}∗ .

Denote the set of functions that have an efficient SFE protocol by Eff-SFE .

SFE in the Malicious Model. We stress that the above definition (adapted from Def-
inition 7.2.1 of [20]) applies only for the semi-honest model. For the definition in the
case of malicious parties we refer the reader to [8] and [20]. In general, this definition
introduces an “ideal box” that evaluates f , where both parties enter their respective
inputs and Alice receives the output. For a protocol to be an SFE the parties should
gain nothing in the actual real computation over calling an ideal box, in the sense
that the view of the real computation can be simulated given only the view of the
ideal box. This “ideal-real” approach can capture both the malicious and semi-honest
models.

However, we want to advocate a definition that is slightly more stringent than that of
[8] and [20]. As pointed out by Ishai [31], one would like SFE in the malicious world
to be harder to achieve than SFE in the semi-honest world. Nonetheless this is not the
case for the definitions given in [8] and [20], and in fact the two models turn out to be
incomparable (since the simulator is given strictly more power in the malicious model).
As an example, the OR function is complete in the semi-honest model but has a very
simple unconditional SFE in the malicious model (the parties can simply always use the
input 0 and thus always learn the other sides input). We therefore prefer to say that a
protocol is a stringent-SFE in the malicious model if it follows the ideal-real definition
of [8] and [20] with the additional constraint that it is also an SFE in the semi-honest
model as defined above.

Denote the set of functions that have an SFE protocol by Eff-SFE .

2.2. Reductions and Completeness in SFE

The definitions of reductions and completeness in the context of SFE are simply ana-
logues of these notions in general (polynomial time) computation. We say that g securely
reduces to f if one can construct an SFE protocol for g using calls to an “ideal box” that
evaluates a function f . A function f is SFE-complete if given an SFE protocol for f , it
is possible to evaluate any function securely. Formally:

• An ideal box evaluating a function f is a box that takes two inputs, x from Alice
and y from Bob, and outputs f (x, y) to Alice.17

• A protocol with access to an ideal box is a protocol where the two parties are allowed
to flip coins, exchange messages and jointly invoke calls to an ideal box evaluating

17 Bob does not see Alice’s interaction with the ideal box and vice versa.

Completeness in Two-Party Secure Computation 531

�������

���	
���

Fig. 1. The two families SFE-C and Eff-SFE may have no intersection, but if they intersect (as is shown
in the figure) then all efficiently computable functions have SFE protocols and also SFE-C = Eff-SFE .

some function f . This means that the two parties can compute local inputs for f
(one acting as Alice and the other as Bob18) and send their respective inputs to the
ideal box. The ideal box, in turn, returns its output to the party acting as Alice.
• A protocol with access to an ideal box is said to be an SFE of a function g if it

follows the definition for SFE (only here the views also incorporate each of the
parties’ local view of the ideal box calls).

Definition 2.2 (Secure Reduction). We say that a polynomial time function g: {0, 1}∗×
{0, 1}∗ → {0, 1}∗ securely reduces to a polynomial time function f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ if there exists a polynomial time protocol � f

g (polynomial in the length of the
input to g) with access to an ideal box for evaluating f such that the protocol � f

g is an
SFE for g.

Definition 2.3 (SFE-Complete). We say that a function f is SFE-Complete if every
efficiently computable function g securely reduces to f . Denote: SFE-C =
{ f | f is SFE-Complete }.

These definitions have the following essential composability properties (as shown by
Canetti [8]):

• If g securely reduces to f and f has an SFE protocol then g has an SFE protocol.
• If g securely reduces to f and g is SFE-complete then f is SFE-complete.

The sets SFE-C and Eff-SFE have the following two possibilities: either the two sets
are distinct (have no intersection) or the two sets have an intersection. However, the
latter case implies that all efficiently computable functions have an SFE protocol, and
thus SFE-C = Eff-SFE and they contain all efficiently computable functions (see
Fig. 1). This is indeed the case, for instance, if efficient protocols for OT (defined
in the next section) exist. Altogether, either SFE-C and Eff-SFE do not intersect or
SFE-C = Eff-SFE and they contain all efficiently computable functions.

Note that this is also the situation for other definitions of completeness such as NP-
completeness, but the SFE scenario differs from that ofNP in the sense that forNP it
is widely assumed that P
= NP (and therefore the sets NP-C and P are assumed to
be distinct). While in our case of SFE it seems reasonable (or at least not surprising) that

18 The parties may switch their roles in various calls to the ideal box.

532 D. Harnik, M. Naor, O. Reingold, and A. Rosen

there is an intersection and that all functions are both SFE-complete and in Eff-SFE .
Perhaps a better analogue to the situation in SFE-completeness is in the world of logspace
computation, where the actual situation is not clear, either NL = L or all logspace
complete functions are not in L (NL-C ∩ L = ∅).

2.3. OT

A central component in the construction of SFE protocols is the OT protocol. OT refers
to several equivalent versions of two-party protocols. For example, an important formu-
lation is the 1-2-OT (due to Even el al. [15]), where Bob has two secret bits b0, b1 and
Alice has a choice bit c. At the end of the protocol Alice learns bc but learns nothing
about b1−c, while Bob learns nothing about Alice’s choice. In principal, we can view a
1-2-OT protocol through the framework of SFE. Namely, an SFE protocol for the func-
tion f (c, (b0, b1)) = bc. Another important version is known as Noisy-OT or Rabin-OT
(due to Rabin [44]), and was shown to be equivalent to 1-2-OT in [12]. This version
goes as follows: Bob holds a secret bit b. After the protocol, Alice receives the bit b with
probability 1

2 (with probability 1
2 she learns nothing), and Bob does not know if Alice

received the bit or not.
In this paper we use a slightly different version that we call Naive-OT, that is clearly

equivalent to the Rabin-OT and 1-2-OT in the semi-honest model. In this version Alice
simply chooses whether to receive Bob’s secret bit or not, while Bob learns nothing of
this choice.

Definition 2.4. A Naive-OT protocol is an SFE protocol for the function:

f (c, b) =
{

b, c = 1,
⊥, c = 0.

As mentioned before, the importance of OT stems from the fact that it is complete
for SFE. This property was shown in a series of works for different models: The ideas
are attributed to Yao [45], [47] originally for the semi-honest model, and through the
GMW compiler [23] (originally published in 1987) it is possible to get a protocol for the
malicious model. Goldreich et al. [22] then extended the work to the multi-party case.
Goldreich and Vainish [25] showed a secure computation protocol based solely on OT
calls,19 working only in the semi-honest model, and Kilian [32] presented a construction
based only on OT in the malicious model.

In turn, OT can be constructed from trapdoor permutations and public key encryption
with particular “niceness” properties [15], [20], [18] and various specific intractability
assumptions (e.g. the Diffie–Helman assumptions [3], [41]). In contrast, OT cannot be
reduced in a black-box manner to weaker primitives such as one-way functions, general
public key encryption or even trapdoor one-to-one functions [30], [28], [18].

19 Previous results were also based on other computational assumptions (that are equivalent to the existence
of one-way functions).

Completeness in Two-Party Secure Computation 533

3. Criterion for Completeness

Our main result presents criteria for functions to being complete or in Eff-SFE . While
the two criteria are not complementary of each other, they are in a sense a “strong
negation” of each other. For simplicity of exposition, the criteria we present in Sections
3 and 4 are not as tight as possible, and give results for the most natural definition of
SFE.

Definition 3.1. We say that a function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is (Compu-
tational) Row Non-Transitive if there exist polynomial time samplable distributions
Dx (·), Dy(·) and there exists a polynomial p(·) such that for every PPTMA M , for all
auxiliary information w ∈ {0, 1}∗ and for all but finitely many n,

Pr[M(x0, x1, f (x0, y), w) = f (x1, y)] < 1− 1

p(n)
,

where the probability is taken over x0, x1 ∈ Dx (1n), y ∈ Dy(1n) and the randomness
of M.20

We note that the notion of hardness in row non-transitivity is very different from that
of a one-way function. To begin with, unlike one-way functions where one is given g(y)
and asked to find any z such that g(z) = g(y), here we ask only that it is impossible
to find the specific value f (x1, y) from f (x0, y), while putting no restriction on the
ability of finding a value f (x1, z) with f (x0, z) = f (x0, y). As a result, row non-
transitivity does not even imply the existence of one-way functions, and its hardness
can come also from a non-computational source (for example, the OR of two bits is a
row non-transitive function). Furthermore, row non-transitivity guarantees that it is hard
to compute f (x1, y) given f (x0, y), but gives no guarantee that it is easy to compute
f (x0, y) from f (x1, y), thus, this is a computation that might be hard in both ways (even
when x0 and x1 are fixed values and not random variables).

Theorem 3.1. If a function f is computational row non-transitive then it is complete
for SFE.

To prove that every row non-transitive function is complete we show a construction of
an OT protocol using access to an ideal box for evaluating a non-transitive f . Rather
than directly showing this, we first construct a weakened implementation of Naive-OT
that is later shown to imply OT. This is called Weak-OT and is essentially a relaxation
of the security restrictions on the receiver.

Definition 3.2. A Weak implementation of Naive-OT (Weak-OT in short) consists
of two parties, the sender and the receiver. The sender holds a secret bit b and the receiver
holds a choice bit c. Both parties have a security parameter n. At the end of the protocol,

20 Recall that a PPTMA is a PPTM with auxiliary information, that is polynomial time in the security
parameter.

534 D. Harnik, M. Naor, O. Reingold, and A. Rosen

the following hold:

1. Correctness: If c = 1 then the receiver outputs bit b.
2. Security:
• Receiver’s view: If c = 0 then there exists a polynomial p′(·) such that for every

PPTMA A, for all auxiliary information w ∈ {0, 1}∗ and for all but finitely
many n,

Pr[A(VIEWweak-OT
receiver (0, b), w) = b] < 1− 1

p′(n)
.

• Sender’s view: for every PPTMA B and for uniformly chosen bit c, for all
polynomials q(·), for all auxiliary informationw ∈ {0, 1}∗ and for all but finitely
many n,

Pr[B(VIEWweak-OT
sender (c, b), w) = c] <

1

2
+ 1

q(n)
.

The definition of Weak-OT is justified by the following claim:

Lemma 3.2. The existence of Weak-OT implies the existence of OT.

The lemma is proved in Section 3.1. We now turn to prove Theorem 3.1:

Proof of Theorem 3.1. We show a construction of a Weak-OT protocol using access
to an ideal box for evaluating a row non-transitive f .

In the Weak-OT the sender holds a secret bit b and the receiver holds a choice bit c.
The two sides call a box� f for the non-transitive function f . Let the receiver play Alice
(holds x) and the sender play Bob (holds y).

Weak-OT� f (c, b):

1. The sender chooses random x0, x1 according to the distribution Dx (1n) and
sends them to the receiver.

2. The receiver and sender jointly call the ideal box � f .
The receiver uses x = xc.
The sender chooses a random y according to Dy(1n).
The receiver learns f (x, y).

3. The sender:
Computes z = f (x1, y) and chooses a string r uniformly at random in
{0, 1}|z|.

Sends to the receiver r and 〈z, r〉 ⊕ b, where 〈z, r〉 denotes the inner
product of the strings z and r mod 2 (in other words this is the
Goldreich–Levin predicate).

4. If c = 1 then the receiver retrieves the bit b by computing 〈 f (x, y), r〉 =
〈z, r〉.

Completeness in Two-Party Secure Computation 535

We show that the above protocol constitutes a Weak-OT protocol:

Correctness. If c = 1, then the receiver learns f (x, y) = f (x1, y) = z, and can
therefore learn 〈z, r〉 and can retrieve the bit b.

Security.

• Sender’s view: The sender’s view consists of his own messages as he only sends
messages. In the access to the ideal box he only sees his input and does not see the
output. He therefore has no information at all regarding the bit c.
• Receiver’s view: If c = 0, then the receiver learns f (x, y) = f (x0, y). We show

that the receiver cannot use this information to predict the bit 〈 f (x1, y), r〉 (and
equivalently the bit b), with probability better than 1−1/p(n) for some polynomial
p(·). This is equivalent to the weak version of Goldreich–Levin’s (GL) hardcore
bit where it is only required to show that the bit is somewhat hard to predict. The
statement is formalized and proved in the following lemma.

Lemma 3.3. Suppose f is row non-transitive. Then there exists a polynomial p(·) such
that for all PPTMA A, for all auxiliary information w ∈ {0, 1}∗ and for all but finitely
many n’s,

Pr[A(x0, x1, f (x0, y), r, w) = 〈 f (x1, y), r〉] < 1− 1

p(n)
,

where the probability is taken over x0, x1 ∈ Dx (1n), y ∈ Dy(1n), r ∈ {0, 1}| f (x1,y)| and
the randomness of A.

To conclude the proof of Theorem 3.1 suppose that there exists a PPTMA A that
predicts the bit b from the receiver’s view, with probability better than 1 − 1/q(n) for
all polynomials q(·) and for infinitely many n’s. The receiver’s view only consists of
x0, x1, f (x0, y) and the bit 〈 f (x1, y), r〉 ⊕ b. Thus A predicts 〈 f (x1, r)〉 given only
x0, x1, f (x0, y)with probability better than 1−1/q(n) for all polynomials q(·), and this
contradicts Lemma 3.3.

Proof of Lemma 3.3. Suppose for the sake of contradiction that there exists a PPTMA
A that manages to predict 〈 f (x1, y), r〉 given f (x0, y) and r with overwhelming prob-
ability. More precisely: there exists a PPTMA A with auxiliary information w ∈ {0, 1}∗
such that for all polynomials q(·), for infinitely many n’s,

Pr[A(x0, x1, f (x0, y), r, w) = 〈 f (x1, y), r〉] > 1− 1

q(n)
. (1)

We derive a contradiction to the non-transitivity of f by presenting a procedure B (with
black-box access to A) that correctly computes f (x1, y) given f (x0, y) with very high
probability.

We concentrate our efforts on inputs y on which the algorithm A succeeds with
probability greater than 9

10 . Define

En = {y | Pr[A(x0, x1, f (x0, y), r, w) = 〈 f (x1, y), r〉] > 9
10 }.

536 D. Harnik, M. Naor, O. Reingold, and A. Rosen

Since A has a very high success probability, the set En must contain almost all of the
inputs. This is formalized by the following easy claim (given here without a proof):

Claim 3.4. For all polynomials q(·), for all but finitely many n’s,

Pry∈Dy(1n)[En] > 1− 1

q(n)
.

The claim is specifically true for q(n) = 2p(n), where p(·) is the polynomial given by
the non-transitivity of f . So Pry∈Dy(1n)[En] > 1− 1/2p(n) for all but finitely many n.

Next we introduce the procedure B that uses A to compute f (x1, y) given f (x0, y)
for all y ∈ En and with very high probability (over the procedure’s random bits).
Consider a specific y ∈ En . The computation of f (x1, y) is done bit by bit. In order to
compute the i th bit (denoted f (x1, y)i), choose a random r ∈ {0, 1}| f (x1,y)| and compute
A(x0, x1, f (x0, y), r, w) and A(x0, x1, f (x0, y), r⊕ei , w) (where ei is the binary vector
with 1 in the i th place and 0 in all others). If A succeeds on both inputs then

A(x0, x1, f (x0, y), r, w)⊕ A(x0, x1, f (x0, y), r ⊕ ei , w)

= 〈 f (x1, y), r〉 ⊕ 〈 f (x1, y), r ⊕ ei 〉
= f (x1, y)i .

The probability that A succeeds on both of the above inputs is at least 1−2 ·(1− 9
10) =

8
10 . Repeating this n times and taking a majority gives the bit f (x1, y)i with exponen-
tially small error probability 2−
(n) (by a Chernoff bound). This procedure is carried
out for every bit of f (x1, y) separately, ultimately outputting the full string f (x1, y)
with probability at least 1 − n · 2−
(n) = 1 − 2−
(n) for infinitely many n. Combin-
ing this with Claim 3.4 and looking at all inputs y ∈ Dy(1n), the described efficient
procedure B computes f (x1, y) from f (x0, y) with probability at least Pr[En] · (1 −
2−
(n)) > (1− 1/2p(n))(1− 2−
(n)) > 1− 1/p(n), contradicting the non-transitivity
of f .

Note that the approach we take in our proof of Theorem 3.1 is of taking a hardcore
bit of a function that has only “weak” hardness, and later amplifying the hardness by
repetition and XORing of the resulting weak hardcore bits (as shown in Section 3.1).
An alternative approach would be first to amplify the hardness guaranteed by the row
non-transitivity of the function, by considering a concatenation of many independent
copies of the function f , and only then applying the GL hardcore bit. We note that the
two suggested methods are equivalent.

Why Use the GL Hardcore Bit. Our choice of the GL hardcore bit stems from its
generality, that is the fact that it applies to any computation that is hard. This is crucial
since we know nothing in advance about the specific computation at hand (i.e. the
computation of f (x1, y) given x0, x1 and f (x0, y)). In fact, it is sufficient to have any
choice of a function h(x, r) with the following property: There exists a polynomial p(·)
such that the input x can be retrieved efficiently with overwhelming probability (allowing

Completeness in Two-Party Secure Computation 537

only a negligible error) when given access to an oracle that outputs h(x, r) correctly with
probability at least 1−1/p(n) for a random r . Interestingly, we can even use the function
h(x, i) = xi which is very mildly hard. We prefer to use the GL bit as it implies a much
more efficient construction for OT.

The Insecure Minor Criterion Implies Non-Transitivity. An important test case for our
completeness criterion is whether it encapsulates previous results, namely, the insecure
minor criterion of [2]. Recall that an insecure minor consists of inputs x0, x1 and y0, y1

such that f (x0, y0) = f (x0, y1) but f (x1, y0)
= f (x1, y1).21 Choosing the rows x0, x1

and the distribution Dy to be uniform on {y0, y1} we get that for all PPTMA M (or any
function at all in this case),

Pr[M(x0, x1, f (x0, y), w) = f (x1, y)] ≤ 1
2

and hence the function f is also computational row non-transitive.

3.1. Weak-OT Implies OT

This section shows that the weak implementation of OT (Weak-OT) implies a strong
OT. We note that this amplification result defers from previous such results like [13] and
[14] that were all information theoretic. While the construction used here is essentially
the same, it works against computational adversaries and thus requires a more complex
proof using Yao’s XOR lemma.

Recall that the definition of a “strong” Naive-OT protocol requires that the views of
the sender and receiver may be simulated (up to a negligible deviance), when seeing
just their local input and output. This is equivalent to saying that the sender (or receiver)
cannot guess the other side’s input bit with non-negligible advantage over flipping a coin
(when seeing their local view of the protocol). A Weak-OT is a relaxation of the latter
definition. The sender is restricted in the same manner, but the receiver is allowed a
higher success probability. We require that the receiver’s success probability in guessing
the sender’s bit b is bounded by 1− 1/p(n) for a specific polynomial p(·). We show the
following:

Lemma 3.2. Weak-OT exists if and only if OT exists.

Proof. Any OT protocol is also a Weak-OT protocol since it withstands harder security
requirements. To prove that Weak-OT implies the existence of a strong Naive-OT, we
present a construction of an OT protocol based on a protocol for Weak-OT. Let p(·) be
the promised polynomial in the Weak-OT’s definition of security for the receiver’s view.
Define t (n) = p(n)2.

21 We note that this definition is for functions of constant input length. The generalization to functions on
unbounded input length requires having an insecure minor for every input length n, and also requires that
finding the values x0, x1 and y0, y1 can be done in polynomial time.

538 D. Harnik, M. Naor, O. Reingold, and A. Rosen

OTWeak-OT(c, b):

1. The Sender randomly chooses t (n) random bits b1, . . . , bt (n)−1 ∈R {0, 1}
and sets bt (n) such that b =⊕t (n)

i=1 bi .
2. The sender and receiver run the protocol Weak-OT(c, bi) for every i .
3. If c = 0, then the receiver computes b =⊕t (n)

i=1 bi .

Note: Stage 2 can be run in parallel since we are in the semi-honest model.

The correctness of the above protocol follows immediately.

The Sender’s View. Suppose the sender can guess the bit c with advantage of 1/q(n)
for a polynomial q(·). Then by a hybrid argument, there is an algorithm that can guess c
on a single Weak-OT run with advantage of 1/t (n)q(n) thus contradicting the Weak-OT
definition. So the sender can only guess the bit c with negligible advantage.

The Receiver’s View. To show that the receiver’s advantage is only negligible we
apply the so-called Yao’s XOR Lemma. Originally due to Yao (in presentations of
[46]), with formal proofs presented in [38], [27], and [24]. The XOR lemma states the
following:

Suppose that P: {0, 1}m → {0, 1} is a predicate that is “weakly hard to compute”.
Let x (t) = (x1, . . . , xt) be a t-tuple of independent inputs to P . Denote P (t)(x (t)) =⊕t

i=1 P(xi). Then the lemma asserts that Pt is “strongly hard to compute”.
Formally:

Theorem 3.5 (The XOR Lemma). Suppose that any PPTMA fails to compute P(x)
with probability better than 1 − 1/p(n) for all but finitely many n for all auxiliary
information and for a given polynomial p(·). Take t (n) = p(n)2. Then any PPTMA fails
to compute P (t (n))(x (t (n))) with probability better than 1

2 + 1/q(n) for any polynomial
q(n) for all auxiliary information and for all but finitely many n’s (the probabilities are
taken over a given distribution on the inputs x ∈ {0, 1}m and the randomness of the
PPTMs).

In general, for our application we take xi = VIEWWeak-OT
receiver (c = 0, bi) and define

P(xi) = bi . By the definition of Weak-OT, P is indeed weakly hard. The conclusion

is that if c = 0, then the sender cannot predict the bit b = ⊕p(n)2

i=1 bi from the view
of OTWeak-OT with a non-negligible advantage, as required in a strong OT protocol.
However, note that the view xi does not necessarily define the bit bi , so the predicate
P is not well defined in this case. Instead we slightly restate the XOR lemma to be of
the following general form: given a predicate P: {0, 1}l → {0, 1} and an efficiently
computable function g: {0, 1}l → {0, 1}m , if it is weakly hard to compute P(yi) given
only xi = g(yi) then it is “strongly hard to compute” P (t)(y(t)) given only x (t).

Completeness in Two-Party Secure Computation 539

4. Criterion for Eff-SFE

We now present our criterion for a function to be unconditionally in Eff-SFE . This
criterion is complementary in nature to the criterion for completeness, in the sense
that while the computational row non-transitive condition requests the “weak hardness”
of computing f (x1, y) from f (x0, y), the row transitivity condition requests that this
computation is easy.

Definition 4.1. We say that a function f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is (compu-
tational) row transitive if there exists a PPTM M such that for all inputs x0, x1 ∈
{0, 1}n, y ∈ {0, 1}n′ ,

M(x0, x1, f (x0, y)) = f (x1, y).

We emphasize that in this definition M is required to be a uniform Turing machine,
as it will actually be used by the parties in the SFE protocol for f .

Theorem 4.1. Let f be an efficiently computable function and suppose it is computa-
tional row transitive then f is unconditionally in Eff-SFE .22

Proof. Suppose that f is row transitive, then the following is an SFE protocol for f :

� f (x, y)

1. Bob chooses a random x̂ ∈ {0, 1}n and sends x̂ and f (x̂, y) to Alice.
2. Alice computes and outputs M(x̂, x, f (x̂, y)).

The above procedure is easily shown to be an SFE protocol for f . The correctness
follows since Alice learns the value M(x̂, x, f (x̂, y)) = f (x, y) as required. As for
security: Bob does not learn anything from the protocol simply because he gets no
message from Alice. On the other hand, Alice’s view can be simulated given the output
f (x, y), simply by choosing a random x̂ and computing M(x, x̂, f (x, y)) = f (x̂, y).

5. The Semi-Honest versus the Malicious Model

Throughout the paper we allow ourselves to assume that Alice and Bob are semi-honest.
Working in this model can be viewed as a stepping stone towards achieving security in
the more realistic malicious model where the parties can run any desirable strategy and
may choose to violate the prescribed protocol. The next step is transforming semi-honest
protocols into malicious ones. This can be achieved using the GMW compiler [23], which

22 Note that Theorem 4.1 holds unconditionally, that is, the validity of the SFE protocol does not rely on
any assumption (such as the existence of OT).

540 D. Harnik, M. Naor, O. Reingold, and A. Rosen

takes a protocol that is secure in the semi-honest model, and transforms it into a protocol
secure in the malicious model (assuming (non-uniform) one-way functions exist):

Theorem 5.1. If (non-uniform) one-way functions exist then:

• All row-transitive functions have efficient SFE protocols secure against malicious
parties.
• If a row non-transitive function has an efficient SFE protocol in the semi-honest

model, then all functions have SFE protocols secure against malicious adversaries.

Note that in the above theorem, “SFE protocol” refers only to sending messages and
tossing coins, without use of “magic boxes” such as third parties, noisy channels or
quantum channels, where the GMW compiler does not apply. Also, note that unlike in
[2], the GMW compiler is needed for both items of Theorem 5.1 (see discussion below).

Row Non-Transitive Functions in the Malicious Model. The above theorem relies on
the existence of one-way functions. We further show that the existence of SFE for any
complete function implies the existence of one-way functions. Thus we get the following
unconditional theorem for row non-transitive functions:

Theorem 5.2. If a row non-transitive function has an efficient SFE protocol in the
semi-honest model, then all polynomial time functions have SFE protocols secure against
malicious adversaries.

Proof. Suppose that there exists an SFE protocol in the semi-honest model for a row
non-transitive function f . Then by Theorem 3.1 there exists a construction of an OT
protocol in the semi-honest model. By the result of Impagliazzo and Luby [29], the
existence of semi-honest OT implies the existence of one-way functions.23 Now, in
order to construct a malicious SFE protocol for any efficiently computable function g,
first construct a semi-honest SFE protocol for g using the reduction to OT [45], and given
that one-way functions exist, run the GMW compiler on the semi-honest protocol for g
to receive a malicious protocol for g.

Using the Stringent Definition of SFE. When using the stringent-SFE definition (see
Section 2.1), the above theorems take a slightly different form. Recall that the stringent
definition requires that in order for an SFE protocol to be secure (in the malicious model)
it must also be a semi-honest SFE. The statement in the malicious model then becomes
more symmetric:

Theorem 5.3. If a row non-transitive function has an efficient (stringent-)SFE protocol,
then all polynomial time functions have (stringent-)SFE protocols.

23 Actually, in [29] it was only shown that several other primitives (not OT) imply one-way functions, for
example, this was shown for bit commitment. However, in [32] among other things it shows that OT implies
bit commitment and hence also implies one-way functions.

Completeness in Two-Party Secure Computation 541

Row Transitive Functions in the Malicious Model. Unlike the theorem for complete-
ness, if one-way functions are not guaranteed, we do not know if there exists an SFE in the
malicious model for all row transitive functions. For example, in the above-mentioned
trivial SFE protocol for row transitive functions, Alice cannot act maliciously as she
does not send any messages to Bob. However, it might be the case that a malicious Bob
cheats by sending Alice an illegal value. If it is hard to distinguish a legal message from
Bob from an illegal message, then such a protocol is no longer secure.

Moreover, the following claim shows that under certain (plausible) assumptions, there
are functions that have SFE in the semi-honest model but not in the malicious model.
More precisely, define the following weak notion of one-way functions:

Definition 5.1. A collection of functions { fi : Di → {0, 1}∗}i∈ Ī has one-way instances
if:

1. Easy to sample and compute: For each of the following tasks there exists a PPTM:
sampling i ∈ Ī , sampling x ∈ Di and computing fi (x).

2. Some functions are hard to invert: For every PPTM A, every polynomial p(·) and
infinitely many i ∈ Ī ,

Pr[A(i, fi (x)) ∈ f −1
i fi (x)] <

1

p(|i |) ,

where the probability is taken over x ∈ Di and the randomness of A.

This weak notion of one-wayness was defined in [19] as part of the presentation of
[43]. We can now state the following claim:

Claim 5.4. Suppose that there exist no collections of functions with one-way instances
and also NP � BPP , then there exist functions f that have semi-honest SFE but no
malicious SFE.

Proof. A theorem of Ostrovsky and Wigderson [43] states that if there exist no collec-
tions of functions with one-way instances then ZK = BPP , that is, the languages that
have zero knowledge proofs are exactly those languages that are in BPP .

Consider for example the problem of finding a Hamiltonian Cycle (HC) in a graph.
Define G(C, E) to be a graph containing the union of the edges in an HC C and a basic
edge set E (G returns a graph that in particular contains an HC). Define the function
f (x, y) = G(y), where y = (C, E) (let f (y) = ⊥ if C is not an HC). The function f is
definitely a row transitive function as it disregards the input x and the simple semi-honest
SFE protocol will simply have Bob send the value G(y) to Alice. In the malicious world
it is requested, among other things, that Alice outputs a value G(y) for some legal input
y. Without loss of generality, Bob can start the protocol by sending z = G(y) to Alice
(since by the security of the SFE, Bob is required to choose y in advance and also Alice
is bound to learn this value anyway by the end of the protocol). The rest of the protocol
can be viewed as a zero knowledge proof that there exists a y such that z = G(y). This
is because by the properties of SFE, Alice should reject a z that is not in the image of G
with high probability (providing the soundness requirement in zero knowledge proofs).

542 D. Harnik, M. Naor, O. Reingold, and A. Rosen

Furthermore, the SFE definition ensures that the conversation can be simulated seeing
only Alice’s input x and output z, thus capturing the simulation requirement of zero
knowledge. So, a malicious SFE for f is a zero knowledge proof to the existence of an
HC in a graph. Assume to the contrary that such a malicious SFE protocol for f exists,
thus there is a zero knowledge proof to the existence of an HC. However, since an HC
is an NP-complete problem, and we assumed that NP � BPP , then an HC is not in
BPP and we get a contradiction. Altogether, under the assumptions above, the function
f has a semi-honest SFE but cannot have a malicious SFE.

Semi-Honest versus Malicious in the Information Theoretic Model. Finally we note
that under information theoretic security definitions there is a difference between the
malicious and semi-honest worlds (even under various assumptions). Indeed, Kilian
[34] showed that the criterion for completeness in the malicious model is different from
the insecure minor criterion of the semi-honest case (under such definitions the GMW
compiler cannot apply as it promises only computational security). For example, the OR
of two bits is complete in the semi-honest case, but not so in the malicious model.

6. Discussions

6.1. The Meaning of Our Result

The main theorem can be viewed as essentially categorizing all “nice” functions as either
in SFE-C or unconditionally in Eff-SFE . Such results have been proved before, but
were never shown for all functions on large inputs, where computational considerations
come into account. This new view allows the inclusion of more functions in the family
SFE-C, that were considered as having “trivial” SFE by the combinatorial criterion of
[2]. The price paid is that the characterization by row transitivity is not as tight as the one
given by the insecure minor criterion, and leaves a gap between the criteria (as depicted
in Fig. 2). The functions in the gap, however, are functions with somewhat “unnatural”
behavior such as functions that have hardness only on inputs from a distribution that is
not samplable or functions that behave erratically on different input lengths (Section 6.2
contains a discussion on this gap). Moreover, it seems that this gap cannot be closed

�����

���	
���
�������������������������

���������

Fig. 2. The area inside the outer circle depicts all efficiently computable functions. The left picture shows
the tight characterization of functions according to the insecure minor criterion, while the right picture shows
the characterization according to the “row transitivity” criteria.

Completeness in Two-Party Secure Computation 543

altogether as implied by examples of functions tailored to be in neither category. Hence,
this picture seems to reflect the actual state of affairs.

A Complexity Discussion. In order to introduce this work from a complexity point of
view, we turn to the paper of Impagliazzo [28] that describes five possibile scenarios
for the computational world according to different computational assumptions. Specif-
ically, we mention the world “Cryptomania” in which OT exists and the weaker world
“Minicrypt” where OT does not exist, but one-way functions do.

If in Cryptomania and OT protocols exist, then all efficiently computable functions are
both complete and have SFE protocols (SFE-C = Eff-SFE). In such a world our result
has no implication complexity-wise, although it is still interesting as a tool for construct-
ing OT (see Example 2 below). On the other hand, when considering Minicrypt, one can
ask whether there are stronger assumptions than the existence of one-way functions that
are meaningful. For example, is there an assumption that allows the secure evaluation of
a family of non-trivial functions? Our results imply that the answer to the latter question
is no. In other words, our main theorem essentially claims that as far as SFE protocols
go, there are no additional worlds between Minicrypt and Cryptomania.

Possible Applications. The result also has interesting aspects even in the case that OT
does exist. This is due to the constructive nature of the proof in the sense that it actually
describes how to construct an OT from an SFE for f ∈ SFE-C. Consider the following
example:

Example 2. Consider fp(g, y) = gy mod p, where p is a prime and q is a prime
dividing p − 1.24 Let g be chosen from a multiplicative subgroup Q ⊆ Z∗p of order q,
and y ∈ [q]. Let the security parameter n be |p|.

The above function has a simple SFE protocol where Alice knows g, Bob knows y
and at the end of the protocol Alice learns gy mod p. The protocol goes as follows: Let
Alice choose a random r ∈ [q] and send gr to Bob. Bob then computes z = gry = (gr)y

and sends it to Alice. Alice now takes the r th root from z and gets zr−1 = (gry)r
−1 = gy .

It is simple to show that the view of either side can be simulated and that this is indeed
an SFE for f .

Furthermore, under the Computational Diffie–Helman (CDH) assumption, f is com-
putational row non-transitive (and therefore SFE-complete), since one cannot efficiently
compute gy

1 given g0, g1 and gy
0 (on the other hand, note that this function does not

contain an insecure minor).
Now running the reduction from the proof of our main theorem actually produces

the following protocol for 1-2-OT: Let Bob be the sender holding secret bits b0, b1

and let Alice be the receiver holding a choice bit c. Alice chooses random generators
g0, g1 and r ∈ Zp\{0} and sends g0, g1, gr

c to Bob. Bob computes z = gry
c and sends

z, h(gy
0)⊕ b0, h(gy

1)⊕ b1 to Alice (h(·) again stands for the GL hardcore bit). Finally,

24 For convenience choose p to be of the form p = 2q + 1 for prime q.

544 D. Harnik, M. Naor, O. Reingold, and A. Rosen

Alice computes zr−1 = gy
c . Alice can compute h(gy

c) and subsequently learn the secret
bit bc. However, she practically learns nothing about b1−c.

This turns out to be equivalent to the well known OT protocol of Bellare and Micali
[3]. It remains open whether one can use this framework to give new constructions for
OT, using SFE protocols for other complete functions.

Another possible application of the row non-transitivity criterion is as a tool simply
to prove that a function is SFE-complete.

Example 3. Consider the function fN (x, y) = (x + y)3 mod N , where N = p · q
for large primes p and q (the factorization of N is unknown) such that the number 3 is
relatively prime to both p − 1 and q − 1.25

Notice that each row in the function fN is a permutation and hence no insecure minor
exists. So at first glance it is unclear if this function is SFE-complete or perhaps it has a
simple SFE protocol? We argue that under the RSA assumption (for e = 3) fN is row
non-transitive. The general idea is that if fN is row transitive, then given a = (z − 1)3

mod N one can compute the value z−1, thus contradicting the hardness of RSA. This
is done by computing b = (z + 1)3 mod N from the value a (this is possible given the
row transitivity). Then the value z can be found, since a − b = 2z2 + 2 mod N , giving
the value of z2 mod N and in turn z = z3/z2 mod N . This only showed that if fN is
row transitive it contradicts the RSA assumption. A more careful analysis yields that this
function is indeed row non-transitive under the RSA assumption.

6.2. The Gap between the Criteria

Our ultimate goal is to categorize all functions as either in SFE-C or in Eff-SFE ,
however, our criteria fall short of this task and leave a gap of uncategorized functions.
In this section we point out the following important observations regarding this gap:

1. Some of the functions in the gap can in fact be categorized by giving more accurate
or more relaxed definitions of the row transitivity criteria and the definitions of
SFE. We avoided doing this before in order to present simple and clean definitions
to go along with standard definitions of SFE.

2. The fact that a gap exists seem to reflect the actual world as there are functions
that seem to be neither complete nor in Eff-SFE . This state is very common in
computational settings, and in fact, this characterization may be considered very
tight as far as computational characterizations go.

3. The functions in the gap possess some “unnatural” behavior and thus we say that
effectively the criteria cover all “nice” functions.

That being said, we elaborate on what are the types of functions that might be in the gap
and how these functions may or may not be categorized after all:

• Functions for which it is possible to compute the value f (x1, y) given x0, x1 and
f (x0, y) by a non-uniform adversary (a circuit family) but hard to do so for a

25 Assume here that N is given by an external source.

Completeness in Two-Party Secure Computation 545

uniform adversary (PPTM): It is possible to define SFE to be secure only against
uniform adversaries when working in the semi-honest model.26 In such a case, row
non-transitivity may be defined as having hardness for uniform machines, the main
theorem will still hold and the functions mentioned will be categorized as complete
(in the semi-honest model). However, in order to apply the GMW transformation
one must use one-way functions that are hard for non-uniform adversaries, and thus
Theorem 1.2 does not hold anymore.
• Functions for which it is possible to compute the value f (x1, y) given x0, x1 and

f (x0, y) with overwhelming probability when x0, x1 and y are taken from any
samplable distribution but hard to do so for inputs taken from some distribution that
is not efficiently samplable: Considering that the inputs of an SFE should be taken
from a samplable distribution, then these functions have an SFE protocol with the
exception that the protocol can fail with negligible error.
• Functions that behave inconsistently on different input lengths: On the one hand,

there are functions with such behavior that seem to be in neither category. For
instance a function that alternates between a very trivial function to an inherently
complete one (like OT) depending on the input length. If the occurrences of OT
are sparse enough then the function cannot be complete, but still will not be in
Eff-SFE . On the other hand, there are functions in this category that are def-
initely complete. For instance, the requirement for “all but finitely many n” in
the definition of row non-transitivity is much stronger than what is needed. The
real need is that for any security parameter n we can efficiently choose an in-
put length l(n) (polynomially related to n) for which computing f (x1, y) from
f (x0, y) is “weakly hard” (probability here should also include the randomness in
choosing l(n)).
• Functions such that for every polynomial q(·) there exists a PPTM Mq that computes

f (x1, y) given x0, x1 and f (x0, y) with success probability at least 1− 1/q(n), but
there is no one PPTM M that achieves this for all possible q: Here it is unclear what
can be done unless considering strong relaxations of the definitions of SFE.

6.3. Information Theoretic versus Computational—A Discussion

In this work we emphasize the importance of taking computational consideration into
account. We now compare the three main models of secure function evaluation considered
in the literature.27 Each of these models has its merit and captures some aspects of the
issue, while being limited in others. The specification of a model consists of three entities:
the players executing the protocol, the simulator for each party (such a simulator gets
a party’s input together with its output and generates the view the party sees in the
protocol) and the distinguisher that attempts to guess whether what it receives is the real
or simulated view.28 The difference between the three models is in the computational
power of each of the entities.

26 This is since composition theorems hold for uniform machines only under the semi-honest model.
27 Note the three models as well as their names, represent the authors personal view of the main possible

models.
28 We note that the roles of the parties, simulators and distinguishers as described above corresponds to the

semi-honest model. However, these entities may be generalized to apply to the malicious model as well.

546 D. Harnik, M. Naor, O. Reingold, and A. Rosen

The Fully Information Theoretic Model. In this model there are no limitations on
the power of all the related entities (even the parties running the protocols). This
is a highly unrealistic model but can yet be useful, especially when trying to
prove impossibility results. For example, in this model it is shown that there exist
functions that cannot be securely evaluated under information theoretic definitions.
This was indeed proved for various simple functions as the OR of two bits and OT
([4], [11] and others). These impossibility results hold over to the more realistic
model of Unbounded Adversaries (presented next).

This model is also applicable when implementing secure evaluation of func-
tions with constant domain size or when discussing secure reductions between
two such primitives (sometimes referred to as as “Cryptogates”). In such a case,
computational considerations are not a factor due to the small input size.

Note that in this model it is possible to talk about the SFE of any function f ,
even one that is hard to compute, unlike the other models (described next) where
the parties are expected to be able to compute the function f efficiently when no
security requirements are made.

The Unbounded Adversaries Model. In this model the parties running the pro-
tocol are required to be efficient (the protocol has to run in polynomial time),
furthermore, the simulators should also be efficient (of comparable efficiency to
the parties). The distinguishers, on the other hand, are unbounded. This is a very
realistic setting: it asks that a real world party (that can only run probabilistic poly-
nomial time procedures) could simulate the view of the protocol to such perfection
that even an unbounded distinguisher would not be able to tell the simulated view
apart from the real view. Hence, this catches the notion that real bounded parties
do not gain any information at all from participating in the protocol. Indeed, this
model is advocated throughout the literature (e.g. [8], [20], [26] and [40]).

This formulation is also convenient in the sense that reductions in this model
carry over automatically to the computational model, that is, if one can construct
an SFE for a function f using calls to an SFE for a function g in the unbounded
model (we call this f “securely reduces” to g, defined in Section 2.2), then g also
“securely reduces” to f in the computational model.

This seems a very appealing definition to work with, but has a drawback since
it is actually impossible to achieve secure computation of many interesting func-
tions, as is implied by the results for the fully information theoretic model. That
is, in this model, no function is both complete and has an SFE protocol (the sets
SFE-C and Eff-SFE do not intersect at all). The notion of completeness is there-
fore interpreted as follows: a complete function f is a function that cannot be
securely evaluated, but if given a “magic box” that evaluates f , it can be used to
evaluate all functions securely. In particular, the introduction of various natural
implementations to such “magic boxes” yields the ability to achieve secure com-
putation in various models such as noisy channels (e.g. [13]), quantum channels
(e.g. [5]), the bounded storage model (e.g. [7]) and multi-party computations (e.g.
[4] and [10]); see other examples [39].

We note that when discussing functions on a domain of constant size, the un-
bounded adversary model is equivalent to the fully information theoretic model
(as computational considerations do not matter given the small domain).

Completeness in Two-Party Secure Computation 547

The Computational Model. In the computational model all the related entities are
computationally bounded. That is the protocol is efficient, as well as all simulators
and distinguishers. This is a relaxation of the previous model in the sense that the
simulator has to fool only bounded adversaries. Indeed, in this model, under the
plausible assumption that OT exists, SFE of every efficiently computable function
may be achieved, making this a very interesting setting to work under.

Another upside of working in a computational setting is the applicability of the
GMW compiler [23] that converts every protocol that is secure in the semi-honest
model to one that is secure in the malicious model, under the assumption that
one-way functions exist. This allows applying results from the semi-honest world
to the malicious world (see Sections 1.5 and 5) .

Each of the above models illuminates some points and hides others. The choice of
model depends on the goals that one sets. For example, if one can allow strong set-
up assumptions such as an honest majority or the existence of a trusted party, then one
should use the unbounded adversaries model as it is both realistic and gives unconditional
and strong security. When discussing reductions between “cryptogates”, the powerful
fully information theoretic model may be used. If, on the other hand, SFE via classical
protocols (with no “magic”) is needed, one must work in the computational model, as it
is the only model that may achieve this task.

The Relation between the Models. Clearly, every unbounded adversaries protocol is
also secure in the fully information theoretic model (since the unbounded model is
just a more restricted model). Therefore an impossibility result in the fully information
theoretic model also yields a similar result for the unbounded adversaries model. Fur-
thermore, an SFE protocol in the unbounded adversaries model is also an SFE protocol
in the computational model, since the computational model only adds limitations on the
distinguisher.

Denote by IT-SFE-C and IT-Eff-SFE the sets of complete functions and those with
efficient SFE protocols in the fully information theoretic model, denote by UA-SFE-C
and UA-Eff-SFE those sets in the unbounded adversaries model and denote by Co-
SFE-C and Co-Eff-SFE those sets in the computational model. As far as the semi-
honest asymmetric SFE goes, we know the following:

• As mentioned above, every protocol secure in the unbounded adversaries model
is also secure both in the fully information theoretic model and in the computa-
tional model. Therefore we have that UA-Eff-SFE ⊆ IT-Eff-SFE and also UA-
Eff-SFE ⊆ Co-Eff-SFE .
• In the work of Beimel et al. [2] it is shown that IT-SFE-C ∩ IT-Eff-SFE = ∅ and

also that all functions are in either IT-SFE-C or IT-Eff-SFE (depending if they
have an insecure minor or not29).

29 An insecure minor may be defined in various ways when allowing unbounded input length. For instance,
in this statement it suffices for a function to have at least one input length with an insecure minor. In the
computational setting, on the other hand, it is required to have infinitely many input lengths with an insecure
minor.

548 D. Harnik, M. Naor, O. Reingold, and A. Rosen

• Since the reduction from OT to a function with an insecure minor is efficient, we
have that IT-SFE-C = UA-SFE-C and they include exactly all functions with an
insecure minor.30

• In Example 1 we showed a function that is in IT-Eff-SFE but on the other hand
also in Co-SFE-C (under a computational assumption). Hence UA-SFE-C �
Co-SFE-C under the assumption that one-way permutations exist.31 This shows
a separation between the computational model and the unbounded adversaries and
information theoretic models.
• An interesting question is whether a similar separation can be found between the

unbounded adversaries and the fully information theoretic model. That is, is there
a function with no insecure minor that is not in UA-Eff-SFE under reasonable
assumptions? In the Appendix we give a partial answer to this question. We show a
separation in the malicious model, and some indication towards a separation in the
semi-honest model as well.

7. Further Issues

The Symmetric SFE Model. In this model both sides receive the output f (x, y) at the
end of the protocol. Actually, most of the works considering the questions of complete-
ness and triviality were conducted in this setting (e.g. [11], [36], [33], [37], [35] and
part of [34]). While the study of Boolean functions in this model yielded clean and tight
results [11], this is not the case when considering non-Boolean functions. In fact Kushile-
vitz [36] demonstrates a function that is neither complete nor trivial in the information
theoretic model, so no tight characterization can be expected.

On the other hand, Kilian [33] did show that the complete functions are exactly those
containing an imbedded OR. Here as well, the proof that if a function does not contain an
imbedded OR then it is not complete works only for finite functions (it uses a reduction
that is not polynomial time). Moreover, when discussing computational security, the
following example shows a function that does not contain an imbedded OR but is still
complete:

Example 4. Let g: {0, 1}n ← {0, 1}n be a one-to-one one-way function, and let
x0, x1, y0, y1 ∈ {0, 1}n and c ∈ {0, 1}. Define the function f : {0, 1}2n+1 × {0, 1}2n →
{0, 1}2n as follows: f ((c, x0, x1), (y0, y1)) = (x0 ⊕ yc, x1 ⊕ g(y1−c)).

The function f does not contain an imbedded OR (every row is a one-to-one function),
but can be shown to be complete in the symmetric model. This leaves room to try and
find a computational characterization in this model as well.

30 This disregards uniformity issues (such as how to find the insecure minor). When uniformity is taken into
account we can only say that UA-SFE-C ⊆ IT-SFE-C.

31 If non-uniformity is allowed, then the existence of one-way functions (not permutations) suffices to show
the separation: Construct a row non-transitive function f using the hardness of a one-way function. To makes
sure that no insecure minor exists in the function f , add to the output a perfectly binding commitment of the
input (see [19]). Such a commitment can be achieved non-uniformly given one-way functions.

Completeness in Two-Party Secure Computation 549

Probabilistic Functionalities. Kilian [34] gives combinatorial criteria also for secure
evaluation of probabilistic functionalities (rather than deterministic functions) in the
semi-honest model. These results, however, do not necessarily yield efficient protocols
thus raising the question whether computational results can be found in this model as
well. While it is known that given OT one can achieve SFE of any efficiently computable
functionality, it is interesting what can be achieved with other assumptions. For example,
consider a protocol in which neither party has an input at all, and in which Alice receives
as output g(z) for a function g and a random input z unknown to both Alice and Bob.
This is a good example of an SFE of a probabilistic functionality that we call interactive
oblivious sampling (IOS) and has useful applications. For instance, IOS can be used in
order to build an OT protocol given a secret key agreement protocol. It is not known
what functions g can be obliviously sampled if the existence of OT is not guaranteed.

Acknowledgments

We are grateful to Tal Malkin for discussions regarding her work on this subject and to
Ran Canetti for his comments on this paper. We thank Ronen Shaltiel for useful advice
regarding hardness amplification and Yuval Ishai for his advice on the semi-honest versus
malicious models. Finally we thank the anonymous referees for their helpful comments.

Appendix. Separating UA-Eff-SFE and IT-Eff-SFE

In Example 1 we showed a function that is in IT-Eff-SFE but on the other hand in
Co-SFE-C (under a computational assumption). This shows a separation between the
computational model and the unbounded adversaries and information theoretic models.

An interesting question is whether a similar separation can be found between the un-
bounded adversaries and the fully information theoretic model. That is, is there a function
with no insecure minor that is not in UA-Eff-SFE under reasonable assumptions?32 We
give a partial answer to this question, starting by giving an example of such a function
in the malicious adversaries model.

Example 5. Let� be a 3-CNF formula and let A be an assignment to its variables. Let
�(A) denote the value of the formula� under the assignment A. Consider the function

f3-SAT(·, (�, A)) = (�,�(A)).

(Alice gets no input while Bob gets input y = (�, A).)33

In the semi-honest model f3-SAT has a trivial SFE protocol where Bob simply sends
the output (�,�(A)) to Alice. In the malicious model, however, it is not clear what can
be done to prevent Bob from cheating. Furthermore, we claim the following:

32 Recall that functions with no insecure minor are in IT-Eff-SFE .
33 Note that the choice of 3-SAT is immaterial and anyNP-complete language would have sufficed.

550 D. Harnik, M. Naor, O. Reingold, and A. Rosen

Claim A.1. If there exists a malicious SFE protocol for f3-SAT in the unbounded ad-
versaries model then the polynomial hierarchy collapses to the second level.

The claim is proved by showing that a malicious SFE protocol for f3-SAT in the unbounded
adversaries is actually a perfect zero knowledge proof for the following NP-complete
language: 3-SAT = {� | � has a satisfying assignment}. The correctness of the SFE
protocol assures the verifier (playing Alice) that upon receiving output (�, 1), there is
indeed a satisfying assignment for�. On the other hand, the security of the SFE protocol
assures that the view of Alice can be perfectly simulated by an efficient simulator. Since 3-
SAT is alsoNP-complete we deduce that allNP languages have perfect zero knowledge
proofs. It is known that every language with a perfect zero knowledge proof is also in co-
AM [17], [1], [42], thusNP ⊆ co-AM. Combining this claim with a result of Boppana
et al. [6] we get that f3-SAT does not have an SFE protocol in the malicious unbounded
adversaries model unless the polynomial time hierarchy collapses to the second level.
Thus UA-Eff-SFE � IT-Eff-SFE in the malicious case under reasonable assumptions.

We further ask whether such a separation exists in the semi-honest case as well. The
following example can be viewed as some indication that it is unlikely that IT-Eff-SFE =
UA-Eff-SFE unconditionally.

Example 6. Let g0, g1: {0, 1}n → {0, 1}n (for every n) be two one-to-one functions.
Define

Lg0,g1 = {(z0, z1) | there exists y such that z0 = g0(y) and z1 = g1(y)}.

Also define

fg0,g1(x, y) =
{

g0(y), x = 0,
g1(y), x = 1.

Clearly, fg0,g1(x, y) ∈ IT-Eff-SFE since an all powerful Alice learns y from either gi (y)
and therefore Bob may simply send y to Alice. On the other hand we claim the following:

Claim A.2. If there exist g0, g1 such that Lg0,g1 /∈ PZK (Lg0,g1 does not have a perfect
zero knowledge proof) then fg0,g1(x, y) /∈ UA-Eff-SFE .

Proof. Suppose that fg0,g1(x, y) ∈ UA-Eff-SFE , then we will show a perfect zero
knowledge protocol for Lg0,g1 . The assumption states that there is a protocol �(x, y)
that always outputs fg0,g1(x, y), and there are simulators SA and SB that perfectly simulate
the respective views of�. Perfect simulation means that, in particular, every possible real
view v of�(x, y) is also a possible output of the simulator (of both simulators), and every
possible output of the simulator is also a possible real view. Notice that the simulator
SB(y) outputs a view of the conversation between Alice and Bob that is independent of
the value x . Hence, for any such simulated view v there is an identical real conversation
of �(x = 1, y) and also a real conversation of �(x = 0, y). Therefore, the view v is
also a possible output of SA(x, gx (y)) for x = 0 and for x = 1.

The perfect zero knowledge proof for Lg0,g1 goes as follows: Given (z0, z1) ∈ Lg0,g1 ,
with an input y corresponding to z0 and z1, the prover generates a random view v of
a conversation of the protocol �(x, y) for any x (x = 0 will do). The prover sends

Completeness in Two-Party Secure Computation 551

the view v to the verifier. The verifier then chooses a random bit x and challenges the
prover to reveal how the view sent may correspond to an output of SA(x, zx). A non-
cheating prover can always provide the random coins that give SA(x, zx) = v. However,
if (z0, z1) /∈ Lg0,g1 then there exists no view (simulated or real) that corresponds to both
x = 0 and x = 1 (since by the correctness of the SFE protocol� the output must indeed
be zx = gx (y) for some x). Thus the prover will fail on at least one of the possible
challenges, and will be caught with probability at least 1

2 . The above protocol is also
zero knowledge since the verifier’s view may be perfectly simulated, simply by choosing
a random x and setting the view to be v = SA(x, gx (y)).

The above claim is not in itself a separation of UA-Eff-SFE from IT-Eff-SFE . It
merely points out that if there is no separation, then all languages of the type Lg0,g1 have
perfect zero knowledge proofs. We view this as an interesting consequence as we are
unaware of such a generic construction.

References

[1] W. Aiello and J. Hastad. Statistical zero-knowledge languages can be recognized in two rounds. Journal
of Computer and Systems Sciences, 42(3):327–345, 1991.

[2] A. Beimel, T. Malkin, and S. Micali. The all-or-nothing nature of two-party secure computation. In
CRYPTO ’99, pages 80–97. LNCS 1666. Springer, Berlin, 1999.

[3] M. Bellare and S. Micali. Non-interactive oblivious transfer and applications. In CRYPTO ’89, pages
547–557. LNCS 435. Springer, Berlin, 1989.

[4] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proc. 20th STOC, pages 1–10, 1988.

[5] C.H. Bennett, G. Brassard, C. Crepeau, and M.H. Skubiszewska. Practical quantum oblivious transfer
protocols. In CRYPTO ’91, pages 351–366. LNCS 576. Springer, Berlin, 1992.

[6] R. Boppana, J. Hastad, and S. Zachos. Does co-np have short interactive proofs? Information Processing
Letters, 25(2):127–132, 1987.

[7] C. Cachin, C. Crepeau, and J. Marcil. Oblivious transfer with a memory-bound receiver. In Proc. 39th
FOCS, pages 493–502, 1995.

[8] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology,
13(1):143–202, 2000.

[9] R. Canetti, E. Kushilevitz, and Y. Lindell. On the limitations of universally composable two-party
computation without set-up assumptions. Journal of Cryptology, 19(2):135–167, 2006.

[10] D. Chaum, C. Crepeau, and I. Damgard. Multiparty unconditionally secure protocols. In Proc. 20th
STOC, pages 11–19, 1988.

[11] B. Chor and E. Kushilevitz. A zero-one law for boolean privacy. SIAM Journal on Discrete Mathematics,
4(1):36–47, 1991. Preliminary version in Proc 21st STOC.

[12] C. Crepeau. Equivalence between two flavours of oblivious transfers. In CRYPTO ’87, pages 350–354.
LNCS 293. Springer, Berlin, 1987.

[13] C. Crepeau and J. Kilian. Achieving oblivious transfer using weakened security assumptions. In Proc.
29th FOCS, pages 42–52, 1988.

[14] I. Damgard, J. Kilian, and L. Salvail. On the (im)possibility of basing oblivious transfer and bit commit-
ment on weakened security assumptions. In Eurocrypt ’99, pages 56–73. LNCS 1592. Springer, Berlin,
1999.

[15] S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts. Communications
of the ACM, 28(6):637–647, 1985.

[16] M. Fitzi, J.A. Garay, U.M. Maurer, and R. Ostrovsky. Minimal complete primitives for secure multi-party
computation. In CRYPTO ’01, pages 80–100. LNCS 2139. Springer, Berlin, 2001.

[17] L. Fortnow. The complexity of perfect zero-knowledge. In Randomness and Computation (editor
S. Micali), pages 327–343. Volume 5 of Advances in Computing Research. JAI Press, Greenwich, CT,
1989.

552 D. Harnik, M. Naor, O. Reingold, and A. Rosen

[18] Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. The relationship between public
key encryption and oblivious transfer. In Proc. 41st FOCS, pages 325–335, 2000.

[19] O. Goldreich. Foundations of Cryptography. Cambridge University Press, Cambridge, 2001.
[20] O. Goldreich. Foundations of Cryptography - Volume 2. Cambridge University Press, Cambridge, 2004.
[21] O. Goldreich and L.A. Levin. A hard-core predicate for all one-way functions. In Proc. 21st STOC,

pages 25–32, 1989.
[22] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game—a completeness theorem for

protocols with honest majority. In Proc. 19th STOC, pages 218–229, 1987.
[23] O. Goldreich, S. Micali, and A. Wigderson. Proofs that yield nothing but their validity, or all languages

in np have zero-knowledge proof systems. Journal of the ACM, 38:691–729, 1991.
[24] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-lemma. Electronic Colloquium on Compu-

tational Complexity, Report TR95-050, 1995. Available at http://eccc.hpi-web.de/eccc/.
[25] O. Goldreich and R. Vainish. How to solve any protocol problem—an efficiency improvement. In

CRYPTO ’87, pages 73–86. LNCS 293. Springer, Berlin, 1987.
[26] M. Hirt and U. Maurer. Player simulation and general adversary structures in perfect multiparty compu-

tation. Journal of Cryptology, 13(1):31–60, 2000.
[27] R. Impagliazzo. Hard-core distributions for somewhat hard problems. In Proc. 36th FOCS, pages

538–545, 1995.
[28] R. Impagliazzo. A personal view of average-case complexity. In Proc. 10th Annual Structure in Com-

plexity Theory Conference, pages 134–147. IEEE Computer Society Press, Los Alamitos, CA, 1995.
[29] R. Impagliazzo and M. Luby. One-way functions are essential for complexity based cryptography. In

Proc. 30th FOCS, pages 230–235, 1989.
[30] R. Impagliazzo and S. Rudich. Limits on the provable consequences of one-way permutations. In Proc.

21st STOC, pages 44–61, 1989.
[31] Y. Ishai. Personal communication, 2004.
[32] J. Kilian. Founding cryptography on oblivious transfer. In Proc. 20th STOC, pages 20–31, 1988.
[33] J. Kilian. A general completeness theorem for two-party games. In Proc. 23rd STOC, pages 553–560,

1991.
[34] J. Kilian. More general completeness theorems for secure two-party computation. In Proc. 32nd STOC,

pages 316–324, 2000.
[35] J. Kilian, E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in private compu-

tations. SIAM Journal of Computing, 28(4):1189–1208, 2000.
[36] E. Kushilevitz. Privacy and communication complexity. SIAM Journal on Discrete Mathematics,

5(2):273–284, 1992. Preliminary version in Proc. 30th FOCS.
[37] E. Kushilevitz, S. Micali, and R. Ostrovsky. Reducibility and completeness in multi-party private com-

putations. In Proc. 35th FOCS, pages 478–489, 1994.
[38] L.A. Levin. One-way functions and pseudorandom generators. Combinatorica, 7:357–363, 1987.
[39] U. Maurer. Information-theoretic cryptography. In CRYPTO ’99, pages 47–64. LNCS 1666. Springer,

Berlin, 1999.
[40] S. Micali and P. Rogaway. Secure computation. In CRYPTO ’91, pages 392–404. LNCS 576. Springer,

Berlin, 1991.
[41] M. Naor and B. Pinkas. Efficient oblivious transfer protocols. In Proc. SIAM Symposium on Discrete

Algorithms (SODA 2001), pages 448–457, 2001.
[42] T. Okamoto. On relationships between statistical zero-knowledge proofs. Journal of Computer and

Systems Sciences, 60(1):47–108, 2000.
[43] R. Ostrovsky and A. Wigderson. One-way fuctions are essential for non-trivial zero-knowledge. In

Second Israel Symposium on Theory of Computing Systems, ISTCS 93, Proceedings, pages 3–17. IEEE
Computer Society Press, 1993.

[44] M. O. Rabin. How to exchange secrets by oblivious transfer. TR-81, Harvard University, Cambridge,
MA, 1981.

[45] A. C. Yao. Protocols for secure computations. In Proc. 23rd FOCS, pages 160–164, 1982.
[46] A. C. Yao. Theory and application of trapdoor functions. In Proc. 23rd FOCS, pages 80–91, 1982.
[47] A. C. Yao. How to generate and exchange secrets. In Proc. 27th FOCS, pages 162–167, 1986.

