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Abstract 

The assumption that a database includes a 

representation ol every occurrence in the real world 

environmrnl that it models (the Closed World 

Asscrtnplio?l) is frequently unrealistic, because it is always 

made on the database as a whole. This paper introduces 

a new type of dntab,ase information, called completeness 

inlormnlion, lo dcscrihe the subsets of the database for 

which this assumption is correct. With completeness 

information it is possible to determine whether each 

ansivcr to a user query is complete, or whether any 

subsets of it are complete. To users, answers which are 

accompanied by a statement about their completeness are 

more mraningful. First, the principles of completeness 

informn.lion are defined formally, using an abstract data 

model. Then, specific methods are described for 

implcmrnting completeness information in the relational 

modr4. With these methods, each relational algebra query 

can be n.ccompnnietl wi(.h a.n instantaneous verdict on its 

coml)letcness (or on the completcncss of some of its 

subsets). 

Permission to copy without fee all or part of this material is 
granted provided that the copies are not made or distributed for 
direct commercial advantage,, the VLDB copyright notice and fhe 
title of the publicati& and rts date appear, and notice is given 
that copying is by permission of the Very Large Data Base 
Endowment. To copy otherwise, or to republish, requires a fee 
an&or special permission from the Endowment. 

1. Introduction 

The question whether a database contains all the 

occurrcnccs of data which it attempts to model has 

rcceivcd much attention lately. The assumption that it 

dots, ca.lled the Closed World Assumption (CWA), allows 

one to conclude tha.t when a query cannot be satisfied in 

the database, t,hen the answer to it is negative [3]. The 

CWA is always made on the database as a whole. In 

practice, however, this assumption is not realistic. Most 

databases include at least some information which is 

possibly incomplete. In’other words, in reality the CWA 

can only be mn.de on some subsets of the database. 

In t.his paper we introduce a new kind of database 

informn.tion, which we call completeness injormation. 

With complctcncss information a database system can 

dclcrmine whether each answer to a user query is 

complete (i.e. all the real world occurrences are 

rcproscnt,ed), or whether a.ny subsets of it are complete 

(i.e. all the rca.l world occurrences which satisfy some 

adtlitionnl constraints arc represented). As an example, 

consider a database on recordings of music, and assume it 

is known to include comp1et.e information on all 

recordings by domestic record companies. The answer to 

a query to retrieve all recordings of Beethoven 

symphonies on the CBS label, can be shown to be 

complete. The answer to a query to retrieve all 

recordings which feature Toscanini, can be shown to be 

complete with regard to domestic recordings only. 

Clearly, answers which are accompanied by statements 

about their completeness are more meaningful. 
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Corllplctcncss information and its application to query 

processing are first defined and discussed using an 

a.!)st.rnct model of dn.tabases. We give formal definitions 

for such notions <as complefenesa asserfions, complete 

answers and parlially complete answers. However, to 

develop specific methods for expressing, storing, 

manipulating and applying completcncss information, a 

particular tlats mode! must be adopted, and we focus on 

the rc!at,ional model. A major concern is that the 

a.pplical.ion of completeness information to query 

processing should be efficient, avoiding, for example, 

methods tllat require mechanical theorem proving. 

Town.rds tliis end, we develop a simple method for storing 

completeness information in the relations themselves, and 

sliow how to extend relational algebra operations to 

preserve this information. Thus, the determination of the 

complctcness of answers is available as an inexpensive by- 

product of standard query processing. 

It is interesting to compare this new concept of 

completeness information with the way databases handle 

inco~nplele inforn~alion. Often, some of the information 

about t.hc rca! world that a database attempts to model is 

unnvailablc. Consider, for example, a relational database 

witli relation Ii: A ,,..., A,. Each tuple (al,.,.,an) of R 

models a pa.rticular real world relationship. However, it 

ma.y be that a certain real world relationship is known to 

exist,, but not al! tllc n values are available. Such missing 

V~!UW arc usudly modeled by null values. Much research 

has been done on the different types of null values, and 

on tllc mn.nipu!nbion of databases with null values (for a 

review of bhis t,opic see [l]). 

In many respects null values are very much like data 

(the databnse operations are extended to handle this new 

type of da.ta sat.isfactorily). On the other hand, the 

descript.ion of the information which is complete is 

a.ctun.!!y nxetn-&la’. Another observation is that 

1 
It may be intrresting to note here, that our methods for 

specifying and storing completeness information for rclntional 
databases will make it appear like data. 

incotnplete information and completeness informatibn are 

somewhat complcmcntary: an item of incomplete 

information states that there exists data which could not 

be specified as ‘regular data.; an item of completeness 

informn.tion states that there does not exist any data 

which has not been specified already. 

The next section gives formal definitions of completeness 

information and its application to query processing. 

Section 3 and 4 discuss specific techniques for relational 

databases, and Section 5 concludes with a brief summary 

and discussion of some further issues. 

2. Completeness Information 

Assume a relational database on music with two 

relations: 

RECORDING = (LABEL, NUMBER, COMPOSER, 

COMPOSITION, CONDUCTOR) 
COMPOSER = (NAME, NATIONALITY, 

YEAR-OF-BIRTH, YEAR-OF-DEATH) 

RECORDING describes all recordings of music currently 

available, and COMPOSER contains data on composers of 

music. These relations are models of real world 

recordings and composers. However, there is a significant 

difference between these two models: while it is possible 

that RECORDING covers the complete catalogue of 

available recordings, we cannot expect COMPOSER to 

include a!! composers that have ever lived (e.g. many 

com!)oscrs may be unknown outside their own small 

circles). This suggests that database information may be 

clnssificd into two kinds: information which is complete, 

and informa.tion which is only partial. 

In the above example, it was quite simple to describe 

which information was complete, and which was not: the 

database knew about every recording, but not about 

every composer. In genera!, however, the description of 

the complete information may be more complex. In that 

exnmple, the databnse could include complete information 

only on recordings on the CBS label, or on recordings of 

compositions by French composers. In general, to express 
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complctcness of information requires a language whose 

power is cquivalcnt to Lhc power of a query language: in 

tlic same wa.y ihnt a query describes the set of data items 

that satisfy 3 ccrtsin requirement, a completeness 

nsscrtion would dcclnrc that the datsb,?sc contains all the 

dnln. itrms that satisfy a ccrta.in rcquircment. 

Clt!a.rly, the meaning of completeness depends on the 

scm:int,ics of I.hc da.tabasc. For example, if the relation 

COMIYISI~R was mca.nt t,o model, not a.H composers, but 

only, sa.y, those composers whose compositions will be 

prrfc,rrnctl this season by the Los Angeles Philharmonic, 

then it niny well be complete. WC assume that the 

scmnnl.ics of the database are known when the 

complctcncss assrrtions arc defined. 

In l.his section we present formal definitions for 

coml)lctcncss information and r&ted aspects. Our 

formnliznlions use the notion of query generalization, as 

drfincd in [2]. 

Let 7 dcnot,c the universe of all possible facts. A 

specijicnlion s is a characteristic furiction on 3 

s : 7 -+ { 0,l }. 

Given a set of facts J’c7, WC define t,hc facts of F 

spccificd by s as: 

,9(F) = s-‘(l) n I;: 

A spccificaf.ion 8 on 7is a compleleneas asset-lion for a 

set of facts I;C7, if s-‘(~)cI? The subset s-‘(l) is then 

said to bc co~~plcle in I’. 

A t/n/abase D is a pair <r,A>, where F c 7is a set of 

facts n.nd A is A. set of completeness assertions. Each 

cornplctrncss assertion a E A defines a subset of F which 

is comp1ct.c. 

Spc:cifica.tions arc also used to define retrieval requests. 

A query q against database D = <F,A> is a specification 

on 3: The set q(F) is called the answer to q. 

Given two specifications a1 and s2, WC define s2. to be 

more general than s1 (and a1 to be more specijic than 

s2), dcnotcd R1+s2, if ~~(1) C a&l). 

For rxamplc, consider these five specifications: 

1. Al1 French composers born after 1000. 

2. All French composers born after 1850. 

3. All composers born aft,cr 1000. 

4. Al1 composers. 

5. All persons. 

In this set of specifications, 2 and 3 arc more general than 

1, 4 is more general than either 2 or 3, and 5 is more 

gcncral than 4. These specifications demonstrate some 

methods to generalize specifications: weaken a condition 

(from 1 to 2), rcmovc a condition altogether (from 2 to 3, 

or from 3 t.o 4), and substitute a more general concept 

(from 4 to 5). 

Clearly, when a query fails in a given database (i.e. 

cv’aluatcs to the empty set), then every more specific 

query would fa.il, but more general queries may succeed; 

a.nd when a query succeeds, then every more general 

query would succeed, but more specific queries may fail. 

When a complctcness assertion holds in a given database, 

then every more specific assertion also holds. 

Conscqurnt,ly, completeness information need only include 

the most gcncrsl assertions. 

Given two specifications s1 and a2, we define the 

ii~lerseclion speci Jicalion 
31”32 

and the union 

sljecijiralion s1Us2 in the standard way: for any fact 

Jo 7, slns2(j)=l if both *9,(fl=l and s,(fl=l, and 0 

otherwise; s,Us2(fl=l if either s,(J)=1 or .9,(fl=l, and 

0 otherwise. 

For example, consider bhcsc five specifications: 

1. All French composers. 

2. All composers who wrote operas. 

3. All composers who wrote incidental music. 
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4. All French composers who wrote operas. 

5. All composers who wrote operas or incidental 
music. 

In this scl of specifications, 4 is the intersection of 1 and 

2, and 5 is the union of 2 and 3. 

Clearly, an int,ersection specification is more specific 

than either of the two participating specifications. 

Consequently, when a completeness assertion holds in a 

database, then its intersection with any other specification 

also holds. 

Consider now a query q a.gainst database D= <F/l>. 

As before, the query can simply be evaluated against r, 

producing the answer q(P). However, we can also 

determine the completeness of this answer, by comparing 

it with the completeness assertions A. Formally, the 

answer to q is complete if there exist assertions al,...,a, in 

A, such that q 4 i$=,ai ; otherwise, the answer is 

partial. 

In the a.bove example, assume the database includes the 

following complctcness assertions: 

l All recordings on the CBS label. 

. All recordings of compositions by French 
composers. 

then queries such a.s 

l All recordings of Beethoven’s 9th Symphony 
on CBS. 

l All recordings of compositions by 19th 
Century French Composers. 

can be shown to have complete answers. 

Consider now a query q which is not generalized by any 

union of complctcncss assertions. If q intersects with a 

cornplctencss mscrtion, then the information described by 

the intcrscction specification is complete. Forma.lly, the 

answer to q is pnrlinlly complete with re&d to n E A if 

qna # fl (i.e. there exists /E 7, such that qna(fi=l). 

In the above example, assume the database includes the 

following completeness assertions: 

l All recordings of compositions by French 
composers. 

l All recordings of compositions by German 
composers. 

And consider the following query: 

l All recordings of operas. 

While the answer to this query is not complete, it is 

partia.lly complete with regard to operas that were 

composed by French or German composers. 

Completeness information improves the responsiveness 

of the system, as an answer which is accompanied with a 

St3 tcment about on its completeness (or partial 

completeness) is more meaningful. Completeness 

information is particularly useful within a mechanism for 

ha.ndling Mcd queries, such as the one described in [Z]. 

When a user query fails to match any data, but the 

answer can be shown to be complete, then the user can be 

notified authoritatively that data to satisfy his query does 

not exist (and therefore the premise for the query is 

incorrect). 

3. Completeness Information in Relational 

Databases 

In this and the following section we focus on relational 

databases, and how completeness information can be 

expressed, stored, manipulated and applied in this 

part icu1a.r model. We note that at several places we 

sacril’ice generality, for simplicity, efficiency and economy. 

In the relational model, the concepts of facts and 

data.base subsets are selected to be, respectively, tuples 

and relat,ions. Note that subsets cannot be arbitrary 

collections of facts, as relatiok can only have tuples of 

the same dimension. We define one database subset (i.e. 

rclntion) to be contained in another, if the former can be 

obtained from the latter with a selection and a projection. 
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Domain relsti0na.l calculus [4] offers a convenient tool 

for expressing specifications (data queries or completeness 

assertions). Each specification is an expression of the 

form { z ,,..., zn 1 $(zl ,..., z,) }, where z1 ,.., zn are domain 

va.rinblrs and $ is a sa.fe formula in predicate logic with 

z~,...,z, .as its only free variables. It defines a database 

subset, which is the n-tuplcs of data items that satisfy $. 

Thus, one may think of the completeness assertions as 

defining another database, which contains only complete 

informst.ion. By the previous definition of containment, 

one specification is a generalization of another, if the 

rrlntion it defines can be reduced with a selection and a 

projection to the relation defined by the other 

specification. 

Consider now a complctcness assertion 

A = { 21,...,~,, I vq~,Y,~n) 1 and a query 

0 =, { y ,,..., y, ] +,,(y ,,..., y,) }. To determine whether 

A is more general than 9, one needs to prove that under 

any intcrpretstion J,, * @,. Attempting this with 

mechanical theorem proving is a possibility. However, 

this solution is quite impractical, as it requires substantial 

computat,ion and is undecidable. 

We describe here an altogether different approach, 

which &oids such problems. First, we limit the 

complexity of completeness assertions to assertions of the 

following kind: 

{ nl’.-‘an I wJJ...&J 

Rl(“ll,-~,“lkI) A ... A Rp(~pl,...,~pk ) ) 
P 

where t,he n’s and b’s arc variables, each appearing at 

Icnst once among the c’s, and the c’s, which are not a’s or 

b’s, n.rc data items (constants). Such an assertion states 

the complctcncss of a particular subset of the database 

which is derived from relations R1,...,Rp (note that the 

relations Ri are not neccssa.rily distinct). 

For example, in the previous database, the following 

expression asserts the completeness of the set of all 

numbers of recordings on the CBS label: 

{ a [ (3b1)(3b2)(3b,) RECoRDING(CBS,o,bl,b2,b3) }. 

And t,o assert the completeness of all recordings (label and 

number) of compositions by French composers: 

C “1,“2 I (3bl)(3b,)(3b,)(3b,)(3b5) 
RECORDING(n,,a,,b,,b,,b3) A 

COMPOSER(b,,French,b4,b5) }. 

Next, WC describe a method for storing completeness 

assertions from this family in Ihe relations themselves. 

As WC shall point out Iatcr, this a.pproach provides 

important a.dvanta.ges, over separat.e storage of this 

asscrlions as logic expressions. Our method recalls the 

rcprcscntntion of QBE queries in skeleton tables [5] . 

A completeness assertion of the general type defined 

above is represented as p injormation luples; each tuple 

(cil,...,cik.) is stored in relation Ri. The c’s which are a’s 
I 

arc suffixed with a *; the c’s which are variables (a’s or 

b’s) that 8ppca.r onlp once in this assertion are replaced 

wit,h blanks. Thus, each component of an information 

tuplc may be either a constant (a data item), or a 

variable, or a blank, or a variable suffixed by a *, or a *. 

A constant or a variable impose restrictions on the values 

that att,ribute may have. A blank is an attribute whose 

value is irreleva.nt to this assertion. A * (whether 

nppcndcd to a variable or to a blank) is an attribute on 

which completeness is asserted. 

We can assume that when an assertion involves more 
i 

than one information tuple, each tuple will share a 

variable with at least one other tuple (otherwise, the 

assertion can be regarded as several independent 

assertions). Therefore, if all variables used in assertions 

are chosen to bc different, then the information tuples 

belonging to each assertion can be identified and 

recovcrcd from the relations. A relation with information 

tuplcs will be called an erterlded relation. 

As a.n example, Figure 3-l shows the two assertions 

sl.ntcd above together with a small instance of our 

database (which clcn.rly does not satisfy the completeness 

claimed by the assertions). 
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RECORDING 
LABEL NUMBER COMPOSER COMPOSITION CONDUCTOR 

Angel S-3613 
CBS M2S-794 
CBS M-31830 
DCC 2631260 
London LDR-71090 
Philipe 9600369 
RCA VICS-6113E 
RCA LSC-6199 
CBS * 
* * 

Bizet Carmen Beecham 
Beethoven Symphony No 9 Bernetein 
Tchaikoveky Swan Laki - Ormandy 
Beethoven Violin Concerto 
Saint-Saeno Organjymphony 

Karajan 
Dutoit 

Debueey La Mer Haitink 
Verdi Aida Toecanini 
Bizet Carmen Kara j an 

x 

COMPOSER 
NAME NATIONALITY YEAR-OF-BIRTH YEAR-OF-DEATH 

Beethoven German 
Bizet French 
Debuesy French 
Mozart Auetrian 
Saint-Saens French 
Tchaikoveky Rueeian 
Verdi Italian 
X French 

1770 1827 
1038 1876 
1862 1918 
1766 1791 
1836 1921 
1840 1093 
1013 1901 

Figure 3-l: A Database Extended with Completeness Information 

This method for storing completeness information haa 

scvcral advantages. Firstly, the specification of 

completeness assertions using QIXMike notation is very 

intuitive. Secondly, storing the information does not 

require any new data structures. Thirdly, the information 

may be updated with the same tools used to update the 

d&a. But the greatest advanta.ge is in the testing of 

completeness. As our general definitions indicated, data 

and completeness information are separate concepts, and 

query processing requires evaluating each query against 

both. The advantage of storing both in the same 

structures, is that we can develop methods with which 

completeness determination becomes a “by product’ of 

the st.anda.rd query evaluation. 

Cousidcr the ext.ended rela.tions in the above example, 

and assume that we apply relational algebra operations to 

thrsc relat,ions. A question that has to be addressed is 

how these operations should handle the information tuples 

stored in these relations. Of course, we would like these 

operations to manipulate the extended relation so that the 

informat.ion tuplcs in the resulting relation would describe 

its complctcncss correctly. 

Let (z be a database query involving database relations 

Z, and let P be the resulting relation. Let A be the 

assertions that describe the completeness of I. We are 

interest.ed in a.pplying & also to A, producing information 

A’ t.hat will describe correctly the completeness of PT. This 

goal is sketched in the following diagram, where solid 

lines show existing conditions and dashed lines show how 

the diagram should be completed: 

A ?-I 
I 
I I 

IQ 

1 

Achieving this goal would guarantee that after a query 

had been processed, the verdict on the completeness of 
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t.he a.nswcr is immediately available in the result. For 

example, if t.he result contains an informat.ion tuple which 

has * in cvcry column, then the answrr is complete; il it 

contains n tuple with the data item a in attribute A a.nd * 

in every other column, then the answer is partially 

complctc with regard to h-a; and so on. The extension 

of relntionn.1 algebra opera.tors to preserve completeness 

information is described in the next section. ,’ 

4. Extending Relational Algebra to Preserve 

Completeness Information 

For brevity, we describe here hpw to qxtend three 

relntionnl a.lgebra operators: selection, projection and 

Cnrt4a.n product (and therefore join). Other opera.tors 

should present no special difficulty. 

WC noted that the meaning of each completeness 

a.ssert.ion drpcnds on the semantics of the relations that 

are involved. Consequently, the semantics of the 

database relations must be determined before 

completeness information is detined. To show that 

corn1jlctcness information is preserved after each extended 

operation, it is important to determine the semantics of 

bhc out,put rcla.tion, in terms of the semantics of the input 

rcla.t.ion(s). 

Consider, for example, a relation R, which models a 

particular real world concept. After a selection oF is 

a,pplied to R, the output relat.ion should no longer be 

considrrcd a model of the original concept, but of a more 

restrict&l one. ‘Thus, if COMPOSER models all composers, 

thcrl “NATIONALITY = German 
(COMPOSER) models only the 

Germa.n composers. Consequently, although bot,h 

relations may have the same attributes, an information 

tuple in the output relation asserts something dirlerent 

from the same information tuple in the input relation. 

Let T be the Cartesian product of two extended 

relat,ions R and S. T includes information tuples of two 

kinds: tuplos that were obtained from an information 

tuple and a data tuple, and tuples that were obtained 

irom two $&bation tupl,es. Let a be an information 

tuplc from R, describing %he, complete subset Ra , let B be 

a data tuple f&q S, and le< 7 be their product tuple (i.e. 

concatenation). l3ach.Cupl.e of Ra appears in T suffixed by 

the tuple @. This subset of T is also complete, and is 

dcscribcd by the’information tuple 7. Assume now that fi 

is not a data tuple but an information tuple, describing 

the complete subset sB. Their Cartesian product is a 

complete subset of T, and is described by the information 

tuple 7. 

4.2. Projection 

In discussing projection, we consider only projections 

which remove a single attribute (the treatment of general 

projections is quite similar). To extend projection to 

irl.forrnntion tuples, we distinguish between information 

triples that vestrid the values of the attribute which is 

being rcmnvcd (i.e. either a constant, or a variable) and 

those t1ln.t do not (i.e. a blank). In the former case we 

rcta,in the (projected) information tuple; in the latter case 

wvd discard it. 

Let R0 be a complete subset of R, described by Dhe 

inrormn.tion tuple a. Let R’, R’(,, and a’ denote the 

corrc~sponding structures after attribute A had been 

rerriovrt~. \Vhile, R’,, is a complete subset of R’, it is not 

ncccssnrily described by 0’. If a had a restriction on 
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Our cxtrnsion of the Cartesian product is to handle 

information t,uplcs as if t.hey were data tuples. We 

observe 1.hn.t the Cnrtrsian product of two relation subsets 

which a.rc complete, .is a complete subset in the output 

relation. In particular, the Cartesian product of a subset 

which. ,is complete and a single data tuple, is also 

c0nip1cte. 



attribute A, then n’, having removed the restriction, now 

describes a. subset which is possibly hzrger than R’,, and 

not necessarily complete. We can be certain that a’ 

a.ctun]ly describes R’,, only if a had no restrictions on 

atlribute A. 

4.3. Selection 

In discussing selection we assume that the selection 

formula is a single equality comparator (the generalization 

to more complex formulas is straightforward). Again, to 

estcnd selection to information tuples, we dist.inguish 

between informat.ion tuples that realrict the values of the 

selection attribute (i.e. either a constant, or a va.riable) 

and ~.hose tha.t do not (i.e. a blank). In the former case 

the information tuple will be selected only if its value 

matches the value to which it is being compared; in the 

latter C‘MSC the t.uple will always be selected; and the value 

to which it is being compared will be substituted in the 

tupk!. We observe that after a selection, the output 

relation ma.y either preserve a complete subset, or it may 

reduce it; but in either case the new subset is complete, 

with regard to the semantics of the output relation. 

Let Ra be a complete subset of relation R, described by 

the information tuple (2. Consider now the operation 

aA=.( The t. pl u es of Ila that satisfy k=a will be 

sclcctcd a.nd, as mentioned above, will form a complete 

subset of the output relation. a itself will be selected if in 

atl,ribute A it has either a or blank, but in both cases will 

have A=a in the output relation. In the former c,ase, the 

tuples of RQ will a11 have A=a, and t!lerefore Ra will be 

presrrvcd, a.long with a, in the output relation. In the 

la&r case, only t!le tuples of Ra for which A=a will be 

sclcctcd, a.nd these will be described correctly by the 

informa.tion tuple obtained from a by substituting a in 

al.tribute A. Simila.rly, if the selection formula compares 

two attributes, e.g. u*=n(R), then a will be selected, 

unlrss both abtribntcs are restricted by constants which 

arc diffcrcnt. Except when both attributes are restricted 

by the same constant, CL will be modified: if both 

The informalion tuple indicates that the answer is 

complete in the first two att,ributes (i.e. the projection on 

the first two columns is complete). However, if we 

assume that the first two attributes form a key, then the 

whole answer is in fact complete. 
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attributes are unrestricted, then the same new variable 

will be subst,ituted in both attributes; if only one is 

unrestricted, then the restricting va.lue (variable or 

constant) will be substituted in the unrestricted attribute; 

if both are restricted by variables, then one of the 

va.riables will be substituted by the other throughout; and 

if one is a variable and the other a constant, then the 

variable will be substituted by the constant throughout. 

We now demonstrate our methods with two examples. 

Consider this query to list the recordings (label and 

number) of compositions by Beethoven: 

"LADEL,NUMDER (0 COMPOSER= Beethoven (RECORDING)) 

The cxtcndcd operations produce the following relation: 

LABEL NUMBER 

CBS M2S-794 
DGG 2631260 
CBS * 

The information tuple indicates that this answer is 

complete only in regard to recordings on the CBS label. 

As a.nother example, consider this query to list the 

recordings (label, number and conductor) of compositions 

of 19th century French composers: 

XLADEL,NUMDER,CONDUCTOR ( 

6(~h~~~~~~~~~ = Frcnch)h(1800 5 YEAR-OF-BIRTII< 1850) ( 

(RECORDING: x COMPOSER))) 

Even though this query uses a natural join and a complex 

selection predicate, one can easily to verify that its answer 

is: 

LABEL NUMBER CONDUCTOR 

Angel S-3613 Beecham 
London LDR-71090 Dutoit 
RCA LSC-6199 Karaj an 
* * 



5. Conclusion 

We have prcscntcd a new kind of database information, 

for specifying the subsets of the database which are 

.closed world”. We have laid a formal basis, with 

definitions of specification (completeness assertion or 

iuev), intersection and unioti of specifications, 

generalization rclstionship between * specifications, 

cotnpletcneas of answers, and partial completeness with 

regard to an asserl.ic)n. 

We have, then focused 6n completeness information in 

relational datnbascs; and dbfincd ti’ simpl’e family 01 

domain ” cnlclilus expressions, for expressing a large 

number of popular completeness assertions. ,For theie 

nsscrtions we have dcfined a represen$ation (similar to 

QBE) that cnnblcd us to store tg,ecjn@nation along with 

the data. We have t,hen shown .how”to extend relational 

algebra to manipulate these extended relations, do that 

the information tuples in the output relations assert 
. , 

correctly the completeness of the result. The main 
,.’ ,. ” . 

advant,a.ge of this representation, besides it simplicity and 

economy, is that the standard query evaluation process 

generates, ti a by-prodyct, the’ verdict on, the 

completeness or pn.rtial completeness of the answer. 

There are several other issues that require further 

invcstign.tion: One is the re!atibnship between incomplete 

informnt.i?ri: and complctcncss information (for example, 

how dots one in(.crpret completeness nssertiqns in the 

prcsctnce of tuplcs with null values). Anot.hcr is the 

rrlntionship bclween functional +p,endcnc$zs and 

complct~ncss information (for example, WC note that, a 

completeness asscrt,ion ,on the key attributes of a relation 

implies that complete information is available on the 

other attributes, <as well). A third set of issues involves 

our implemcnt~al.ion of completeness information in the 

relational model, which was motivated by simplicity, 

efficiency and economy, but at the cost of generality. An 

intcrrsting issue here is how much ‘deduction power. was 

sacrificed in this implementation, in comparison with an 
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imptcmcntat,ion that would express completeness 

assertions with general first order logic formulas, and use 

mccl~anical throrem proving to determine whether a user 

query has a complete answer. There are also pragmatic 

issues, such as the update of data which is covered by 

completeness assertions, and the update of the 
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