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COMPLETENESS  OF EIGENVECTORS
IN  BANACH  SPACES

HAROLD   E.   BENZINGER

Abstract. We prove a general theorem on the completeness of

the eigenvectors of linear operators in a Banach space. We then

derive asymptotic estimates for the Green's functions of two-point

boundary value problems which allow us to apply the above theorem

to a wide class of such problems in the spaces L"(0, 1), l^/><co.

1. Introduction. Let B denote a Banach space, and let B* denote its

dual. A sequence {<pk} of elements of B is complete in B if the collection of

all finite sums 2 afcç5ft, ak a scalar, is dense in B. The sequence {q>k} is closed

in B if the only element y> of B* for which ^(93,.)=0, all k, is the zero of B*.

It is easily seen that {cpk} is closed if and only if {cpk} is complete.

For the case that the scalar field is the complex field, we consider the

problem of determining if a sequence {yk} is complete in B, where the <pks

arise as the eigenvectors and generalized eigenvectors of a linear operator

T:B^-B. In the case that B is a Hubert space, there are completeness

results provided that the resolvent operator is a Hilbert-Schmidt operator

or an operator of class C.p, and the norm of the resolvent operator obeys

certain growth conditions [1, pp. 1042, 1089, 1115]. These results are

extended to Banach spaces in [9], [10].

If F: B^-B has a compact resolvent R(A, T) for some À, then the spectrum

of F is at most countably infinite, consisting entirely of eigenvalues Xi

which are poles of R(X, T) [8, p. 416]. The invariant subspace corre-

sponding to an eigenvalue X{ is of finite dimension vt. By the operational

calculus [7, pp. 287, 305], the projection Pi of B onto the invariant sub-

space corresponding to )H has the form

(i.i) PJ=2vM)<Pa>     feB>
3 = 1

where <p(¡ e B, yi}e B*, and

(1-2) fuifkd = ôikôn-

In §2, we shall prove the following result.
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Theorem 1.1. Let T:B^-B be a densely defined linear operator with

compact resolvent. Then the sequence {tpkl} is complete in B provided that for

each /->0 sufficiently large, the annulus 2r_;|A|=:3r contains a circle C

centered at the origin, lying entirely in the resolvent set of T, such that

(1.3) 11*0, T)\\ = K \k\"

for X on C, where K is a constant, and ¡i is an integer.

2. The completeness theorem. Since £is densely defined in B, its adjoint

T*:B*->B* is well defined, and is a closed linear operator [6, p. 43].

Since £and £* have the same resolvent sets we have R(X, T*) = R*(X, T)

[6, p. 56]. Thus the residue at ¿¿of R(X, £*) is the adjoint Pf of the residue

of R(X, T) at Xi, and £* has the form

(2.1) P*g = 2 9iÂg)Wu

for g in B*. For convenience, we relabel the sequence {tp^} as {<pk}, and

similarly for {y)k}. If {(pk} is not closed in B, there exists a nonzero g in B*

such that <pk(g)=0 for all k. For such a g, P*g=0 for all i. Using the bi-

orthogonality (1.2), we see that the converse is true. Consequently {cpk} is

closed if and only if the only element g of B* for which R(X, T*)g is entire

is the zero of B*. See also Definition 3 in [8, p. 443] and the resulting

discussion.

Lemma 2.1. Let £:£—>-£ be a linear operator, and let f be in B, /#0.

Then the equation

(2.2) Tu = Xu +

has no solution u(X) which is a polynomial in X on an infinite set S.

Proof. If we asume that u(X)= 2£L0 ^fcw*> «„#0, is a solution of (2.2)

for each X, in S, then we easily see that each uk is in the domain of £.

Substituting this expression into (2.2), we must have um=0, a contradiction.

If X is in the resolvent set of £, then the unique solution to (2.2) is

u(X) = -R(X, T)f

Thus any entire solution to (2.2) is an analytic continuation of — R(X, T)f

onto the spectrum of £.

Proof of Theorem. 1.1. Assume {cpk} is not closed in B. Then there

exists an element g in £*, gy¿0, such that v(X) = R(X, T*)g is entire. Let

X0 be a fixed complex number, with |A0| sufficiently large so that the
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annulus 2|A0|^|A|^3|A0| contains a circle C on which \\R(X, F*)||^

Klk]". Since v(X) is entire,

<K) = (*w0 Í [vßW - *o)] dh
Jc

Since \X —¿0|^|A0I> and |A|<3|A0|, we have

\\v(X0)\\ ^ (*«■) Í [bWII/IAol] |<M| ̂ 3/C |3A0|" llgll = K' \Xo\".
Jc

Thus — v(X) is a polynomial solution to T*v=Xv+g. By Lemma 2.1, this

is not possible for g^O, so {<pk} is closed in B.

Corollary. If B is reflexive, then under the assumptions of Theorem

1.1, the sequence {y>k} is complete in B*.

Proof. If {y>k} is not closed in B*, then there exists/in 5** = Ä,/#0,

such that F,/=0 for all i. The remainder of the discussion is as in the

previous proof.

3. Completeness for ordinary differential operators. Let / denote the

nth order ordinary linear differential expression defined by

(3.1) l(u) = «<») + a^Ory«-" + • • • + a0(x)u,        O^.y^I,

where the o/s are bounded measurable functions, and in addition a^11

exists and is also a bounded measurable function. Let M, N denote two

matrices of complex constants with n linearly independent columns

between them. Let u(x) denote the column vector (u(x), ua)(x), ■ ■ • ,

M<«-«(x)). Let

(3.2) Uu = Mû(0) + Nû(l).

For 1 ̂ p< co, let A=AP denote the subspace of Lp(0, 1) consisting of all

functions u of class Cn_1[0, 1] such that u{n~1] is absolutely continuous,

«<"' is of class L»(0, 1), and such that Uu = 0. Let T:L»^LV be defined on

A by Tu=l(u). Since A contains all functions of class C"[0, 1], which

vanish, along with their first n — l derivatives, at the endpoints, we see that

F is densely defined.

If X is in the resolvent set of T, then the solution to Tu=Xu+f fin

L>(0, 1), is

(3.3) u(x, X) =     G(x, t, X)f(t) dt = -R(X, T)f,
Jo

where G is the Green's function of F.

Since a{n~iX) is in L™[0, 1], we can perform a substitution u(x)=q(x)v(x),
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where

q(x) = exp   -(1/n)     an_^(t)dt  ,
Jo

and obtain a new differential expression and boundary conditions for v.

The significant feature of the transformed problem is that the coefficient

of vln~1) is zero. This simplifies the discussion of the asymptotic nature of

solutions to l(u) = Xu.

Definition 3.1. The differential operator £ is Stone regular if the

transformed problem satisfies Definition 3.1 in [2, p. 487].

If G'(x, t, X) denotes the Green's function of the transformed problem,

then as observed in [3, equation 2.5],

(3.4) G(x, t, X) = q(x)G'(x, t, X)q-i(t),

where in [3] we used the substitution X= —pn. Thus we shall dispense with

the distinction between the original problem and its transformed version,

and assume that an_x = 0.

The location of the eigenvalues of £is discussed in [2, p. 489]. It is con-

venient for this purpose to refer to the p-plane. We will use the notation of

[2], in particular the sectors S¿ are defined on p. 483, and the constants a

and t are defined on p. 485. Let <5>0 be given. It is clear from the dis-

cussion in [2] that if each p e S( such that — pn is an eigenvalue of £ is

centered at a disc of radius ô, then for r>0 sufficiently large, each region

in Si of the form (2r)1/n^\p\^(3r)1/n contains many circular arcs centered

at the origin of the p-plane, and not intersecting any of the discs. The

image in the A-plane of such an arc is a circle C, centered at the origin of

the ¿-plane, contained entirely in the resolvent set of £, and satisfying

2r<\X\<:3r.

Theorem 3.1. If the differential operator T is Stone regular, there

exists an integer m^.0 such that

(3.5) npr'-1G(x, t, p) = PmO(\)

as \p\—>-oo in S[ where the 0(1) term is uniform in t and x for O^t, x^l.

Proof. This is a direct consequence of equations (2.9) and (4.7) in

[2, pp. 484, 492].

Corollary. If X= —pn is in the resolvent set of T, and if \p — p0\^<5

for each eigenvalue X0=—p¡¡, then for \X\ sufficiently large,

(3.6) \G(x, t, X)\ ̂ jqA|(m+1-">/n,       0<lf,x<i,

where K is a constant.

Proof.    This is a direct consequence of equations (3.4) and (3.5).
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We note at this point that there is no theoretical limit to the size of m.

See [2, Theorem 5.3]. Let p denote the first integer no smaller than

(m+l—n)ln.

Theorem 3.2. // F is Stone regular, then for each X= —pn in the

resolvent set of T such that \p — p0\^.ô for each eigenvalue A0=—p„, asan

operator from L" to Lv,

(3.7) \\R(X, Dl ^ K \X\».

Proof. By (3.6), we see that G, as a function to t, is of class F°°(0, 1),

for fixed x and X. Thus G is in LQ(0, 1) for each q, l^q^oo. If/is in

Lv(0, 1), !:§/;< co, and if p+q=pq, then by Holder's inequality,

\u(x, X)\ I"Jo
\G(x, t, X)\" dt

Hi

K W 11/11,.

Thus ||«(-, m^KWWfh-
Remark. In particular, (3.7) holds on each circle C which is the image

of a circular arc lying entirely in S'{.

Theorem 3.3. // F is Stone regular, the eigenfunctions and generalized

eigenfunctions of T form a sequence which is complete in Lv(0, 1) for

l<p<oo.

Corollary. The eigenfunctions and generalized eigenfunctions of T*

are complete in Lv(0, I)for l</><co.

Remark. The adjoint in L" of a two-point boundary value problem in

L" is known to be another two-point boundary value problem (1 <p< oo),

provided that the coefficients a¡ are sufficiently differentiable [5], so in

such a case the corollary provides no new information. If the a/a are not

sufficiently differentiable, the V adjoint of F is a quasi-differential op-

erator [4, p. 888]. Thus in these cases the corollary provides new

information.

References

1. N. Dunford and J. T. Schwartz, Linear operators. II: Spectral theory. Selfadjoint

operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.

2. H. E. Benzinger, Green's function for ordinary differential operators, J. Differential

Equations 7 (1970), 478-496.
3. -, The L" behavior of eigenfunction expansions, Trans. Amer. Math. Soc. 174

(1972), 333-344.
4. I. Halperin, Closures and adjoints of linear differential operators, Ann. of Math. (2)

38 (1937), 880-919.
5. G. C. Rota, Extension theory of differential operators. I, Comm. Pure Appl. Math.

11 (1958), 23-65. MR 20 #3334.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



324 H.   E.   BENZINGER

6. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc.

Colloq. Publ., vol. 31, Amer. Math. Soc, Providence, R.I., 1957. MR 19, 664.
7. A. E. Taylor, Introduction to functional analysis, Wiley, New York; Chapman &

Hall, London, 1958. MR 20 #5411.
8. J. T. Schwartz, Perturbations of spectral operators, and applications. I. Bounded

perturbations, Pacific J. Math. 4 (1954), 415-458. MR 16, 144.
9. A. S. Markus, Some criteria for the completeness of a system of root vectors of a

linear operator and for the summability of series in this system, Dokl. Akad. Nauk SSSR

155 (1964), 753-756=Soviet Math. Dokl. 5 (1964), 505-509. MR 28 #5345.
10.-, Certain criteria for the completeness of a system of root-vectors of a linear

operator in a Banach space, Mat. Sb. 70 (112) (1966), 526-561; English transi., Amer.

Math. Soc. Transi. (2) 85 (1969), 51-92. MR 35 #7151.

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


