COMPLETENESS OF EIGENVECTORS IN BANACH SPACES

HAROLD E. BENZINGER

ABSTRACT. We prove a general theorem on the completeness of the eigenvectors of linear operators in a Banach space. We then derive asymptotic estimates for the Green's functions of two-point boundary value problems which allow us to apply the above theorem to a wide class of such problems in the spaces $L^p(0, 1)$, $1 \le p < \infty$.

1. Introduction. Let *B* denote a Banach space, and let B^* denote its dual. A sequence $\{\varphi_k\}$ of elements of *B* is *complete* in *B* if the collection of all finite sums $\sum \alpha_k \varphi_k$, α_k a scalar, is dense in *B*. The sequence $\{\varphi_k\}$ is *closed* in *B* if the only element ψ of B^* for which $\psi(\varphi_k)=0$, all *k*, is the zero of B^* . It is easily seen that $\{\varphi_k\}$ is closed if and only if $\{\varphi_k\}$ is complete.

For the case that the scalar field is the complex field, we consider the problem of determining if a sequence $\{\varphi_k\}$ is complete in B, where the φ_k 's arise as the eigenvectors and generalized eigenvectors of a linear operator $T: B \rightarrow B$. In the case that B is a Hilbert space, there are completeness results provided that the resolvent operator is a Hilbert-Schmidt operator or an operator of class C_p , and the norm of the resolvent operator obeys certain growth conditions [1, pp. 1042, 1089, 1115]. These results are extended to Banach spaces in [9], [10].

If $T: B \rightarrow B$ has a compact resolvent $R(\lambda, T)$ for some λ , then the spectrum of T is at most countably infinite, consisting entirely of eigenvalues λ_i which are poles of $R(\lambda, T)$ [8, p. 416]. The invariant subspace corresponding to an eigenvalue λ_i is of finite dimension v_i . By the operational calculus [7, pp. 287, 305], the projection P_i of B onto the invariant subspace corresponding to λ_i has the form

(1.1)
$$P_i f = \sum_{j=1}^{\nu_i} \psi_{ij}(f) \varphi_{ij}, \quad f \in B,$$

where $\varphi_{ij} \in B$, $\psi_{ij} \in B^*$, and

(1.2)
$$\psi_{ij}(\varphi_{kl}) = \delta_{ik}\delta_{jl}.$$

In §2, we shall prove the following result.

© American Mathematical Society 1973

319

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

Received by the editors January 11, 1972 and, in revised form, July 3, 1972. AMS (MOS) subject classifications (1970). Primary 47A70; Secondary 34B25.

THEOREM 1.1. Let $T: B \rightarrow B$ be a densely defined linear operator with compact resolvent. Then the sequence $\{\varphi_{kl}\}$ is complete in B provided that for each r > 0 sufficiently large, the annulus $2r \leq |\lambda| \leq 3r$ contains a circle C centered at the origin, lying entirely in the resolvent set of T, such that

(1.3)
$$||R(\lambda, T)|| \leq K |\lambda|^{\mu}$$

for λ on C, where K is a constant, and μ is an integer.

2. The completeness theorem. Since T is densely defined in B, its adjoint $T^*: B^* \rightarrow B^*$ is well defined, and is a closed linear operator [6, p. 43]. Since T and T* have the same resolvent sets we have $R(\lambda, T^*) = R^*(\lambda, T)$ [6, p. 56]. Thus the residue at λ_i of $R(\lambda, T^*)$ is the adjoint P_i^* of the residue of $R(\lambda, T)$ at λ_i , and P_i^* has the form

(2.1)
$$P_i^* g = \sum_{j=1}^{\nu_i} \varphi_{ij}(g) \psi_{ij}$$

for g in B^* . For convenience, we relabel the sequence $\{\varphi_{ij}\}$ as $\{\varphi_k\}$, and similarly for $\{\psi_k\}$. If $\{\varphi_k\}$ is not closed in B, there exists a nonzero g in B^* such that $\varphi_k(g)=0$ for all k. For such a g, $P_i^*g=0$ for all i. Using the biorthogonality (1.2), we see that the converse is true. Consequently $\{\varphi_k\}$ is closed if and only if the only element g of B^* for which $R(\lambda, T^*)g$ is entire is the zero of B^* . See also Definition 3 in [8, p. 443] and the resulting discussion.

LEMMA 2.1. Let $T: B \rightarrow B$ be a linear operator, and let f be in $B, f \neq 0$. Then the equation

$$(2.2) Tu = \lambda u +$$

has no solution $u(\lambda)$ which is a polynomial in λ on an infinite set S.

PROOF. If we asume that $u(\lambda) = \sum_{k=0}^{m} \lambda^k u_k$, $u_m \neq 0$, is a solution of (2.2) for each λ , in S, then we easily see that each u_k is in the domain of T. Substituting this expression into (2.2), we must have $u_m = 0$, a contradiction.

If λ is in the resolvent set of T, then the unique solution to (2.2) is

$$u(\lambda) = -R(\lambda, T)f.$$

Thus any entire solution to (2.2) is an analytic continuation of $-R(\lambda, T)f$ onto the spectrum of T.

PROOF OF THEOREM 1.1. Assume $\{\varphi_k\}$ is not closed in *B*. Then there exists an element g in B^* , $g \neq 0$, such that $v(\lambda) = R(\lambda, T^*)g$ is entire. Let λ_0 be a fixed complex number, with $|\lambda_0|$ sufficiently large so that the

annulus $2|\lambda_0| \leq |\lambda| \leq 3|\lambda_0|$ contains a circle C on which $||R(\lambda, T^*)|| \leq 1$ $K|\lambda|^{\mu}$. Since $v(\lambda)$ is entire,

$$v(\lambda_0) = (\frac{1}{2}\pi i) \int_C [v(\lambda)/(\lambda - \lambda_0)] d\lambda$$

Since $|\lambda - \lambda_0| \ge |\lambda_0|$, and $|\lambda| \le 3|\lambda_0|$, we have

$$\|v(\lambda_0)\| \leq (\frac{1}{2}\pi) \int_C [\|v(\lambda)\|/|\lambda_0|] |d\lambda| \leq 3K |3\lambda_0|^{\mu} \|g\| = K' |\lambda_0|^{\mu}.$$

Thus $-v(\lambda)$ is a polynomial solution to $T^*v = \lambda v + g$. By Lemma 2.1, this is not possible for $g \neq 0$, so $\{\varphi_k\}$ is closed in B.

COROLLARY. If B is reflexive, then under the assumptions of Theorem 1.1, the sequence $\{\psi_k\}$ is complete in B^* .

PROOF. If $\{\psi_k\}$ is not closed in B^* , then there exists f in $B^{**}=B$, $f\neq 0$, such that $P_i f=0$ for all *i*. The remainder of the discussion is as in the previous proof.

3. Completeness for ordinary differential operators. Let l denote the *n*th order ordinary linear differential expression defined by

$$(3.1) \quad l(u) = u^{(n)} + a_{n-1}(x)u^{(n-1)} + \dots + a_0(x)u, \qquad 0 \leq x \leq 1,$$

where the a_i 's are bounded measurable functions, and in addition $a_{n-1}^{(n-1)}$ exists and is also a bounded measurable function. Let M, N denote two matrices of complex constants with n linearly independent columns between them. Let $\hat{u}(x)$ denote the column vector $(u(x), u^{(1)}(x), \cdots,$ $u^{(n-1)}(x)$). Let

(3.2)
$$Uu = M\hat{u}(0) + N\hat{u}(1).$$

For $1 \leq p < \infty$, let $\Delta = \Delta_p$ denote the subspace of $L^p(0, 1)$ consisting of all functions u of class $C^{n-1}[0, 1]$ such that $u^{(n-1)}$ is absolutely continuous, $u^{(n)}$ is of class $L^p(0, 1)$, and such that Uu=0. Let $T: L^p \to L^p$ be defined on Δ by Tu = l(u). Since Δ contains all functions of class $C^{n}[0, 1]$, which vanish, along with their first n-1 derivatives, at the endpoints, we see that T is densely defined.

If λ is in the resolvent set of T, then the solution to $Tu = \lambda u + f$, f in $L^{p}(0, 1)$, is

(3.3)
$$u(x,\lambda) = \int_0^1 G(x,t,\lambda)f(t) dt = -R(\lambda,T)f,$$

where G is the Green's function of T.

Since $a_{n-1}^{(n-1)}$ is in $L^{\infty}[0, 1]$, we can perform a substitution u(x) = q(x)v(x),

321

where

$$q(x) = \exp\left[-(1/n)\int_0^x a_{n-1}(t) dt\right],$$

and obtain a new differential expression and boundary conditions for v. The significant feature of the transformed problem is that the coefficient of $v^{(n-1)}$ is zero. This simplifies the discussion of the asymptotic nature of solutions to $l(u) = \lambda u$.

DEFINITION 3.1. The differential operator T is *Stone regular* if the transformed problem satisfies Definition 3.1 in [2, p. 487].

If $G'(x, t, \lambda)$ denotes the Green's function of the transformed problem, then as observed in [3, equation 2.5],

(3.4)
$$G(x, t, \lambda) = q(x)G'(x, t, \lambda)q^{-1}(t),$$

where in [3] we used the substitution $\lambda = -\rho^n$. Thus we shall dispense with the distinction between the original problem and its transformed version, and assume that $a_{n-1} \equiv 0$.

The location of the eigenvalues of T is discussed in [2, p. 489]. It is convenient for this purpose to refer to the ρ -plane. We will use the notation of [2], in particular the sectors S_i are defined on p. 483, and the constants σ and τ are defined on p. 485. Let $\delta > 0$ be given. It is clear from the discussion in [2] that if each $\rho \in S_i$ such that $-\rho^n$ is an eigenvalue of T is centered at a disc of radius δ , then for r > 0 sufficiently large, each region in S_i of the form $(2r)^{1/n} \leq |\rho| \leq (3r)^{1/n}$ contains many circular arcs centered at the origin of the ρ -plane, and not intersecting any of the discs. The image in the λ -plane of such an arc is a circle C, centered at the origin of the λ -plane, contained entirely in the resolvent set of T, and satisfying $2r \leq |\lambda| \leq 3r$.

THEOREM 3.1. If the differential operator T is Stone regular, there exists an integer $m \ge 0$ such that

(3.5)
$$n\rho^{n-1}G(x, t, \rho) = \rho^m O(1)$$

as $|\rho| \rightarrow \infty$ in S'_1 where the O(1) term is uniform in t and x for $0 \leq t, x \leq 1$.

PROOF. This is a direct consequence of equations (2.9) and (4.7) in [2, pp. 484, 492].

COROLLARY. If $\lambda = -\rho^n$ is in the resolvent set of T, and if $|\rho - \rho_0| \ge \delta$ for each eigenvalue $\lambda_0 = -\rho_0^n$, then for $|\lambda|$ sufficiently large,

$$(3.6) |G(x, t, \lambda)| \leq K |\lambda|^{(m+1-n)/n}, 0 \leq t, x \leq 1,$$

where K is a constant.

PROOF. This is a direct consequence of equations (3.4) and (3.5).

We note at this point that there is no theoretical limit to the size of m. See [2, Theorem 5.3]. Let μ denote the first integer no smaller than (m+1-n)/n.

THEOREM 3.2. If T is Stone regular, then for each $\lambda = -\rho^n$ in the resolvent set of T such that $|\rho - \rho_0| \ge \delta$ for each eigenvalue $\lambda_0 = -\rho_0^n$, as an operator from L^p to L^p ,

$$||R(\lambda, T)|| \leq K |\lambda|^{\mu}.$$

PROOF. By (3.6), we see that G, as a function to t, is of class $L^{\infty}(0, 1)$, for fixed x and λ . Thus G is in $L^{q}(0, 1)$ for each q, $1 \leq q \leq \infty$. If f is in $L^{p}(0, 1), 1 \leq p < \infty$, and if p+q=pq, then by Hölder's inequality,

$$|u(x,\lambda)| \leq \left[\int_0^1 |G(x,t,\lambda)|^q dt\right]^{1/q} ||f||_p \leq K |\lambda|^{\mu} ||f||_p.$$

Thus $||u(\cdot, \lambda)||_p \leq K |\lambda|^{\mu} ||f||_p$.

REMARK. In particular, (3.7) holds on each circle C which is the image of a circular arc lying entirely in S'_i .

THEOREM 3.3. If T is Stone regular, the eigenfunctions and generalized eigenfunctions of T form a sequence which is complete in $L^{p}(0, 1)$ for $1 \leq p < \infty$.

COROLLARY. The eigenfunctions and generalized eigenfunctions of T^* are complete in $L^p(0, 1)$ for 1 .

REMARK. The adjoint in L^q of a two-point boundary value problem in L^p is known to be another two-point boundary value problem $(1 , provided that the coefficients <math>a_j$ are sufficiently differentiable [5], so in such a case the corollary provides no new information. If the a_j 's are not sufficiently differentiable, the L^p adjoint of T is a quasi-differential operator [4, p. 888]. Thus in these cases the corollary provides new information.

REFERENCES

1. N. Dunford and J. T. Schwartz, *Linear operators*. II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 #6181.

2. H. E. Benzinger, Green's function for ordinary differential operators, J. Differential Equations 7 (1970), 478-496.

3. ——, The L^p behavior of eigenfunction expansions, Trans. Amer. Math. Soc. 174 (1972), 333-344.

4. I. Halperin, *Closures and adjoints of linear differential operators*, Ann. of Math. (2) 38 (1937), 880–919.

5. G. C. Rota, Extension theory of differential operators. I, Comm. Pure Appl. Math. 11 (1958), 23-65. MR 20 #3334.

6. E. Hille and R. S. Phillips, *Functional analysis and semi-groups*, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664.

7. A. E. Taylor, *Introduction to functional analysis*, Wiley, New York; Chapman & Hall, London, 1958. MR 20 #5411.

8. J. T. Schwartz, Perturbations of spectral operators, and applications. I. Bounded perturbations, Pacific J. Math. 4 (1954), 415–458. MR 16, 144.

9. A. S. Markus, Some criteria for the completeness of a system of root vectors of a linear operator and for the summability of series in this system, Dokl. Akad. Nauk SSSR 155 (1964), 753-756=Soviet Math. Dokl. 5 (1964), 505-509. MR 28 #5345.

10. ———, Certain criteria for the completeness of a system of root-vectors of a linear operator in a Banach space, Mat. Sb. 70 (112) (1966), 526–561; English transl., Amer. Math. Soc. Transl. (2) 85 (1969), 51–92. MR 35 #7151.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS, URBANA, ILLINOIS 61801