COMPLETENESS OF EIGENVECTORS IN BANACH SPACES

HAROLD E. BENZINGER

Abstract

We prove a general theorem on the completeness of the eigenvectors of linear operators in a Banach space. We then derive asymptotic estimates for the Green's functions of two-point boundary value problems which allow us to apply the above theorem to a wide class of such problems in the spaces $L^{p}(0,1), 1 \leqq p<\infty$.

1. Introduction. Let B denote a Banach space, and let B^{*} denote its dual. A sequence $\left\{\varphi_{k}\right\}$ of elements of B is complete in B if the collection of all finite sums $\sum \alpha_{k} \varphi_{k}, \alpha_{k}$ a scalar, is dense in B. The sequence $\left\{\varphi_{k}\right\}$ is closed in B if the only element ψ of B^{*} for which $\psi\left(\varphi_{k}\right)=0$, all k, is the zero of B^{*}. It is easily seen that $\left\{\varphi_{k}\right\}$ is closed if and only if $\left\{\varphi_{k}\right\}$ is complete.

For the case that the scalar field is the complex field, we consider the problem of determining if a sequence $\left\{\varphi_{k}\right\}$ is complete in B, where the $\varphi_{k}{ }^{\prime}$ s arise as the eigenvectors and generalized eigenvectors of a linear operator $T: B \rightarrow B$. In the case that B is a Hilbert space, there are completeness results provided that the resolvent operator is a Hilbert-Schmidt operator or an operator of class C_{p}, and the norm of the resolvent operator obeys certain growth conditions [1, pp. 1042, 1089, 1115]. These results are extended to Banach spaces in [9], [10].

If $T: B \rightarrow B$ has a compact resolvent $R(\lambda, T)$ for some λ, then the spectrum of T is at most countably infinite, consisting entirely of eigenvalues λ_{i} which are poles of $R(\lambda, T)$ [8, p. 416]. The invariant subspace corresponding to an eigenvalue λ_{i} is of finite dimension v_{i}. By the operational calculus [7, pp. 287, 305], the projection P_{i} of B onto the invariant subspace corresponding to λ_{i} has the form

$$
\begin{equation*}
P_{i} f=\sum_{j=1}^{v_{i}} \psi_{i j}(f) \varphi_{i j}, \quad f \in B \tag{1.1}
\end{equation*}
$$

where $\varphi_{i j} \in B, \psi_{i j} \in B^{*}$, and

$$
\begin{equation*}
\psi_{i j}\left(\varphi_{k l}\right)=\delta_{i k} \delta_{j l} . \tag{1.2}
\end{equation*}
$$

In $\S 2$, we shall prove the following result.

[^0]Theorem 1.1. Let $T: B \rightarrow B$ be a densely defined linear operator with compact resolvent. Then the sequence $\left\{\varphi_{k l}\right\}$ is complete in B provided that for each $r>0$ sufficiently large, the annulus $2 r \leqq|\lambda| \leqq 3 r$ contains a circle C centered at the origin, lying entirely in the resolvent set of T, such that

$$
\begin{equation*}
\|R(\lambda, T)\| \leqq K|\lambda|^{\mu} \tag{1.3}
\end{equation*}
$$

for λ on C, where K is a constant, and μ is an integer.
2. The completeness theorem. Since T is densely defined in B, its adjoint $T^{*}: B^{*} \rightarrow B^{*}$ is well defined, and is a closed linear operator [6, p. 43]. Since T and T^{*} have the same resolvent sets we have $R\left(\lambda, T^{*}\right)=R^{*}(\lambda, T)$ [6, p. 56]. Thus the residue at λ_{i} of $R\left(\lambda, T^{*}\right)$ is the adjoint P_{i}^{*} of the residue of $R(\lambda, T)$ at λ_{i}, and P_{i}^{*} has the form

$$
\begin{equation*}
P_{i}^{*} g=\sum_{j=1}^{\nu_{i}} \varphi_{i j}(g) \psi_{i j} \tag{2.1}
\end{equation*}
$$

for g in B^{*}. For convenience, we relabel the sequence $\left\{\varphi_{i j}\right\}$ as $\left\{\varphi_{k}\right\}$, and similarly for $\left\{\psi_{k}\right\}$. If $\left\{\varphi_{k}\right\}$ is not closed in B, there exists a nonzero g in B^{*} such that $\varphi_{k}(g)=0$ for all k. For such a $g, P_{i}^{*} g=0$ for all i. Using the biorthogonality (1.2), we see that the converse is true. Consequently $\left\{\varphi_{k}\right\}$ is closed if and only if the only element g of B^{*} for which $R\left(\lambda, T^{*}\right) g$ is entire is the zero of B^{*}. See also Definition 3 in [8, p. 443] and the resulting discussion.

Lemma 2.1. Let $T: B \rightarrow B$ be a linear operator, and let f be in $B, f \neq 0$. Then the equation

$$
\begin{equation*}
T u=\lambda u+ \tag{2.2}
\end{equation*}
$$

has no solution $u(\lambda)$ which is a polynomial in λ on an infinite set S.
Proof. If we asume that $u(\lambda)=\sum_{k=0}^{m} \lambda^{k} u_{k}, u_{m} \neq 0$, is a solution of (2.2) for each λ, in S, then we easily see that each u_{k} is in the domain of T. Substituting this expression into (2.2), we must have $u_{m}=0$, a contradiction.

If λ is in the resolvent set of T, then the unique solution to (2.2) is

$$
u(\lambda)=-R(\lambda, T) f
$$

Thus any entire solution to (2.2) is an analytic continuation of $-R(\lambda, T) f$ onto the spectrum of T.

Proof of Theorem.1.1. Assume $\left\{\varphi_{k}\right\}$ is not closed in B. Then there exists an element g in $B^{*}, g \neq 0$, such that $v(\lambda)=R\left(\lambda, T^{*}\right) g$ is entire. Let λ_{0} be a fixed complex number, with $\left|\lambda_{0}\right|$ sufficiently large so that the
annulus $2\left|\lambda_{0}\right| \leqq|\lambda| \leqq 3\left|\lambda_{0}\right|$ contains a circle C on which $\left\|R\left(\lambda, T^{*}\right)\right\| \leqq$ $K|\lambda|^{\mu}$. Since $v(\lambda)$ is entire,

$$
v\left(\lambda_{0}\right)=\left(\frac{1}{2} \pi i\right) \int_{C}\left[v(\lambda) /\left(\lambda-\lambda_{0}\right)\right] d \lambda
$$

Since $\left|\lambda-\lambda_{0}\right| \geqq\left|\lambda_{0}\right|$, and $|\lambda| \leqq 3\left|\lambda_{0}\right|$, we have

$$
\left\|v\left(\lambda_{0}\right)\right\| \leqq\left(\frac{1}{2} \pi\right) \int_{C}\left[\|v(\lambda)\| /\left|\lambda_{0}\right|\right]|d \lambda| \leqq 3 K\left|3 \lambda_{0}\right|^{\mu}\|g\|=K^{\prime}\left|\lambda_{0}\right|^{\mu}
$$

Thus $-v(\lambda)$ is a polynomial solution to $T^{*} v=\lambda v+g$. By Lemma 2.1, this is not possible for $g \neq 0$, so $\left\{\varphi_{k}\right\}$ is closed in B.

Corollary. If B is reflexive, then under the assumptions of Theorem 1.1 , the sequence $\left\{\psi_{k}\right\}$ is complete in B^{*}.

Proof. If $\left\{\psi_{k}\right\}$ is not closed in B^{*}, then there exists f in $B^{* *}=B, f \neq 0$, such that $P_{i} f=0$ for all i. The remainder of the discussion is as in the previous proof.
3. Completeness for ordinary differential operators. Let l denote the nth order ordinary linear differential expression defined by

$$
\begin{equation*}
l(u)=u^{(n)}+a_{n-1}(x) u^{(n-1)}+\cdots+a_{0}(x) u, \quad 0 \leqq x \leqq 1 \tag{3.1}
\end{equation*}
$$

where the a_{j} 's are bounded measurable functions, and in addition $a_{n-1}^{(n-1)}$ exists and is also a bounded measurable function. Let M, N denote two matrices of complex constants with n linearly independent columns between them. Let $\hat{u}(x)$ denote the column vector $\left(u(x), u^{(1)}(x), \cdots\right.$, $\left.u^{(n-1)}(x)\right)$. Let

$$
\begin{equation*}
U u=M \hat{u}(0)+N \hat{u}(1) \tag{3.2}
\end{equation*}
$$

For $1 \leqq p<\infty$, let $\Delta=\Delta_{p}$ denote the subspace of $L^{p}(0,1)$ consisting of all functions u of class $C^{n-1}[0,1]$ such that $u^{(n-1)}$ is absolutely continuous, $u^{(n)}$ is of class $L^{p}(0,1)$, and such that $U u=0$. Let $T: L^{p} \rightarrow L^{p}$ be defined on Δ by $T u=l(u)$. Since Δ contains all functions of class $C^{n}[0,1]$, which vanish, along with their first $n-1$ derivatives, at the endpoints, we see that T is densely defined.

If λ is in the resolvent set of T, then the solution to $T u=\lambda u+f, f$ in $L^{p}(0,1)$, is

$$
\begin{equation*}
u(x, \lambda)=\int_{0}^{1} G(x, t, \lambda) f(t) d t=-R(\lambda, T) f \tag{3.3}
\end{equation*}
$$

where G is the Green's function of T.
Since $a_{n-1}^{(n-1)}$ is in $L^{\infty}[0,1]$, we can perform a substitution $u(x)=q(x) v(x)$,
where

$$
q(x)=\exp \left[-(1 / n) \int_{0}^{x} a_{n-1}(t) d t\right]
$$

and obtain a new differential expression and boundary conditions for v. The significant feature of the transformed problem is that the coefficient of $v^{(n-1)}$ is zero. This simplifies the discussion of the asymptotic nature of solutions to $l(u)=\lambda u$.

Definition 3.1. The differential operator T is Stone regular if the transformed problem satisfies Definition 3.1 in [2, p. 487].

If $G^{\prime}(x, t, \lambda)$ denotes the Green's function of the transformed problem, then as observed in [3, equation 2.5],

$$
\begin{equation*}
G(x, t, \lambda)=q(x) G^{\prime}(x, t, \lambda) q^{-1}(t) \tag{3.4}
\end{equation*}
$$

where in [3] we used the substitution $\lambda=-\rho^{n}$. Thus we shall dispense with the distinction between the original problem and its transformed version, and assume that $a_{n-1} \equiv 0$.

The location of the eigenvalues of T is discussed in [2, p. 489]. It is convenient for this purpose to refer to the ρ-plane. We will use the notation of [2], in particular the sectors S_{i} are defined on p. 483, and the constants σ and τ are defined on p. 485. Let $\delta>0$ be given. It is clear from the discussion in [2] that if each $\rho \in S_{i}$ such that $-\rho^{n}$ is an eigenvalue of T is centered at a disc of radius δ, then for $r>0$ sufficiently large, each region in S_{i} of the form $(2 r)^{1 / n} \leqq|\rho| \leqq(3 r)^{1 / n}$ contains many circular arcs centered at the origin of the ρ-plane, and not intersecting any of the discs. The image in the λ-plane of such an arc is a circle C, centered at the origin of the λ-plane, contained entirely in the resolvent set of T, and satisfying $2 r \leqq|\lambda| \leqq 3 r$.

Theorem 3.1. If the differential operator T is Stone regular, there exists an integer $m \geqq 0$ such that

$$
\begin{equation*}
n \rho^{n-1} G(x, t, \rho)=\rho^{m} O(1) \tag{3.5}
\end{equation*}
$$

as $|\rho| \rightarrow \infty$ in S_{1}^{\prime} where the $O(1)$ term is uniform in t and x for $0 \leqq t, x \leqq 1$.
Proof. This is a direct consequence of equations (2.9) and (4.7) in [2, pp. 484, 492].

Corollary. If $\lambda=-\rho^{n}$ is in the resolvent set of T, and if $\left|\rho-\rho_{0}\right| \geqq \delta$ for each eigenvalue $\lambda_{0}=-\rho_{0}^{n}$, then for $|\lambda|$ sufficiently large,

$$
\begin{equation*}
|G(x, t, \lambda)| \leqq K|\lambda|^{(m+1-n) / n}, \quad 0 \leqq t, x \leqq 1 \tag{3.6}
\end{equation*}
$$

where K is a constant.
Proof. This is a direct consequence of equations (3.4) and (3.5).

We note at this point that there is no theoretical limit to the size of m. See [2, Theorem 5.3]. Let μ denote the first integer no smaller than $(m+1-n) / n$.

Theorem 3.2. If T is Stone regular, then for each $\lambda=-\rho^{n}$ in the resolvent set of T such that $\left|\rho-\rho_{0}\right| \geqq \delta$ for each eigenvalue $\lambda_{0}=-\rho_{0}^{n}$, as an operator from L^{p} to L^{p},

$$
\begin{equation*}
\|R(\lambda, T)\| \leqq K|\lambda|^{\mu} \tag{3.7}
\end{equation*}
$$

Proof. By (3.6), we see that G, as a function to t, is of class $L^{\infty}(0,1)$, for fixed x and λ. Thus G is in $L^{q}(0,1)$ for each $q, 1 \leqq q \leqq \infty$. If f is in $L^{p}(0,1), 1 \leqq p<\infty$, and if $p+q=p q$, then by Hölder's inequality,

$$
|u(x, \lambda)| \leqq\left[\int_{0}^{1}|G(x, t, \lambda)|^{q} d t\right]^{1 / q}\|f\|_{p} \leqq K|\lambda|^{\mu}\|f\|_{p}
$$

Thus $\|u(\cdot, \lambda)\|_{p} \leqq K|\lambda|^{\mu}\|f\|_{p}$.
Remark. In particular, (3.7) holds on each circle C which is the image of a circular arc lying entirely in S_{i}^{\prime}.

Theorem 3.3. If T is Stone regular, the eigenfunctions and generalized eigenfunctions of T form a sequence which is complete in $L^{p}(0,1)$ for $1 \leqq p<\infty$.

Corollary. The eigenfunctions and generalized eigenfunctions of T^{*} are complete in $L^{p}(0,1)$ for $1<p<\infty$.

Remark. The adjoint in L^{q} of a two-point boundary value problem in L^{p} is known to be another two-point boundary value problem $(1<p<\infty)$, provided that the coefficients a_{j} are sufficiently differentiable [5], so in such a case the corollary provides no new information. If the a_{j} 's are not sufficiently differentiable, the L^{p} adjoint of T is a quasi-differential operator [4, p. 888]. Thus in these cases the corollary provides new information.

References

1. N. Dunford and J. T. Schwartz, Linear operators. II: Spectral theory. Selfadjoint operators in Hilbert space, Interscience, New York, 1963. MR 32 \#6181.
2. H. E. Benzinger, Green's function for ordinary differential operators, J. Differential Equations 7 (1970), 478-496.
3. - The L^{p} behavior of eigenfunction expansions, Trans. Amer. Math. Soc. 174 (1972), 333-344.
4. I. Halperin, Closures and adjoints of linear differential operators, Ann. of Math. (2) 38 (1937), 880-919.
5. G. C. Rota, Extension theory of differential operators. I, Comm. Pure Appl. Math. 11 (1958), 23-65. MR 20 \#3334.
6. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ., vol. 31, Amer. Math. Soc., Providence, R.I., 1957. MR 19, 664.
7. A. E. Taylor, Introduction to functional analysis, Wiley, New York; Chapman \& Hall, London, 1958. MR 20 \#5411.
8. J. T. Schwartz, Perturbations of spectral operators, and applications. I. Bounded perturbations, Pacific J. Math. 4 (1954), 415-458. MR 16, 144.
9. A. S. Markus, Some criteria for the completeness of a system of root vectors of a linear operator and for the summability of series in this system, Dokl. Akad. Nauk SSSR 155 (1964), 753-756 = Soviet Math. Dokl. 5 (1964), 505-509. MR 28 \#5345.
10. ——, Certain criteria for the completeness of a system of root-vectors of a linear operator in a Banach space, Mat. Sb. 70 (112) (1966), 526-561; English transl., Amer. Math. Soc. Transl. (2) 85 (1969), 51-92. MR 35 \#7151.

Department of Mathematics, University of Illinois, Urbana, Illinois 61801

[^0]: Received by the editors January 11, 1972 and, in revised form, July 3, 1972.
 AMS (MOS) subject classifications (1970). Primary 47A70; Secondary 34B25.

