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Abstract

Idempotent semifield is a fundamental algebraic struc-
ture in max-plus algebra. It differs from field in that
the addition is idempotent and there is no inverse of
addition. We discuss the completeness and complete
extension of idempotent semifields, which is achieved
through a max-plus version of Dedekind cuts. Subse-
quently, we use our results to obtain a generalization
of the linear extension theorem, an important result
in max-plus algebra and systems theory. This theo-
rem had been proved valid for finitely generated semi-
modules, and we generalize it to countably generated
semimodules.

1 Introduction

Max-plus algebra (e.g. [1]) plays a central role in the
study of timing aspects of some special classes of dis-
crete event systems. Although max-plus algebra is very
similar to conventional linear algebra, it differs from the
latter in that the addition is idempotent. This differ-
ence has prevented straightforward translation of re-
sults between the two areas.

The field is the basic structure in conventional linear
algebra: vectors, matrices, and linear spaces are all
defined with respect to a field. The counterpart of
field in max-plus algebra is the idempotent semifield,
and many important problems of max-plus algebra are
closely related to the properties of idempotent semi-
field. In this paper we first study the completeness of
totally ordered idempotent semifields (TOIS). A TOIS
may be complete or not, while an incomplete TOIS
can be extended to a complete one by introducing a
max-plus version of Dedekind cuts, if it satisfies some
conditions.

We then proceed to the generalization of linear exten-
sion theorem, on which many useful results in max-plus
linear systems theory are based. The linear extension
theorem was proved in [4, 3], and we generalize it to
countably generated semimodules. The generalization

is helpful because there are some important (possibly
infinite) countably generated semimodules in the max-
plus systems theory, such as the reachability and ob-
servability semimodules of a max-plus linear system.

2 Basic definitions

A semiring is an algebraic structure equiped with ad-
dition ⊕ and multiplication ⊗, and ∀a, b and c,

(a⊕ b)⊕ c = a⊕ (b⊕ c) (1)

a⊕ b = b⊕ a (2)

a⊕ ε = a (3)

(ab)c = a(bc) (4)

ae = ea = a (5)

a(b⊕ c) = ab⊕ ac (6)

(b⊕ c)a = ba⊕ ca (7)

ε = εa = aε (8)

where ε is the zero element and e is the identity ele-
ment.

If a semiring is equipped with commutative and invert-
ible multiplication, it is called a semifield:

ab = ba (9)

∀a 6= ε,∃a−1, aa−1 = e (10)

If a semiring is equipped with idempotent addition, it
is called a dioid:

a⊕ a = a (11)

An algebraic structure is called an idempotent semi-
field, if it is simultaneously a semifield and a dioid.

A dioid induces a natural order relation: a ≤ b ⇔
a ⊕ b = b, and we say a dioid D is distributive if the
induced lattice (D,≤) is distributive. Distributivity is
required for the linear extension theorem to hold. In
this paper, we impose stricter restriction on idempotent



semifield: we require the idempotent semifield to be
totally ordered:

∀a, b, a ≤ b or b ≤ a (12)

For convenience, we will use the abbreviation TOIS to
stand for totally ordered idempotent semifield, and the
discussions in the rest of this paper will be based on
TOIS. This does not imply much loss of generality, be-
cause the most important max-plus algebraic structure
Rmax is a TOIS.

It is easy to show that the only finite TOIS is the
boolean algebra {ε, e}, therefore all nontrivial TOIS’
are infinite.

Definition 1 An infinite TOIS S is said to be discrete,
if there is a minimal element in the set {x ∈ S|x > e};
S is said to be dense otherwise.

Definition 2 A TOIS S is said to be archimedean, if
for arbitrary a, b ∈ S where a > e, there exists n ∈ N
such that an > b.

It is not difficult to show that our definition of dense-
ness is equivalent to the common understanding: for
arbitrary a < b, there is a c such that a < c < b. Also
note that our definition of “archimedean” is translated
from the archimedean axiom of real number theory,
and it should not be confused with other definitions of
archimedeanness in the literature.

Proposition 1 Any infinite discrete archimedean
TOIS is isomorphic to (Z ∪ {−∞},max,+).

Proof: Left to the reader.

3 Completeness and complete extension of
TOIS

Definition 3 A TOIS S is said to be complete, if any
upper-bounded nonempty subset of S has a supremum
in S.

This definition is directly borrowed from the real num-
ber theory, and is weaker than the definition of dioid
completeness given in [2, 3], which does not require
the subset to be upper-bounded. For a dioid to be
complete in that sense, a maximal element > must be
introduced, which is called “top completion” of dioid.
With the introduction of >, some elegant properties of

semifield are no longer satisfied. In our sense of com-
pleteness, the top completion is avoided. Later on we
will develop on our sense of completeness.

Definition 3 of completeness also ensures infimum-
completeness, that is, any nonempty subset of a com-
plete TOIS has an infimum. The proof is left to the
reader. We also have the following lemma, whose proof
is also omitted.

Lemma 1 Let S be a TOIS, a ∈ S, B ⊆ S, denote
{ab|b ∈ B} by aB, we have:

1. If sup(B) exists, then sup(aB) = asup(B).

2. If inf(B) exists, then inf(aB) = ainf(B).

Definition 4 Let S be a TOIS, a complete TOIS S̄ is
a called a complete extension of S, if S is a sub-TOIS
of S̄.

Theorem 1 Any non-archimedean TOIS does not ad-
mit a complete extension.

Proof: Let S be a non-archimedean TOIS. By Defi-
nition 2, there exist a, b ∈ S, a > e, and for any n ∈ N,
an ≤ b. Let A = {an|n ∈ N}, then b is an upper-bound
of A. Suppose S has a complete extension S̄, then A
has a supremum T in S̄. By Lemma 1, sup(aA) = aT ,
and since aA ⊂ A, it must be true that aT ≤ T , hence
a ≤ e, which yields a contradiction.

In the sequel we will try to construct a complete exten-
sion of a dense archimedean TOIS. This is done through
a process similar to the Dedekind complete extension
of rational numbers.

Definition 5 Let S be a dense archimedean TOIS, a
set X ⊂ S is called a Dedekind cut of S if the following
conditions are satisfied:

1. X 6= S;

2. ∀x ∈ X, if y ∈ S and y ≤ x, then y ∈ X;

3. ∀x ∈ X, ∃z ∈ X, such that x < z.

Lemma 2 Let S be a dense archimedean TOIS, A,B
are Dedekind cuts of S, then either A ⊆ B or A ⊇ B.

Proof: Suppose not A ⊆ B, there must exist a such
that a ∈ A and a /∈ B. We must have ∀b ∈ B, b < a:
if otherwise a ≤ b, since b ∈ B, then a ∈ B, which is a
contradiction. Now since a ∈ A and b < a, it must be
true that b ∈ A, and therefore B ⊆ A.



Lemma 3 Let S be a dense archimedean TOIS, A,B
are Dedekind cuts of S. If we define A ⊕ B = A ∪ B
and AB = {ab|a ∈ A, b ∈ B}, then A⊕B and AB are
also Dedekind cuts of S.

Proof: (1) Closure of addition. By Lemma 2, A⊕B
is identical to either A or B, therefore A⊕B must be a
Dedekind cut of S. (2) Closure of multiplication. (2.1)
Suppose there are α /∈ A and β /∈ B, then ∀a ∈ A, a <
α and ∀b ∈ B, b < β, consequently ∀c ∈ AB, c < αβ,
and hence αβ /∈ AB, AB 6= S. (2.2) If ε = c ∈ AB
then ∀d ≤ c, d = c and d ∈ AB. Now assume ε 6= c =
ab ∈ AB where a ∈ A and b ∈ B, and ∀d ∈ S such
that d ≤ c, we have a−1d ≤ a−1c = b, so a−1d ∈ B,
therefore d = a · a−1d ∈ AB. (2.3) ∀c ∈ AB, c = ab,
where a ∈ A and b ∈ B, there must be α ∈ A and β ∈ B
such that a < α and b < β, therefore c < αβ ∈ AB.
By Definition 5, AB is a Dedekind cut of S.

Lemma 4 Let S be a dense archimedean TOIS, X 6= ∅
is a Dedekind cut of S, then ∀r < e, ∃t ∈ X, such that
∀x ∈ X, t > rx.

Proof: Because r < e, r−1 > e. Let M = {n ∈
Z|∀x ∈ X, r−n ≥ x}. By Definition 5 we have that X is
upper-bounded, and by the archimedeanness of S, M 6=
∅. Conversely, since X 6= ∅, by Definition 5 there must
exist an ε 6= a ∈ X. Again by the archimedeanness of
S, there exists a k ∈ Z such that r−k > a−1 i.e. rk <
a, hence ∀n ≤ −k, n /∈ M and M is lower-bounded.
Therefore, m = min(M) is well-defined. Now ∃t ∈ X,
t > r−(m−1) and ∀x ∈ X, x ≤ r−m. Therefore, ∃t ∈
X, ∀x ∈ X, t > r−(m−1) = rr−m ≥ rx.

Lemma 5 Let S be a dense archimedean TOIS and
a, b ∈ S, then ∀z ∈ S, z < ab ⇔ ∃x < a∃y < b such
that z = xy.

Proof: ⇒: The proof is trivial for the case ab = ε,
so we can assume ab 6= ε. Let r = (ab)−1z, then r < e,
and since S is dense, there exists s such that r < s < e.
Let t = rs−1, then t < e. Let x = as, y = bt, then
xy = abst = abr = z. ⇐ is trivial.

Lemma 6 Let S be a dense archimedean TOIS, and
A,B ⊂ S, a, b ∈ S, if a = sup(A) and b = sup(B),
then ab = sup(AB).

Proof: The case ab = ε is trivial, so we can assume
ab 6= ε. It is trivial to show that ab is an upper-bound
of AB. For any c < ab, let r = (ab)−1c, then r < e.
Because S is dense, there exists s such that r < s < e,

let t = rs−1, then t < e. Since a = sup(A), there exists
x ∈ A such that x > as; and since b = sup(B), there
exists y ∈ B such that y > bt. So xy > abst = abr = c,
which implies that ab is the minimal upper-bound of
AB, i.e. ab = sup(AB).

In the sequel we denote the set of all Dedekind cuts of
S by S̄, and denote two special Dedekind cuts ∅ and
{x|x < e} by ε̄ and ē, respectively.

Theorem 2 Let S be a dense archimedean TOIS, then
(S̄,⊕, ·, ε̄, ē) is a complete extension of S, and S is
dense in S̄.

Proof: By Lemma 3, S̄ is closed under operations
⊕ and ·, and it is easy to check that (S̄,⊕, ·, ε̄, ē) sat-
isfies the axioms required of TOIS except axioms 10
and 12. Lemma 2 has ensured that S̄ satisfies axiom
12 (total order). Now it remains to show that axiom
10 is satisfied.

∀X ∈ S̄ and X 6= ε̄ = ∅, let X−1 = {y ∈ S|∃r <
e,∀x ∈ X,xy < r}. It is easy to verify that X−1 ∈ S̄,
and XX−1 ⊆ ē. Now for any r < e, because S is dense,
there is s ∈ S, such that r < s < e. By Lemma 4, there
exists t ∈ X such that ∀x ∈ X, t > sx. Thus ∀x ∈ X,
x · rt−1 < rs−1 < e, which implies rt−1 ∈ X−1. Hence
XX−1 ⊇ ē. Therefore, XX−1 = ē.

Now we show S̄ is complete. Suppose ∆ ⊂ S̄ and
∆ is nonempty and upper-bounded. This means that
there exists B ∈ S̄, such that ∀X ∈ ∆, X ⊆ B. Let
T =

⋃

X∈∆X. It is easy to check that T is a Dedekind
cut of S, i.e. T ∈ S̄, and T is the supremum of ∆.
Therefore, S̄ is complete.

Because S is dense, we can define an injective map
f : S 7→ S̄, f(a) = {x|x < a}. We can also prove that
f(x⊕y) = f(x)⊕f(y) and f(xy) = f(x)f(y) by use of
Lemma 5. Hence we can regard S as a sub-TOIS of S̄.

It remains to show that S is dense in S̄. For any X,Y ∈
S̄, X < Y , there must be a ∈ Y and a /∈ X. By the
definition of Dedekind cut, there exists b > a, b ∈ Y ,
and apparently b /∈ X. Let Z = {z|z < b}. Since
b ∈ Y , there must exist c > b, c ∈ Y , but c /∈ Z
by definition, thus Z < Y . Conversely, because S is
dense, ∃d, a < d < b, hence d ∈ Z, but d /∈ X, and
thus X < Z. Therefore we have X < Z < Y and Z ∈ S
by definition, S is dense in S̄.

From the above results, we can infer that a TOIS ad-
mits a complete extension iff it is archimedean.

Theorem 3 Let S be a dense archimedean TOIS,
then any complete extension of S is isomorphic to the



Dedekind complete extension S̄, and each element in S
is invariant under the isomorphism.

Proof: Let U denote any complete extension of
S. Define map: f : S̄ 7→ U , f(∅) = εU and f(X) =
supU (X) for X 6= ∅, where supU (X) denotes the supre-
mum of X in U . For arbitrary X,Y ∈ S̄, if X < Y ,
then ∃y ∈ Y ,y /∈ X, and also ∃z ∈ Y , z > y, therefore
supU (Y ) ≥ z > y ≥ supU (X), i.e. f(X) < f(Y ). This
means that f is injective.

It is trivial to show f(X ⊕ Y ) = f(X) ⊕ f(Y ). By
Lemma 6, we have f(XY ) = f(X)f(Y ). Hence S̄ is
isomorphic to Imf ⊂ U , and S̄ can be considered as a
sub-TOIS of U . Therefore we have S ⊆ S̄ ⊆ U .

∀λ ∈ U , let A = {x ∈ S̄|x ≤ λ}, and B = {x ∈
S̄|x ≥ λ}. A,B 6= ∅ because U is archimedean. Let
a = supS̄(A), b = infS̄(B). We have a, b ∈ S̄ and
a ≤ λ ≤ b. Let us suppose a < b. Since S̄ is dense,
there exists µ ∈ S̄ such that a < µ < b. We cannot
have µ ≤ λ, since it contradicts a = supS̄(A); we also
cannot have µ ≥ λ, since it contradicts b = supS̄(B).
Therefore, it must be true that a = b = λ, thus λ ∈ S̄,
and we have S̄ = U .

An element a ∈ S is equivalent to ā = {x|x < a} ∈ S̄.
It is obvious that f(ā) = supU (ā) = a. Therefore,
every element in S is invariant under the isomorphism
f .

We can also obtain the following result, the proof is left
to the reader.

Theorem 4 Any dense complete TOIS is isomorphic
to Rmax, and there are only three possible structures of
complete TOIS: Boolean algebra, Zmax and Rmax.

4 A generalization of the linear extension
theorem

4.1 Some preparatory results
For notational simplicity we denote sup{a(k)|k ∈ N}
and inf{a(k)|k ∈ N} by ⊕∞k=1a(k), and ∧∞k=1a(k), re-
spectively.

Lemma 7 Let S be a complete TOIS. A ∈ Sm×n,
∀k ∈ N, x(k) ∈ Sn, and x is a uniformly upper-
bounded ascending sequence, i.e. there exists β ∈ Sn,
such that ∀k ∈ N, x(k) ≤ β, x(k) ≤ x(k + 1), then
⊕∞k=1Ax(k) = A⊕∞k=1 x(k).

Proof: (1) For the case S is finite or discrete, it is
easy to show that ∃K ∈ N, x(k) = x(∞). Therefore,

⊕∞k=1Ax(k) = ⊕Kk=1Ax(k) = A ⊕Kk=1 x(k) = A ⊕∞k=1

x(k). (2) For the case S is dense, it suffices to prove
for the case m = 1. Let x(∞) = ⊕∞k=1x(k). Apparently
Ax(k) ≤ Ax(∞) for k ∈ N, and ∀r < e ∈ S, ∃K ∈ N,
such that x(k) ≥ rx(∞), hence Ax(k) ≥ rAx(∞) for
k > K. It then follows that ⊕∞k=1Ax(k) = Ax(∞) =
A⊕∞k=1 x(k).

Lemma 8 Let S be a complete TOIS. A ∈ Sm×n, ∀k ∈
N, x(k) ∈ Sn, and x is a descending sequence, i.e. ∀k ∈
N, x(k) ≥ x(k + 1), then ∧∞k=1Ax(k) = A ∧∞k=1 x(k).

Proof: (1) For the case S is finite or discrete,
the proof is nearly the same as Lemma 7. (2) For
the case S is dense, it suffices to prove for the case
m = 1. Let A = [a1, · · · , an], x(∞) = ∧∞k=1x(k), and
E = {i ∈ {1, · · · , n}|aixi(∞) = ε}. If E = {1, · · · , n},
it is obvious that ∧∞k=1Ax(k) = ε = A ∧∞k=1 x(k).
If E 6= {1, · · · , n}, then ⊕i/∈Eaixi(k) ≥ ajxj(∞),
where j /∈ E. There must be K ∈ N, such that for
k > K, ⊕i∈Eaixi(k) < ajxj(∞), and hence Ax(k) =
⊕i/∈Eaixi(k). Therefore, we can disregard the compo-
nents in E, and we can assume without loss of general-
ity that xi(∞) 6= ε, i = 1, · · · , n. Apparently Ax(k) ≥
Ax(∞) for k ∈ N, and ∀r > e ∈ S, ∃K ∈ N, such that
x(k) ≤ rx(∞), hence Ax(k) ≤ rAx(∞) for k > K. It
follows that ∧∞k=1Ax(k) = Ax(∞) = A ∧∞k=1 x(k).

Definition 6 Let S be a complete TOIS, a set X ⊆ Sn
is said to be closed, if

1. ∀x, y ∈ X, x⊕ y ∈ X;

2. For any upper-bounded ascending sequence
{xk}∞k=1 in X, we have ⊕∞k=1xk ∈ X;

3. For any descending sequence {xk}∞k=1 in X, we
have ∧∞k=1xk ∈ X.

Theorem 5 Let S be a complete TOIS. ∀k ∈ N, ∅ 6=
Xk ⊆ Sn, Xk ⊇ Xk+1, Xk is closed, and X1 is upper-
bounded, then

⋂∞
k=1Xk 6= ∅.

Proof: Since for any k ∈ N, Xk 6= ∅, we can select
xk ∈ Xk. For any l ≤ p ∈ N, let yl,p = ⊕pk=lxk, and
zl = ⊕∞p=lyl,p. Because Xl is closed and Xp ⊆ Xl, we
have yl,p ∈ Xl for any p ≥ l. Also because sequence yl,p
with index p is an upper-bounded ascending sequence,
we have zl ∈ Xl. It is also apparent that zl = ⊕∞k=lxk,
which means that sequence zl is descending. Let z =
∧∞l=1zl, then z = ∧∞l=kzl for any k ∈ N. Since zl ∈ Xk

for l ≥ k and Xk is closed, ∧∞l=kzl ∈ Xk, i.e. z ∈ Xk.
Therefore,

⋂∞
k=1Xk 6= ∅.



4.2 Linear extension theorem and its general-
ization to countably generated semimodules
Linear Extension Theorem([4, 3]): Let S be a dis-
tributive idempotent semifield. Let F ,G denote two
free finitely generated S-semimodule, and let H ⊂ G
be a finitely generated subsemimodule. For all F ∈
Hom(H,F), there exists G ∈ Hom(G,F) such that
∀x ∈ H, G(x) = F (x).

We give here an equivalent form of the linear extension
theorem in matrix language.

Linear Extension Theorem: Let S be a distributive
idempotent semifield. A ∈ Sm×n, b ∈ Sm×1, and
∀u, v ∈ S1×m, uA = vA ⇒ ub = vb, then there ex-
ists x ∈ Sn×1 such that Ax = b.

Theorem 6 Let S be a complete TOIS. A ∈ S∞×n,
b ∈ S∞×1, and ∀u, v ∈ S1×∞, where u, v have finite
support (finite number of coordinates 6= ε), uA = vA⇒
ub = vb, then there exists x ∈ Sn×1 such that Ax = b.

Proof: We say a column in a matrix empty if all
its entries are ε. It suffices to prove for the case that
there is no empty columns in A. If otherwise, we can
eliminate the empty columns in A and corresponding
coordinates in b and x.

Let A(k) and b(k) denote the sub-matrix or sub-vector
formed by the first k rows of A and b, respectively.
Since we assume there are no empty columns in A,
there exists k0 such that each column in A(k0) has at
least one non-ε entry. Let Xk = {x ∈ Sn×1|A(k)x =
b(k)}, then Xk0 is upper-bounded, Xk ⊇ Xk+1, and by
Definition 6, Lemma 7 and 8, Xk is closed. By the
linear extension theorem, Xk 6= ∅. Thus by Theorem
5, there exists x ∈

⋂∞
k=k0

Xk =
⋂∞
k=1Xk, which means

∀k ∈ N, A(k)x = b(k), i.e. Ax = b.

This generalization can be further relaxed to
archimedean TOIS’ which are not necessarily complete.

Theorem 7 Let S be an archimedean TOIS. A ∈
S∞×n, b ∈ S∞×1, and ∀u, v ∈ S1×∞, where u, v have
finite support, uA = vA ⇒ ub = vb, then there exists
x ∈ Sn×1 such that Ax = b.

Proof: Since S is archimedean, there must exist
a complete extension S̄ of S. Obviously A ∈ S̄∞×n,
b ∈ S̄∞×1. ∀m ∈ N, let A(m) and b(m) denote the sub-
matrix or sub-vector formed by the first m rows of A
and b, respectively. According to the given condition,
we have ∀u, v ∈ S1×m, uA(m) = vA(m) ⇒ ub(m) =
vb(m), thus due to the linear extension theorem, there
exists x(m) ∈ Sn×1 such that A(m)x(m) = b(m). Thus

∀ū, v̄ ∈ S̄1×m such that ūA(m) = v̄A(m), it must hold
true that ūb(m) = ūA(m)x(m) = v̄A(m)x(m) = v̄b(m).
Therefore, ∀ū, v̄ ∈ S̄1×∞, where ū, v̄ have finite sup-
port, ūA = v̄A ⇒ ūb = v̄b. By Theorem 6, ∃x̄ ∈ S̄n×1

such that Ax̄ = b.

Let P = {j ∈ {1, · · · , n}|x̄j ∈ S}, and Q =
{1, · · · , n}\P . Suppose there exists i ∈ N such that
bi 6= ⊕j∈Paij x̄j , then bi 6= ε and ∃j ∈ Q such that
bi = aij x̄j , thus bi /∈ S, a contradiction. Therefore it
must be true that bi = ⊕j∈Paij x̄j for any i ∈ N. Let x
be such that xj = x̄j for j ∈ P and xj = ε otherwise.
It is trivial to see that x ∈ Sn×1 and Ax = b.

It is easily seen that if translated into geometric lan-
guage, Theorem 7 is the generalization of the linear
extension theorem from finitely to countably gener-
ated semimodules, as long as the concerned semifield is
archimedean. This generalization may provide a tool
for attacking the realization problems in max-plus sys-
tems theory, because the reachability and observabil-
ity semimodules are (possibly infinite) countably gen-
erated.

5 Conclusions

We have studied the completeness of totally ordered
idempotent semifields and obtained some interesting
results. They are helpful in understanding the “an-
alytical” structure of idempotent semifields. Further,
we used our completeness results to derive a general-
ization of the linear extension theorem. We hope the
generalization will be of help in solving the realization
problems in max-plus systems theory.
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