Completeness of Integrated
Information Sources

Felix Naumann, Johann-Christoph Freytag, Ulf Leser

Humboldt- Universitat zu Berlin
Unter den Linden 6, 10099 Berlin, GERMANY

Abstract

For many information domains there are numerous World Wide Web data sources.
The sources vary both in their extension and their intension: They represent different
real world entities with possible overlap and provide different attributes of these
entities. Mediator-based information systems allow integrated access to such sources
by providing a common schema against which the user can pose queries. Given a
query, the mediator must determine which participating sources to access and how
to integrate the incoming results.

This article describes how to support mediators in their source selection and
query planning process. We propose three new merge operators, which formalize
the integration of multiple source responses. A completeness model describes the
usefulness of a source to answer a query. The completeness measure incorporates
both extensional value (called coverage) and intensional value (called density) of
a source. We show how to determine the completeness of single sources and of
combinations of sources under the new merge operators. Finally, we show how to
use the measure for source selection and query planning.

Key words: Query planning, Coverage, Density, Information integration, Result
size, Overlap

1 Introduction

The development of the World Wide Web has made it possible to access a
multitude of data sources on almost any given topic. Most often, a user may

Email addresses: naumann@informatik.hu-berlin.de (Felix Naumann),
freytag@dbis.informatik.hu-berlin.de (Johann-Christoph Freytag),
leser@informatik.hu-berlin.de (Ulf Leser).

Preprint submitted to Elsevier Science



choose between many alternative sources to obtain the desired piece of infor-
mation. In particular, the desired information may either reside at one source,
on several alternative sources, or the desired information might be split across
multiple sources. In the first case the user can choose to query only one (best)
source or to query multiple sources and combine the results. In the second
case, the user must query multiple sources and combine the results.

Cooperative information systems and integrated information systems in gen-
eral are often based on a mediator-wrapper architecture [1]. Therein, each
data source is wrapped by one or more source-specific modules, the wrappers,
which offer an export schema and query interface hiding the particular data
model, access path, and interface technology of the source. Wrappers are used
by a mediator which offers an integrated access through its global schema.

In most projects for information integration, it is implicitly assumed that the
mediator should always compute the complete answer. We argue that in many
cases this assumption is wrong:

e Computing the complete answer is not always necessary. For instance, a
meta-search engine does not need to download all hits from all search engines
it uses; instead, taking the top ten hits usually suffices.

e Computing the complete answer may be too expensive if querying data
sources costs money, or it may take too long.

On the other hand, computing only complete results is also not always suffi-
cient. To see this, consider a query asking for books by Stephen King, together
with titles, reviews, and prices. Imagine having two data sources, one being
a large online bookseller that does not provide reviews, while the other is a
small second-hand bookseller who can provide all the requested attributes. In
this case, only the second source could provide answers with all attributes.
But it is arguably better to query both sources even though the first source
does not provide all requested attributes.

These examples show that integrated systems should also consider plans that
produce answers lacking tuples and/or attribute values. We assume that a
user is interested in getting the “best” answer, where the quality of a plan
must be carefully weighted between the amount of data it produces, the time
it takes to execute it, the money it costs, etc. In this article, we concentrate
on the first issue, i.e., we present a general model for estimating the amount
of data produced by a plan—its completeness.

The aim of this article is not to overcome the much lamented information
overflow; we are guided by the assumption that the most complete response to
the user is the best, given some cost limits. Filtering techniques of information
retrieval may be used subsequently to reduce the result size. Such techniques
benefit from a large amount of information to begin with.



The contributions of this article are twofold. First, we introduce an informa-
tion model for WWW information systems including new operators to combine
responses from multiple data sources, and a new model for query planning.
Second, we define a comprehensive completeness measure that assesses the
completeness of sources and of combinations of sources over the new opera-
tors. We show how to use this measure for effective information integration.
These contributions combine three fields of research: information integration,
query answering, and result size estimation. We regard related work on re-
lational operators for information integration in Section 3.4, related work on
query planning in Section 4.3, and related work on result size estimation in
Section 6.6.

The results of our research are applicable not only to cooperative information
systems as defined by De Michelis et al. in [2], but to integrated informa-
tion systems in general. However, the completeness measures presented in this
paper can be determined and predicted much more precisely for cooperating
information sources than for integrated but autonomous sources: Complete-
ness values of integrated results heavily rely on precise metadata about the
underlying sources. For the cooperative integrated information systems under
consideration, we assume the shared goal of providing answers to queries as
completely and as efficiently as possible. In particular cooperative systems ac-
tively sharing and updating metadata about themselves (self-representation)
are rewarded with precise completeness measures and in consequence with less
redundant access to the data and less redundant network traffic.

In the first part of this article (Sections 2-4) we present the framework to
which we apply our completeness model. In Section 2 we introduce a relational
data model for modeling WWW data sources and describe how we integrate
information from multiple sources. Section 3 defines three new merge operators
performing integration. Section 4 describes user queries, source descriptions,
and a method for using the new operators to construct plans across multiple
sources to answer user queries. The second part of this article (Sections 5
and 6) covers our completeness model. In Section 5 we define “completeness”
as a combination of the two measures “coverage” and “density”. Section 6
shows how to predict completeness scores for combinations of data sources.
Finally, Section 7 shows how to make use of our completeness model to find
optimal plans to respond to user queries within a cost limit. We conclude in
Section 8. Proofs of theorems and lemmata can be found in the appendix.

2 Integration Model of WWW Data Sources

We adopt the mediator-wrapper architecture as proposed by Wiederhold to al-
low integrated access to multiple, autonomous data sources (see Figure 1) [1].



The sources may be distributed across a network and heterogeneous in techni-
cal, syntactical, and semantical aspects. A mediator-based information system
comprises wrappers, which hide technical and syntactical heterogeneity from
the mediator, and a mediator, which additionally hides semantical heterogene-
ity from the user.

User Mediator
Wrapper Wrapper Wrapper

Wrapper

]

O ) 0 | O

RO
Internet b
N oA

Data
Source

=

Data
Source

=

Source

=

Fig. 1. The mediator-wrapper architecture

In this article we concentrate on the tasks of the mediator. Wrapper construc-
tion and deployment are discussed for instance in [3,4]. We base our approach
on the relational model as the canonical data model, i.e., wrappers export a
local relational schema, the mediator stores a given global relational schema.

2.1 Global Data Model

Users of a mediator-based information system communicate with the mediator
by posing queries against its global relational schema. We call the set of tuples
of a relation R the extension of R, and the set of attributes of R the intension
of R. The extensions of relations of the global schema do not exist physically
at the mediator, but reside at the participating data sources.

Relations may contain foreign ID-attributes, thus forming relationships be-
tween entities. Due to the autonomy of the sources, we can make no assump-
tions about referential integrity. For the same reason, we cannot require that
ID-attributes are keys from the mediators point of view—the sources may
store conflicting data about an entity. Together we have three disjoint types
of attributes: primary IDs, foreign IDs, and ordinary attributes. To reflect the
reality of many Web data sources, we allow all attribute values other than the
ID to be null. A null value denotes missing or unknown data.

Ezxample. Figure 2 shows an exemplary global schema at the mediator. It con-
tains three relations, each with an underlined primary ID, and two relation-



ships, which we identify by using the same attribute names. So for instance,
attribute ag in relation R is a foreign ID for the primary ID of Ry. This global

schema serves as an example throughout the article. a
a . A
Mediator
Ry Ry Rs
3y ag a5
az a5
- J

Fig. 2. The global schema of the mediator

2.1.1 Unaversal relation

We propose the universal relation as a means to describe data sources and
user queries. The original universal relation model “aims at achieving complete
access path independence in relational databases by relieving the user of the
need for logical navigation among relations” [5]. Instead of revealing the global
schema with its relations to the user, the relations are combined to a single,
universal relation. The access path independence holds twofold for integrated
information systems: First, the user must no longer formulate joins between
relations, the joins are implicit in the universal relation. Second, the user need
not specify which data sources are used to fill the global relations with data.
The sources are selected automatically in the planning process.

Definition 1 (Universal Relation) Let A be the set of all attributes of the
global schema, i.e., the union of all attributes of global relations. Then the
universal relation UR is the relation consisting of all attributes A.

Following Maier et al., we make the usual universal relation scheme assump-
tion and unique role assumption for the universal relation [5]. We use the
concept of the universal relation (i) to describe sources and (ii) as a user in-
terface to formulate queries. We define both aspects as subsets of the attributes
of the universal relation in the following sections. This approach restricts our
model to simple yet expressive source descriptions and user queries.

To represent the universal relation, the underlying relations, the data sources
providing data for the relations, and user queries, we present the UR-tableau.
A UR-tableau is a table similar to the table of the universal relation UR itself.
Table 1 shows an example using the schema of Figure 2.

The columns of a UR-tableau represent the attributes of UR. The rows however
do not represent tuples but rather entire tuple sets. The tuples represented
by relation R; are shown as a row R;, where all attributes of the relations



Universal Relation — UR a1 a2 a3 a4 as ag

Ry :

IO

O
o O
O

Relations — Ro:
Rs: g d
Sy
S :

O IO
O
o O O

Sources — S3: > 10
Sy > 50 O
S5 : O 0O
Q1 : U U
User Queries — Q9 : O < 10 O a
Qz:0>10 <40

IO

Table 1
The UR-tableau

are marked ‘[]” in the corresponding column. ID-attributes are underlined.
The tuples represented in a source S; are shown as a row S;, again with
‘" marks for the attributes that are exported by the source. We include
predicates on attributes of the sources: Instead of marking the attribute in the
UR-tableau, we note the predicate in the corresponding column. Finally, the
tuples requested by a user query are represented in the same way as sources.
We discuss these concepts in more detail and give examples.

2.1.2  Source description

The global schema exists only virtually; data is physically scattered over a
set of heterogeneous data sources. We cannot expect that those sources con-
form to the structure of the global schema, nor is it feasible to adapt the
global schema, whenever new sources are added or sources cease to exist. An
easy plug-in and plug-out of data sources is of utmost importance in a highly
dynamic environment, such as the Web. To enable this flexibility, we model
sources as views on the global schema. This approach is called the local-as-
view approach as opposed to the global-as-view approach, where relations of
the global schema are modeled as views against the schemata of the sources [6].
For convenience we use the term ‘source’, but usually mean the correspond-
ing source view on UR describing the source. We assume that sources export
attributes of only one global relation. If a source provides data for different
global relations, we model this source as two or more different views. It is not
necessary that a source exports the entire set of attributes of a relation—we
require only the ID-attribute. The view may contain selection conditions on



the attribute values:

Definition 2 (Source view) Let UR be the universal relation with attribute
set A, and let R be a relation of the global schema with attribute set Ar C A.
Then a source S for R exporting attribute set Ag with As C Ag is described
as

S[As| < R[Ag], C,

where C' is a conjunction of selection conditions on attributes a; € Ag. Con-
ditions have the form “a; 6 const”, where 6 € {<,>,<, > =}.

Of course, we do not require that different sources define views on different
global relations. Instead, many sources may feed data for the same relation,
i.e., we assume a one to many relationship between relations and sources.

FExample. Table 1 shows five sources that provide data for UR. Sources have
marks only for the attributes of one relation, and must have a mark for the
ID-attribute, which is also ID for the source. We can see that sources S; and
S, provide data for R;, sources S3 and Sy for Ry, and source Sy for R3. The
descriptions of S3 and Sy specify a selection on a4. Note that some sources do
not export all attributes of a relation. O

2.1.3 User Queries

A user query @ is a set of attributes from UR, where attributes possibly carry
selection conditions.

Definition 3 (User Query) Let A be the set of attributes of the universal
relation UR. Then a user query is

QAg] < UR,C,

where Ag C A and C is a conjunction of selection conditions on attributes
a; € Ag. Conditions have the form “a; 6 const”, where § € {<,>, <, > =}.

When formulating a query, users need not perceive the underlying relations
of UR. Note that attributes can be selected from the entire set and are not
restricted to a certain relation like sources views. Users can arbitrarily select
attributes of UR and add selection conditions. As Gupta pointed out, most
users of commercial Web sites are unwilling or unable to formulate complex
queries and joins [7]. The restrictions implied by the universal relation facil-
itate the explanation of the main ideas of this article, because they restrict
the set of possible queries: No relation occurs more than once in a query,
only predefined joins are used, there are no conditions on attributes that are
not projected, etc. Even though such complex queries do occur, they are not
common in real life situations.



Ezxample. Table 1 shows three exemplary user queries. User queries can have
marks on any attribute of the UR-tableau. O

2.2 Information Integration

Simultaneous gathering of data from multiple sources bears two advantages:
We collect more data, and we collect more detailed data. Consider integrating
data from several Web search engines. Search engines take keywords as a query
and return URLs (links) together with some information about the linked Web
page, such as title and size. Usage of more than one search engine covers larger
parts of the Web and thus provides more links; for those links that are provided
by more than one engine, we can hope for complementing attributes, i.e., one
source returns the size of the linked Web page, another the language of the
page, etc.

Generally speaking, data sources overlap in two ways: extensionally and inten-
sionally. The extensional overlap between two sources is the set of real world
entities that are represented in both sources. The intensional overlap between
two sources is the set of attributes both sources provide.

Example. Consider the sources of Table 1. Sources S; and S5 extensionally
overlap in those tuples where the value for a; is the same. Intensionally they
overlap in attributes a; and as. Data conflicts may arise for values of a3 when
the two sources store different values for the same real world entity identified
by a;. The extensional overlap of S; and S3 are the tuples that have the same
value for ag, their intensional overlap is only as. O

To make use of overlap and to integrate data in a meaning- and useful way,
we must recognize identical entities represented in different sources (object
identification), and we must be able to resolve any data conflicts between
values (conflict resolution).

2.2.1 Object Identification

Integrating data from different sources requires that different representations
of identical real world entities are identified as such. This process is called
object identification. Object identification is difficult, because the available
knowledge about the objects under consideration is incomplete, inconsistent,
and sparse. A particular problem occurs if no natural IDs exist. Object iden-
tification in the absence of IDs, which is essentially the same problem as
duplicate detection [8], record linkage [9,10], or object fusion [11], is typically
approached by statistical methods. To avoid the difficulties of object identifi-
cation, we require that each tuple in a source has a unique ID-attribute, and



that tuples gathered from different sources are identical if and only if their ID
is identical. Although this requirement may seem strong, it is true for many
domains: Web pages have the URL, stocks have a ticker symbol, books have
an ISBN| persons have a passport number, etc.

2.2.2  Conflict Resolution

Once different tuples have been identified as representing the same entity, the
data about them can be integrated. In general, a result integrated from tuples
of different sources contains tuples where

(1) some attribute value is not provided by any of the sources,
(2) some attribute value is provided by exactly one source,
(3) some attribute value is provided by more than one source.

We define resolution functions to decide upon the value of the integrated result.

Definition 4 (Resolution function) Let D be an attribute domain and
Dt == DU L, where L represents the null value. A resolution function f
is an associative function f : DT x DT — DT with

L ife=1Landy= 1

x ify=1 and x # L
f(z,y) = .

Y ife=1andy# L

g(@,y) else

where g : DxD — D. Function g is an internal associative resolution function.

Internal resolution functions may be of various types, depending on the type
of attribute, the usage of the value, and many other aspects [12,13]. A simple
resolution function might concatenate the values and annotate them with the
source that provided the value. Especially conflicts in textual attributes may
be resolved in this way. Here, the integration is not completely transparent,
and users are given the opportunity to resolve the conflict by their own means.
Notice that resolution functions need not depend only on the two conflicting
attribute values. A resolution function could additionally depend on some date
attribute of the sources and favor the most recent value.

2.3 Application Example — Meta-Search Engine

Meta-search engines, such as MetaCrawler [14], are systems that integrate
existing search engines. The global schema of a meta-search engine has only
one relation. We show the corresponding UR-tableau in Table 2. The global



ID of this relation is the URL; other attributes include title, description, size,
etc. Search engines, such as AltaVista [15] or Google [16], are each represented
by a view. National search engines, such as Web.de [17], are modeled as views
with a selection on the language of a Web page.

UR URL title descr. date size language  category ranking

Ry 0O 0 g 0 O O O 0
Google: 0O O O O O
AltaVista: 0O O ad O
Web.de: 0O U u ‘= german’ g

Table 2
Universal relation for a meta-search engines

3 Merge Operators

In the presence of data overlap and value conflicts between sources, standard
relational operators are not useful for integration: Overlap must be recog-
nized, conflicts must be resolved, and multiple plans must be integrated. To
formalize the integration of sources and plans we define four new operators:
the join-merge operator “I”, the left outerjoin-merge operator “J” (and right
outerjoin-merge operator “C"), and the full outerjoin-merge operator “L”.
Figure 3 gives an intuition of the function of the operators. The figure rep-
resents the extensions of two sources corresponding to two different relations.
The sources overlap intensionally in one attribute—a foreign ID of S; which
corresponds to the ID of S;. This forms an ID-foreign ID relationship. The
extensional overlap of the two sources is the part shaded by a grid. The figure
shows the extensions produced by the different merge-operators.

S N+ 77 + & = S U Sj (full outerjoin merge)

I N+ & = S 7 S;j (left outerjoin merge)

77 + % = Sj C Sj (right outerjoin merge)
& = Sj 1 S;j (join merge)

Sj

Fig. 3. The four merge operators

We define the operators between sources (i.e., source views), and not between
relations, because in a plan the operator is applied to sources, not to relations.
The operators naturally extend to intermediate results.

10



3.1 The Join-Merge Operator

We define the join-merge operator and show an example in Figure 4. The
purpose of the join-merge operator is to perform join-like operations across
sources with possibly conflicting data.

We restrict the use of the join-merge operator to two cases: Either the join
attribute ay is an ID for both sources (S; My, S2), or ay is an ID for one
source and a corresponding foreign ID for the other source (S My, Si). We
do not allow joins over other attributes than ID-attributes. This restriction
avoids joining over conflicting data. By definition, IDs do not conflict—if they
have the same value, we assume that they represent the same entity, if they
differ, we assume that they represent different entities. The more general case,
where tuples are merged based on the values of more than one ID attribute,
would require only the generation of an artificial ID by concatenating those
ID attributes and is therefore omitted. Wherever the join attribute is clear,
we omit the operator index that specifies it.

Definition 5 (Join-Merge Operator M) Let A be the set of attributes in
the universal relation. Let S; = (A;) and S; = (A;) be two data sources with
Ai,Aj - A, Az ﬂAJ 7é @, and let a;, € Az ﬂAJ

Si My, S = {tuple t{A] | Ir € S;, s € S; with
tlar] = rlar] = sla],

[
la] = s[a], Ya € A;\ A,

tla] = f(rla], s[a]), Va € A; N A;,a # ay
la] = L, Va e A\ (A;UA))},

where f is a resolution function as defined in Definition 4.

The join-merge operator returns tuples for UR that are joined from tuples in
S; and S}, using a;, as join attribute. For all attributes exclusively provided by
S;, the values of \S; are used, for all attributes exclusively provided by S}, the
values of S; are used. For common attributes, the join-merge operator applies
the resolution function f to determine the final value. The values of all other
attributes of UR are padded with null values.

Example. Assume sources Si, Sp, and Sy of Example 2.1.2 contain the tuples
shown in Figure 4. Below the sources, we show the results of two join-merge
operations. The two results represent the two cases to which we restrict the
join-merge operator. O

The join-merge operator corresponds to a traditional inner join operation with

11



Si1:a1 az a3 Syt a1 a3 Si:as as as
1 X 15 1 16 15 %’ ‘g’
2 4y 1 4 1 16y L
3 L 15 5 17 17 X7 49
4 ‘7’ 21
S1May S2: a1 az as a4 as ag S1Mas St a1 az az ag as ag
1 % f(15,16) L L L 1 %15 % ‘g L
47 f@21,1) L 1 L 3 L 15% ‘g L

Fig. 4. The join-merge operator

two exceptions: (i) We allow only one attribute as join attribute, even if the two
sources have more than one attribute in common. This join-attribute is a; in
the definition. (ii) For all other common attributes data conflicts might arise,
i.e., the sources provide different values for the attribute. Instead of creating
a new tuple, a resolution function f resolves these conflicts and determines
which value shall appear in the result.

3.2 The Left Outerjoin-Merge Operator

We define the left outerjoin-merge operator and continue the example in Fig-
ure 5. The definition is based on the join-merge operator of Definition 5. We
also define the right outerjoin-merge, but shall use only the left outerjoin-
merge operator in the following. We use the outer-union operator W, which
performs a union over relations with differing attribute sets [18]. The attribute
set of the result is the union of the attribute sets of the two relations. In our
case this is the entire attribute set A because the result of a join-merge oper-
ation has A as attribute set. [A;] denotes the projection on attributes A;.

Definition 6 (Left/Right Outerjoin-Merge Operator /) Let A be
the set of attributes in the universal relation. Let S; = (A;) and S; = (A;) be
two data sources with A;; Aj € A, A;NA; £ 0, and let ap € A; N A;.

Si Day, S5 =(SiMay, S5) W (Si \ (SiMay, Sj)[Ai])
Si [ak Sj I:Sj :lak Sz

The left outerjoin-merge corresponds to the classical left outerjoin applying
the same restrictions as for the join-merge operator. The left outerjoin-merge

12



Sl :lal SQ L a; an as a4 a5 Qg Sl :Ia3 S4 L a] az asz a4 a5 ag

1 < f(15,16) L L L 1% 15% ‘g L

29 L L 11 2y L 1L 11
3L 15 L 11 3 1L15% ‘g L
4% f(21,1) L 1 L 421 L 1L 1

Fig. 5. The left outerjoin-merge operator using the sources of Figure 4

guarantees that all tuples from one source (S; in Figure 5) appear in the
result. Wherever possible, they are joined with tuples from the other source.
If not possible, the missing values are padded with null (L). As for the join-
merge operator, the left outerjoin-merge is restricted to the two cases shown
in Figure 5. Because the right outerjoin-merge operator is basically the same
as the left outerjoin-merge, we continue the discussion only with the latter.

3.3 The Full Outerjoin-Merge Operator

We define the full outerjoin-merge operator and continue with the example in
Figure 6.

Definition 7 (Full Outerjoin-Merge Operator L) Let A be the set of at-
tributes in the universal relation. Let S; = (A;) and S; = (A;) be two data
sources with A;, A; € A, AiNA; # 0, and let ap, € A; N A;.

SiUay, S = (Si M, S5) W (Si \ (Si Mg, Sj)[A]) & (S5 \ (Si May, Sj)[A;]) -

The full outerjoin-merge operator guarantees that every tuple from both sources
enters the result. Missing values in attributes of tuples that do not have a

matching tuple in the other source are padded with null values (L). Again,

we restrict the operator to the two cases of Figure 6.

3.4 Related work on merge operators

Literature describes several operators similar to the full outerjoin-merge, how-
ever none of the authors have sources in mind that possibly are mutually in-
consistent. For instance, LaCroix and Pirotte defined a similar operator, the
“generalized natural join operator”, denoted X [19]. Our full outerjoin-merge
operator differs from their definition in two aspects: First, data conflicts are

13



S L, Syt a1 as as a4 as ag S Uag Si:a1 ay as a4 as ag

1 % f(15,16) L L L 1% 15 % ‘g L
29 L L 11 2y L 1L 11
3L 15 L 11 3 115% ‘g L
4% f(21,1) L 1L L 421 L 1L 1
5 1 17 L 11 L L16y L L

1 1L 1rx 9 L

Fig. 6. The union-merge operator using the sources of Figure 4

resolved with a resolution function f. Second, our join is not a natural join;
rather, the join predicate contains only one join attribute—the ID. Other
names for the full outerjoin are “two-sided outerjoin” (IXI) [20] or the “outer
union” (T or W) [21,18]. There, the outer union operation is described as a
union between relations that are not union compatible, i.e., that do not have
identical attributes. The authors suggest to pad attributes for tuples that have
no value with null values.

4 Query Answering across Multiple Sources

This section describes the process of query planning, i.e., finding answers to
user queries. In a first step we move from user queries against the UR tableau
to queries against the relations using the merge operator. In a next step we
find a set of execution plans by replacing each relation with a combination of
sources that provides data for these relations.

4.1 Translating User Queries

We use the universal relation UR for formulating queries against the global
schema. Definition 3 defined a user query () as a set of attributes over UR, with
attributes possibly carrying selection conditions. When answering user queries,
we make assumptions regarding the special semantics of the queries. We as-
sume that users of integrated information systems have—among others—three
requirements (R.1, R.2, R.3) and we present three corresponding concessions

(C.1, C.2, C.3).

R.1 The user expects only correct results, i.e., only tuples where all selection

14



predicates hold true. For example, a user of a search engine expects only
such Web pages that contain the specified keywords.

C.1 The user accepts tuples with attribute values that are close to their selection

condition. For example, a user querying for cars with a price lower then
$10,000 might also find agreeable cars for $10,500 in the result.

R.2 The user expects the result to be extensionally complete, i.e., contain all

correct tuples accessible by the integrated system. For example, A user of
a stock information system asking for quotes with a day trade volume of
more than 1 billion expects all quotes for which this is true.

C.2 The user accepts extensionally incomplete answers in the presence of con-
strained resources. If, for any reason, the extensionally complete answer
cannot be returned, the best possible answer should be returned. We define
the term “best” later. A user of a search engine usually does not demand
the entire result set but is satisfied with, say, ten Web pages. However, the
result should consist of those Web pages best matching the keywords of the

query.

R.3 The user expects the result to be intensionally complete, i.e., contain all

attributes of the query and contain non-null values in all the attributes.
For example, a user of a stock information system asking for stock quotes
of certain companies expects tuples where no data is missing.

C.3 The user accepts intensionally incomplete answers or answers with missing
values—a partial answer is better than no answer. A user of a stock informa-
tion service asking for companies whose stock quotes have risen more than
10 percent today along with a company profile is at least partially satisfied
with tuples without the profile. Of course, those tuples for which the profile
is available should be listed first, but others might still be a helpful part of
the result.

For this article we ignore concession C.1 and only return tuples that are cor-
rect. Although the integration of fuzzy correctness as suggested by the con-
cession is entirely possible, it is beyond the scope of this article. Our query
planning mechanisms take the remaining requirements and concessions into
account (i) when deciding which sources should participate in answering the
query, and (ii) when deciding how to combine the participating sources.

To reflect these semantic requirements, we transform a query () against the
universal relation into a query ()’ against the global schema according to the
following definition:

Definition 8 (Translated Query) Let Q[Ag] «— UR,C be a user query
where Aq is the set of requested attributes, and C' the set of conditions on
these attributes. We obtain the corresponding translated query Q)'(Ag) < body
in the following way:

(1) The body of Q' contains all relations of which Ag contains an attribute.

15



Conditions C' are included unchanged.
(2) The body of Q' additionally contains all necessary relations to make the
graph of relations and joins connected.
(3) All ID—foreign ID relationships defined for the relations contained in the
body of Q" are turned into one of the four new operators:
e full outerjoin-merge (U) if there are no selections on any attribute of
either relation,
e left/right outerjoin-merge (1) if there is a selection on at least one at-
tribute of exactly one relation. The relation with the selection condition
s the “left” relation, i.e., unmatched tuples of this relation enter the
result,
e join-merge (M) if there are selections on attributes of both relations.
(4) The precedence order of the operators is first U, then 1, then M. Paren-
theses are inserted accordingly.

The head of the translated query ensures the intensional completeness (R.3).
The first translation rule ensures safety, i.e., all attributes to be returned to
the user actually appear in one of the relations in the query. The rule also
ensures correctness (R.1) by including all conditions specified by the user.
Rule 2 catches cases where users specify attributes of relations that have no
ID—foreign ID relationship. Rule 3 captures relationships among relations.
Without Rule 3 translations would be possible, where there is no explicit join
relationship between two relations of the query. In consequence, users would
receive the cross product of the two relations, contradicting correctness R.1.
Translation Rule 3 combines the relations of the global schema through merge
operators. The relations are combined depending on whether there are selec-
tion conditions on them or not. Intuitively, the starting point is the extensional
completeness requirement R.2. To include all accessible data, relations should
be combined with the full outerjoin-merge operator (). To ensure correctness
(R.1) the operator possibly must be changed to a left outerjoin-merge (1) or
a join-merge (M), depending on the distribution of the conditions.

Note that if the selection condition were applied after a full outerjoin-merge,
those tuples would be removed from the result anyway. However, with the
help of the left outerjoin-merge we allow to push selection conditions to the
source. Not only does this pushing improve response time of a plan (we do
not have to retrieve the entire source), but typical Web data sources require
some selection to be pushed. For instance, search engines require at least one
keyword as input.

Finally, Rule 4 is necessary to ensure correctness, because a “late” outerjoin-
merge could insert tuples conflicting with the conditions. The execution order
can be changed later in the query plan, by repeating the selection operators
that ensure the conditions.

16



Given a query translated according to Definition 8, the mediator tries to find
plans that generate answers to the query. Executing a plan results in tuples
being inserted into UR. Intuitively, the purpose of our completeness model of
the following sections is to guide the mediator in finding plans that produce
a maximal number of tuples, and a maximal number of non-null values in
those tuples.

Example. Recall the global schema consisting of three relations Ry, Rs, and
R3 of Table 1 (page 6). Consider user queries ()1 requesting as and ay without
any selection conditions, )5 requesting a;, as, a4, and ag with the condition
as < 10, and @3 requesting aq, as, and a4 with the conditions as > 10 and
ay < 40.

The three queries are translated according to Definition 8:

Qll (a27 a4) — Rl (ah ag, a3) |—|a3 RZ(a37 Ay, (l5)
Qé<a17a27a47a‘6> — Rl(al,a2,a3) ag (Rg(ag,a4,a5) Uy RS(a5>a6))7 az < 10

Qg(ala ag, CL4) — Rl(ah as, a3) |_|a3 RQ(CL37 Ay, a5)7 ag > ]-07 Ay < 40

4.2 Query Planning Across Sources

We describe how a translated query is transformed into a plan containing
actual data sources.

Definition 9 (Query Plan) Let Q' be a translated query against the global
schema. We obtain a query plan P for Q' by replacing each relation of the
body of Q' with a (possibly empty) set of sources. The sources in the plan
are combined by full outerjoin-merge operators. Each source in the set must
correspond to the relation the set replaces.

The set that replaces a relation can include one or more sources or can be
empty. In the latter case the result of the query plan is also empty, or at least
misses some attributes. Our quality model will recognize these deficiencies and
will assign low quality to such plans.

Ezxample. Continuing the example, we regard the five sources Si,...,S5 of
the UR-tableau of Table 1, each providing a certain set of attributes of the
universal relation UR, some having a selection condition on certain attributes.
Consider the query @Q)(az2,as) «— Ri(ay,as,a3) Ua, Ro(as, aq,as) translated

17



from ;. The set of all possible query plans for @] is

Pi(ag,ay) < 0 Py(ag, ay) «— Sy Ug, Sy
Py(az, as) < Si Pro(ag, ag) < Sz Uy S3
Ps(ag, ay) < Ss Pii(ag, ay) < Sy Uy, Sy
Py(ag,ay) < S1 Uy, So Pio(ag, ay) < S1 Uqgy (S3Ug, Sy)
Ps(as, as) — Ss Py3(ag, as) < Sz Uay (S5 Ua, S1)
Ps(ag, ay) «— Sy Piy(ag, ag) < (51 Uy S2) Uay S3
(a2, as) (a2, as)
(a2, as) (a2, as)

Several of these plans are useless. For instance, plans P; and P; do not return
any results, because Sy neither exports as nor ay. Many plans, such as P5 or
Py3, return values for only one of the two requested attributes. Only a few
plans return values for both attributes and only P53 and Pig return all tuples
given the available sources. The completeness model of the following sections
recognizes these differences by calculating the “completeness” for each of these
plans. In Table 3, we foreclose exemplary completeness scores C'(P) for the
16 plans. We observe the uselessness of P, and Ps (completeness 0), and we
observe that Pj; and Pjg have the same (maximal) completeness scores. O

plan P1 PQ P3 P4 P5 P6 P7 Pg

C(P) 0 0.1 0 0.1 0.07 | 0.12|0.1732 | 0.17

plan | Py | Pio | Pn1 Pia Pi3 Py Pi5 Pig
C(P) 0.22 1 0.07 | 0.12 | 0.2732 | 0.1732 | 0.17 0.22 0.2732

Table 3
Completeness scores for translated queries

4.8  Related work on query planning

Query planning for information integration has received considerable attention
in the database community during the last years. For a survey, see [22] or [23].
Query planning is highly dependent on the way how sources are modelled with
respect to the global schema. In the so-called global-as-view (GAV) approach,
global relations are modelled as views on information sources (e.g., [24]), while
in the local-as-view (LAV) approach, source relations are modelled as views
on the global schema (e.g., [25]). Recently, several groups suggested to use a

18



hybrid approach, termed GLAV (e.g., [26]). GAV approaches are extensions
of view expansion in centralized databases with the advantage of simple query
planning algorithms. In contrast, LAV requires complex algorithms solving the
problem of answering queries using views, which is shown to be NP-complete
for conjunctive queries and conjunctive view definitions [27]. However, integra-
tion systems based on a LAV approach have advantages in terms of maintain-
ability, since changes in sources only require the adaption of a precisely defined
and limited set of views, while in a GAV Setting, such changes often require
changes in the global schema with side-effects on all source descriptions.

In our model, query planning is simpler than in a most LAV approaches for
several reasons. First, we restrict sources (more precisely: source descriptions)
to views corresponding to exactly one relation of the global schema. Based
on our assumptions of IDs and the way how joins are generated during query
translation, problems related to distinguished or non-distinguished variables
or contradicting conditions on the same attribute in different views of the same
plan cannot occur. Second, translated queries never contain a relation twice.
In [27] Levy at al. noticed that the problem of answering queries using views
actually has two exponential problems in its core: First, there is an exponential
number of potential plans, i.e., combinations of views. Second, testing a plan
is itself an NP-complete problem in the length of the query, since it requires
a test for query containment. In our model, the second problem is trivial.
Clearly, we still have an exponential number of plans in the worst-case, but
query containment is linear for queries without repeated predicates.

5 Completeness of Data Sources

For many data sources and many application domains, size is everything: The
more tuples and the more attributes a source provides, the more attractive it
is to users. For instance, users prefer large search engines, i.e., search engines
that have indexed a large number of Web pages, over small search engines.
The rationale is that the larger a search engine is, the higher the probability
is, that the result the user is looking for has been indexed by the search
engine (and therefore appears in the result). Furthermore, users prefer search
engines that return more attributes than others, e.g., knowing the byte size of
a Web page before clicking on the link is advantageous. To include all facets
of completeness, we divide the measure into two sub-measures: Coverage is a
measure for the relative number of tuples a source stores; density is a measure
for how well the attributes stored at a source are filled with actual (non-null)
values. We combine the two aspects to an overall completeness measure. Using
this measure, we are able to assess the ‘usefulness’ of a source or a query plan
to answer a query.

19



5.1 Coverage

We define the coverage of a source as the ratio of the number of real world
entities represented by the source, and the size of the universal relation UR
as defined next. First, we define the extension of UR, then we define coverage
of a data source.

Definition 10 (Extension of UR) Let S,...,S, be the set of all available
data sources. Then the extension of UR is ext(UR) :== Sy U---US,. The size
of UR is |UR| == |S; U---US,|.

We call the extension of UR the world. The world is the set of all tuples
that can be obtained through the sources at hand. Thus, we make the closed
world assumption. Since |UR| acts only as a normalizing factor, this assump-
tion is not necessary, but simplifies definitions and calculation of the coverage
criterion.

Definition 11 (Coverage) Let S be a data source. We define the coverage
of S as

The coverage scores are in [0, 1] due to the closed world assumption. Intuitively,
coverage can be regarded as the probability that an entity of the world is
represented in the source.

To make use of coverage scores, one must be able to assess them. Sometimes the
sources themselves publish their sizes as a means for advertising their service.
However, not always can these figures be trusted. A further possibility is to
sample or download the source. If these assessment methods fail, coverage
scores can only be estimated.

Estimating the size of the universal relation proves more difficult because of
its definition as the full outerjoin of all sources. The more relations are in the
global schema, the more the sizes of the individual relation extensions and the
degree of overlap play a role. However as explained earlier, | UR| acts only as
a normalizing factor, so an exact number is not necessary. The more precise
the number is, the more meaningful the absolute coverage scores are, but the
coverage score of a source in relation to other sources remains unchanged.

20



5.2 Density

Data sources often do not export all attributes of the corresponding relation
in the global schema. For instance, only a few search engines return the size
of Web pages. Also, sources provide attributes they do not completely cover.
For instance, sources for company data often do not provide a company profile
text for all companies listed. Null values are a common phenomenon in WWW
data sources. Missing attributes and values result in incomplete results, i.e.,
tuples with null values. Density is a measure for the ratio of non-null values
to all values provided by a source.

Definition 12 (Attribute density) Let Ag be the set of attributes of re-
lation R. The density of attribute a € Ag in source S providing data for R

*  [te St # L}
dg(a) = |S| y

where t are tuples of S, and t[a] is their attribute value of a.

With Definition 12, an attribute with a non-null value for every tuple of the
source has an attribute density of 1. An attribute that is not provided by
a source has attribute density 0. A source that provides actual values for a
certain attribute in every second tuple, has a density score of 0.5 for that
attribute.

Definition 13 (Source density) The density of a source S is the average
density over all attributes of the universal relation:

- S st

a€A

The source density of Definition 13 is query-independent. To measure the
density of a source for a specific query, we introduce a query-dependent source
density that takes into account the attributes of the user query.

Definition 14 (Query-Dependent Density) The query-dependent density
of a source S is the average density over all attributes of query Q[Ag]:

%l8) = |AQ| 2 dsta)

(IGAQ

Query-dependent density is “fair”, because it counts only those attributes
that appear in the query. For notational brevity, we continue with the query-
independent density definition, but all results hold for the query-dependent
definition as well. For the examples we use query-dependent scores.

21



The density measure is useful only if it is possible to assess the scores. Like
coverage scores, density scores may be assessed in several different ways, de-
pending on the ability and willingness of the data sources to cooperate. In
some cases, data sources readily provide the scores. Statements like “We pro-
vide reviews for more than 10 percent of all available books” (d(review) = 0.1)
or “All search results include a page size” (d(size) = 1) are not uncommon.

5.8 Completeness

Having defined coverage and completeness we combine the two to compute
the overall completeness score. The completeness of a data source is the ratio
of its amount of data and the potential amount of data of the real world. We
understand the potential amount of data of the real world as the number of
data items of the completely filled universal relation. This is the product of
the number of tuples in the universal relation and the number of attributes of
the universal relation.

Definition 15 (Completeness) Let data source S = (a;j) where a;; is the
value of the jth attribute of tuple t;. Then the completeness of source S 1is

defined by
{aij 7& J_|aij € S}’

N
) =" w4

Alternatively, we may calculate completeness of a data source without actually
counting the number of non-null values, by using the coverage and density
scores of the source:

Theorem 16 Let S be a data source and let ¢(S) and d(S) be its coverage
and density scores. Then C(S) = ¢(S) - d(S).

PROOF. All proofs of theorems and lemmata can be found in the appendix.

Example. Table 4 shows the five sources of our running example with fictitious
coverage scores, density scores for each attribute, the overall density score,
and—derived from coverage and density—the completeness score. a

5.4 Ertensions

Several extensions to our completeness model were omitted for simplicity. In
the following we describe, which extensions are possible and how they can be
included in the model.

22



c(S)|ds(a1) ds(az) ds(as) ds(as) ds(as) ds(ae)| d(S)| C(S)
S04 1 05 1 0 0 0 |2.5/6/1.00/6
Sp 0.8 1 0 1 0 0 0 |2.0/6]1.60/6
S5/ 0.7] 0 0 1 02 0 0 |1.2/6(0.84/6
Si 03] 0 0 1 08 1 0 |2.8/60.84/6
S5/ 02| 0 0 0 0 1 09 [1.9/6]0.38/6

Table 4
Sources with coverage, density, and completeness scores

Variable coverage scores: Until now, we assumed coverage to be an un-
changing global score of a source. In reality, many sources may be par-
titioned into areas with high coverage and areas with low coverage, e.g.,
the Fireball search engine concentrates on german Web pages, but also in-
dexes others. There are two approaches to such a situation: (i) The source
is modeled by multiple views, one for each partition. The partitioning can
be expressed as selection predicates of the view. Each partition receives an
individual coverage score. (ii) Some component recognizes, which part of the
source is addressed by the query and dynamically adapts coverage scores.
For instance, Meng et al. present methods to estimate this number [28].
Both techniques can be combined.

Variable density scores: With the same arguments as for variable coverage
scores, density scores can vary depending on the query. The same techniques
as described before can be employed.

Attribute weightings: We defined user queries as a subset of the attributes
of UR, together with selection predicates. Situations arise where one at-
tribute is more important to the user than others. For instance, a user
might look for a stock quote with a company profile, and if possible with
the address of the company. An attribute weighting in the user query can
express these preferences. Attribute weighting seamlessly integrates into our
model, as we have shown in [29].

6 Completeness of Merged Results

A system that integrates multiple data sources distributes a user query to
multiple data sources following a query plan. To reach our goal of finding
the best query plan, we must be able to predict the coverage, density, and
completeness scores of a plan. These scores depend on the degree of overlap
between data sources. A full outerjoin-merge over two sources with a large
overlap returns a smaller result than if the sources had only little overlap.
Thus, before showing how to determine completeness of merged results, we
analyze different overlap situations.

23



6.1 Owverlap Situations

As discussed earlier, overlap between sources can be extensional (number of
common objects) and intensional (number of common attributes). The degree
of extensional overlap may vary from no overlap at all to a complete overlap
of two sources:

Disjointness: Two sources are disjoint if the set of tuples of UR for which
both sources provide data is empty, i.e., there is no overlap. Thus, S;M.S; =
{}

Independence: Two sources are independent if there is no (known) depen-
dency between the tuples of UR for which the sources provide data. That
is, there is some coincidental overlap, determined by the size of the sources
and the size of the real world they model. Whenever there is no concrete
knowledge about overlap, we assume independence.

Quantified overlap: In some occasions the exact degree of overlap is known,
ie., S;MS; = X, where the size of X is known. The overlap can be specified
by the number of tuples of UR for which both sources provide data.

Containment: One source is contained in another if every tuple of UR for
which one source provides data, is also provided data from the other source.
Thus, S;US; = S; if S; is contained in S;. The actual data is not necessarily
the same. For instance, one source may provide different attributes than the
other. Also, the attribute values may conflict. A special case of containment
is equality.

In the following sections we show coverage, density, and completeness calcu-
lation in depth for the case of mutually independent sources. We discuss the
other cases and the case of mixed overlap situations between sources later.
Because we explicitly describe which source exports which attribute, it is not
necessary to consider different overlap situations for intensional overlap. In-
tensional overlap of two sources is the set of attributes both sources export.

At a finer level of granularity—at attribute value level—we make a simplifying
assumption: We assume independence of null values between two sources, i.e.,
the probability that a source has a null value for an attribute of a certain
tuple is independent of the probability that another source has a null value
for the same attribute of the tuple representing the same real world entity.
Also, we assume uniform distribution of attribute values for all attributes.

6.2 Merging Coverage Scores

For coverage calculation of merged results we are interested in the number of
tuples in a merged result.

24



Lemma 17 Let S; and S; be two independent sources. Then

S;| 1S
sin 5| = i W snsi-ls @
1S; 3 S, = || 2) 15 3 S =15 ()
1S U S)| = |Si| + 1S5 — 1,118, (3) (iU Sl =15 (6)

Notice that we require density of an ID to be 1, i.e, there are no missing values
in the ID-attribute. However, because join-merge operators are performed only
on ID—foreign ID relationships, the size of the result may be diminished by
missing values in the foreign ID-attribute. If a; is the foreign ID-attribute of
S; and the ID of S, the correct score for the result size e.g. of a join-merge
operator is

|Sil - 1551 - ds, (ax)
| UR|

|S’L May, SJ| -

For simplicity, we require that density of foreign IDs is always 1. To relax this
requirement, we can include the factor dg,(ay) wherever necessary without
changing the properties of our measures.

Given the coverage scores of the individual data sources, we show how to
determine the coverage of the merged result.

Theorem 18 Let S; and S; be two independent sources. Then coverage of the
merged sources is

c(S; M.8;) = ¢(S;) - e(S)) (7)
c(S; U S;) = ¢(S;) + ¢(S;) — c(S;MS;) (9)

Because the independence relationship is associative, Theorem 18 enables us
to calculate coverage of any plan with any number of sources combined with
any of the four merge operators.

25



Ezample. Consider query plan Pjs(as, ag) < St Ug, (S3Ug, Sq) of Example 4.2
(Page 17). With the source coverage scores of Table 4 (Page 23) we calculate

(Pr2) = ¢(51 Uay (S3 Uay S1))
C(Sl) + 0(53 Lasg 54) — C(Sl Mas (53 Uas 54))
c(S1) + ¢(S3) + ¢(Sa) — ¢(S3 Mgy Sa) — c(S1) - ¢(S3 gy Sa)
C(Sl) + 0(53) + C(S4) - C(Sg) . 0(54) — C(Sl) . (C(Sg) + 0(54) — C(Sg Mas 34))
= ¢(S1) + c(S3) + ¢(S1) — ¢(S3) - ¢(Sa) — ¢(S1) - ¢(S3) — ¢(S1) - ¢(Sy)

+c(51) - ¢(S3) - ¢(S4)
=04+0.7+03—-0.7-03-04-0.7-04-03+0.4-0.7-0.3
= 0.874

O

To lower response time or data transfer over the net it is often desirable to
perform algebraic reordering of plans. The following properties show which
reorderings are possible without changing the overall coverage of a plan. We
propose to perform such a reordering after finding a plan with good complete-
ness (see Section 7).

Theorem 19 Coverage is commutative, associative, and distributive for
and U, and associative for 1 for independent sources:

c((S;MS;) M Sk) = ¢(S; M (S; M Sk)) (15)

c(S;MSj) =c(S;MS;) (10)  ¢((S; 3 S;) 3Sk) =c(S; 3(S; 3 Sk) (16)

c(SiUS;) =c(S;US:) (11)  ¢((SiuS;) U Sy) = c(S; U (S; U Sk)) (17)
c(S; 11S;) = ¢(S5) (12) (S, (S; U Sk)) = c((SimS;) LU (S; 1 Sk))

c(S; 3 S;) = ¢(S) (13) (18)
c(S; US;) = ¢(S;) (14)  ¢(S;U(S;MSk)) = e((S; LUS;) M (S; U Sk))

(19)

6.3 Merging Density Scores

As discussed in Section 2.2.2, a tuple in the combined result of two sources
has a value in an attribute if either one or both sources provide some value.
To compute the density of merged results we are first interested in the number
of non-null values in a merged result.

Lemma 20 Let S; and S; be two independent sources. We abbreviate |{t €

26



Si|tla] # L}| with |ts,[a] # L|. Then for any attribute a € A

lts.la) # LI~ 1S5 lts;lal # LI -1Si| |ts.[a] # L] - [ts;[a] # L]

sins,la) 7# LI = |UR| o |UR|
(20)
_ lts,la] # L[ - |Si| [t [a] # L] |ts,[a] # L]
|tSi:|Sj [CL] 7é J—‘ - ’tsi [CL] 7£ J-| + ‘UR| - |UR|
(21)
|tSiqu[a] 7& J_| _ |tSi[a] 7& J_| +|tSj [a] 7& J_| . ’tsi[a] 7& J—|‘UR1753 [a] 7é J-‘
(22)

As opposed to merging coverage scores, density scores are merged at attribute
level. Theorem 21 shows how to calculate attribute density of merged at-
tributes and Theorem 22 shows how to calculate merged source density.

Theorem 21 Let S; and S; be two independent sources. Then the density of
attribute a in the merged result is

dSiﬂSj <a> :dsi(a’) + de (CL) - dSi(a) ’ de (a) <23)

ds,=s,(a) =ds;(a) + ds; (a)c(S;) — ds, (a)ds;(a)c(S5;) (24)

p (a) :dgi(a) -o(Si) | ds,(a)-c(S;)  dsi(a) - ds,(a) - c(S;iT15)) (25)
5% c(S; U S)) (S;US)) o(S;US))

The density of an attribute of an outerjoin-merged result depends on coverage
scores, while that of the join-merged result does not. Intuitively, this is true
because in join-merge operations we regard only the tuples within the overlap.
For density measurements we do not care how much overlap there is. For
outerjoins, we regard all tuples and coverage scores are needed to determine
how much overlap there is, i.e., how many non-null values appear in both
sources.

Theorem 22 Let S; and S; be two independent sources. Given the density
scores for all attributes of a merged result, the density of the entire result is

d(S;n.s;) Z ds;ns; (26)
|A| a€A

d(S ] S Z dS as; ) (27)
|A| a€A

d(S; U.S;) > dsus, ( (28)
|A’ a€A

27



Because the independence relationship is associative, Theorem 22 enables us
to calculate the density of any plan with any number of sources combined with
any of the four merge operators.

Lemma 23 Attribute density is commutative, associative, and distributive for
M and U for independent sources.

ders.(a) = dg. a 29
dsmsj Ea; = dSJHSl Ea; ESO; d(s,us;)us), (a) = dSiU(SjUSk)(a) (32)
d(s,ns;)ns, (@) = ds,n(s;ns,)(a)

(31) dSiU(SjﬂSk)(a) = d(Siqu)FI(SiLISk)<a) (34)

Theorem 24 Source density is commutative, associative, and distributive for
M and U for independent sources.

d(S;MS;) =d(S;MS;) (35)
d(S;us;) =d(S;us;) (36)
d((S;MS;) M Sk) =d(S; 1 (S; 1.Sk)) (37)
d((S; US;j) USk) =d(S; U (S; U Sk)) (38)
d(S; M1 (S; U Sx)) = d((S: 11.8;) L (S: 11 8)) (39)
d(S; U (S; 1.Sk)) =d((S; uS;) m(S; USy)) (40)

6.4 Merging Completeness Scores

As for single sources, we calculate completeness of a plan using the coverage
and density scores of that plan:

Theorem 25 Let P be a query plan. Then completeness of P is C(P) =
¢(P) -d(P).

Example. Recall the 16 alternative plans for the translated user query
Q1 (az, as) — Ri(a1,as,a3) Uq, Ro(as, as, as)

of the example on Page 17. Table 5 shows these plans with their merged
scores with respect to coverage, attribute density, density, and completeness.
To answer a user query with maximal completeness, an integrated system
can construct all plans, calculate their completeness, and choose a plan with
maximal completeness for execution.

A first observation is that source Sy does not contribute to plan completeness
in any way, because it does not export as. Comparing plans P; and P;3, we

28



Plan P c(P) dp(a2) dp(aq) dQll (P) C(P)

Pi(az,a4) — 0 0 0 0 0 0

Py (a2, a4) — Si 0.4 0.5 0 0.25 0.1

Ps(az,a4) — S2 0.8 0 0 0 0

Py(az,as) «— S1 Uq; S2 0.88 0.227 0 0.1136 0.1
Ps(az2,a4) — S3 0.7 0 0.2 0.1 0.07

Ps(az,aq) — Sy 0.3 0 0.8 0.4 0.12

Pr(az2,a4) «— S3Uaz Sa 0.79 0 0438 02192 0.1732
Pg(az2,aq) «— S1 Uaz S3 0.82 0.2439  0.1707  0.2073 0.17
Py(az2,aq) — S1 Uay Sa 0.58  0.3448  0.4138  0.3793 0.22
Pio(az,a4) — S Uqy S3 0.94 0 0.1489  0.0745 0.07
P11(a2,a4) < S2 Ugs Sa 0.86 0 02791  0.1396 0.12
Pia(ag,aq) «— S1Uqg (S3Uaq S4) | 0.874 02288  0.3964  0.3126  0.2732
Pi3(a2,a4) < S2 Uag (S5 Uay Sa) | 0.958 0 03616 0.1808 0.1732

Pia(az,a1) — (S1Uqy S2)Uay S3 | 0.964  0.2075  0.1452  0.1764 0.17
Pis(az,a4) «— (S1Uqy S2)Uay Sa | 0916 02183 0.262  0.2402 0.22
Pig(az,a1) — (S1 Uay S2) Uay (S3Uay S1) | 0.9748  0.2052  0.3554  0.2803  0.2732
Table 5
Plans for )1 with merged coverage, density, and completeness scores

recognize that P35 corresponds to P; with S5 added. P35 has a higher cover-
age, because it involves more sources, but it has a lower density, because the
additional source contributes only null values. Their overall completeness is
the same, which is what we expected, because the actual number of non-null
values is the same for both plans.

Another observation is that completeness increases monotonously with the
number of sources for the full outerjoin-merge, i.e., if a source is added to
a plan, the plan’s completeness does not decrease. Consequently, plan Pig is
the most complete, but potentially the most expensive, because it accesses
the most number of sources. Coverage scores are also monotonous, however,
density scores are not: Consider again plan P;. Adding Sy to P, we arrive at
plan P,3, which has a lower density score. a

We now have a comprehensive model for source and plan completeness. We
are able to compare sources with one another and we are able to compare
combinations of sources (plans) with one another. Completeness is a measure
for the amount of data to expect from a source or from a combination of
sources. With the help of this model we can find an optimal set of sources to
answer a user query. Before glancing at possible algorithms in Section 7 we
describe the calculation of coverage and density under overlap situations other
than independence.

29



6.5 Other Overlap Situations

Up until now, we assumed mutual independence of sources. In the following,
we show the consequences of relaxing this assumption. In general, things are
more complicated, because the formulas for computing the joint values must
take the different overlaps into account. Recall the different overlap profiles:
Sources may be disjoint, i.e., S; M S; = {}, contained, i.e., S; U S; = §;, or
there can be quantified overlap between sources, i.e., ; 1.S; = X. Tables 6
and 7 summarize coverage and density calculation for two merged sources with
respect to all four alternatives.

SiﬂSjZ{} SZ‘|_|S]'=X
c(5i M.5;) 0 | X|/|UR]
¢(Si3S;) c(Si) c(S:)
(S U S;) c(8;) + ¢(5;) c(5i) + c(5;) — | X|/| UR|
ds;ns; (a) undefined ds,(a)c(S;) + ds, (a)c(S))
ds,; (a)c(Si)ds; (a)e(S5)
- C(SirlSj)

ds. (a)e(S;)e(S;mS;)
ds;s;(a) ds,(a) ds,(a) + a5y

—ds,(a)ds; (a)e(S: 11 5))

ds, (a)c(Si)+ds  (a)c(S;) ds;(a)-c(S;) | ds;(a)c(S;)
ds,us;(a) C(S,-US]-J) : i(Siqu) c](siusj )J
ds; (a)-ds; (a)-c(Si15;)
B C(S»;USJ')

Table 6
Coverage and density measures for different overlap situations

6.6  Related work on completeness

The information quality literature has defined completeness in general, non-
quantified terms, such as “the extent to which data is not missing and is of
sufficient breadth and depth for the task at hand” [30]. Further related work on
our completeness measure draws from two areas: Determining the complete-
ness of single data sources, and determining the completeness of combined
sources, in particular, join size estimation.

Determining the “size” of a data source has become a problem only recently,

30



SiUS; =5 SiUS; =S
c(S; M Sj) c(S5) c(Si)
¢(SiaS) c(S;) c(Si)
c(S; U S)) c(Si) c(S5)
ds;ns;(a) | c(Si)ds,;(a) + ds,(a) ds,(a) + c(S;)ds, (a)
—c(Si)ds,(a)ds; (a) —c(8))ds; (a)ds;(a)
ds;zs;(a) | ds,(a) +ds;(a) ds,(a) + c(S;)ds; (a)
—c(Si)ds,(a)ds; (a) —c(S))ds, (a)ds, (a)
ds,us, (a) ds,(a) +ds;(a ds,(a) +ds;(a
—c(S;)ds;(a)ds; (a) —c(S;)ds; (a)ds; (a)

Table 7
Coverage and density measures for different overlap situations

when such metadata was desired for autonomous sources of unknown size,
such as typical WWW data sources. There are yet few projects striving to
model or determine the size of Web data sources. Chen et al., who address
query processing in the WWW, mention the quality criteria “size of result”
and “number of documents accessed”, but they neither define them, nor point
out the difference between the two [31]. Also, the authors do not integrate
the two criteria into a general value model as we do. Motro and Rakov define
a “completeness” criterion, which matches our coverage criterion [32]. Motro
suggests to add “completeness assertions” as accompanying information in
the query result, adding more meaning to the result [33]. Completeness asser-
tions are statements, such as “the data contains all recordings on the CBS
label”. These assertions are aggregated along query plans in a similar fash-
ion to our coverage and density scores. Thus, the author can give qualitative
statements about the completeness of results, but no quantitative statements
as we do. Apart from a note on column completeness in [30], to the best of
our knowledge, the density criterion as we define it, has never been addressed
in literature before, even though missing attribute values are all too common.

Calculating or predicting join result sizes is an important technique for cost-
based query optimization in DBMS. In general terms, the size of a join is the
size of the cross-product of the two relations in the join, multiplied with a
selectivity factor. Selectivity factors are statistical values stored in the data
dictionary of the DBMS. Many research efforts tackled the problem of join
size estimation [34-36]; Mannino et al. give a survey on the suggested statis-
tical values to store, how to maintain them, and how to use them to predict
the result sizes of various database operations [37]. Most projects make the
same simplifying assumptions as we do: uniformity of attribute values and
independence of attribute values [38].

31



Florescu et al. attempt to describe quantitatively the content of distributed au-
tonomous document sources using probabilistic measures [39]. In their model,
the authors calculate two values: “Coverage” of data sources, determining the
probability that a matching document is found in the source, and “overlap”
between two data sources, determining the probability that an arbitrary doc-
ument is found in both sources. These probabilities are calculated with the
help of word-count statistics. Their coverage measure is similar to the precision
measure of the information retrieval field and determines the query dependent
usefulness of a source. Their overlap measure expresses ideas similar to ours,
but the authors do not consider different types of overlap, such as indepen-
dence or disjointness. Rather, it is a measure solely based on probability.

7 Information Integration with Completeness Measures

After presenting the completeness model we now discuss its usage in integrat-
ing information systems: Completeness determines the usefulness of a source
or a plan to answer a user query. Therefore, the completeness measure is a
valuable tool to guide query planning in the same way as a cost model guides
query optimization in traditional databases.

7.1  Finding Best Plans

Any system integrating data sources answers user queries by searching for one
or more query plans for the query, executing the plans, and integrating the
results for the user. In general, more than one plan may contribute to the
overall response in some way. Common approaches to query planning search
for all those plans, execute them all, and provide a complete response to the
user. Such an approach does not consider any cost involved in accessing the
different sources.

To reflect reality, we must restrict plan execution to only a few, “best” plans.
In [40] and [41] we presented two algorithms to find the top N plans in the
search space. If we assign some cost—monetary cost, response time, or any
other punishment function—to each source, the problem is to find the set of
best plans whose combined cost does not exceed a cost limit given by the user.

However, such an approach yields only locally optimal solutions: Given the
set of best plans, their combination is not necessarily the best. For instance,
the plans can all be quite similar and not complement each other. To obtain
globally optimal solutions, one must search for the best set of plans instead
of for the set of best plans. Our outerjoin operators and our completeness

32



model aid in finding the best combination. In fact, plans as we defined them
in Definition 9 already present combinations of conventional plans. The search
space of our approach is the power set of the set of available sources. It can be
traversed using any known search algorithm such as exhaustive search, greedy
search, etc. each with the known advantages and disadvantages in runtime
complexity and optimality guarantees.

7.2 Algebraic Reordering

After finding the optimal subset of sources to query we now move to the
conventional paradigm of optimizing a plan: Using traditional optimization
techniques we can perform algebraic transformations of the plan to improve
response time without changing the result.

Because the result of query plans remains the same after reordering, we require
the completeness score of a plan to remain the same as well. Completeness
is a measure for the plan result and not for how the result is obtained. The
properties of I and U proven in Theorems 19 and 24 guarantee unchanging
plan completeness under a number of reorderings. The properties for 1 are
more limited; Galindo-Legaria and Rosenthal discuss outerjoin reordering in
greater detail [20].

Example. Post-optimizing a plan may have great effect on plan cost. Consider
plan Pj for query Q5 of the example:

P30(CZ1,CZ2,(Z4) — (Sl L, Sg) [—|a3 Sg, ay > 10, ay < 40.

Assume that all selections can be pushed to the sources, i.e., we can retrieve
from S5 only those tuples where a4 < 40, etc. Assume further, that the selec-
tion condition as > 10 is not very selective and that the selection condition
ay < 40 is very selective. If the plan were executed as is, a huge intermediate
result of (S; Uy, S2) would be created, of which only few tuples enter the fi-
nal result after the join-merge with the small intermediate result of S5. Using
Theorem 19 we can transform plan P3q to

Péo(al, a2, CL4) — (83 Mas Sl) Ua, (53 Mas Sg), as > 10, a4 < 40.

Using this plan, we can first retrieve from S3 only those tuples where a, < 40
and then push their IDs (attribute as) as an additional selection condition
to sources S7 and S5. The overall number of tuples retrieved over the net
decreases dramatically, saving time and possibly money. a

33



8 Conclusion

There is a new quality to the planning of user queries against multiple, au-
tonomous, integrated Web data sources. Among many other difficulties such
as schema conflicts and heterogeneous interfaces, the Web sources store over-
lapping data, have different sizes, and have many missing values. Also, user-
demands towards Web sources are different than towards traditional databases.
In this article, we have addressed these new aspects of query answering. We
presented a data model for Web data sources based on the universal rela-
tion. Our completeness model measures coverage and density of the sources
to determine which ones are most appropriate to answer queries. Since mul-
tiple sources are combined to a common response, we presented new merge
operators to perform this combination and extended the completeness model
to measure the completeness of combinations of sources. Finally, we used the
model to evaluate the completeness of query plans and showed how the mea-
sure can guide query planning.

Future work will touch several aspects. We have already sketched several pos-
sible extensions to both our query model and our completeness model. Further
research will be spent with the development of the algorithms, of which we
plan to implement and test different variations. Finally we plan to extend our
model to criteria beyond completeness. In other work, we have argued that
completeness is just one aspect among many other information quality crite-
ria like availability or timeliness. We plan to define measures for these criteria
in the same way as we did for coverage and density. The ideas presented in
this article have been implemented within a meta-search engine prototype. We
are continuing this effort and, apart from the completeness measure, we are
including several other quality dimensions, such as timeliness and availability.

Acknowledgements. This research was partly supported by the German
Research Society, Berlin-Brandenburg Graduate School in Distributed Infor-
mation Systems (DFG grant no. GRK 316) and the German Ministry for
Education and Research (BMBF grant).

References

[1] G. Wiederhold, Mediators in the architecture of future information systems,
IEEE Computer 25(3) (1992) 38-49.

[2] G.D. Michelis, E. Dubois, M. Jarke, F. Matthes, J. Mylopoulos, M. Papazoglou,
K.Pohl, J.Schmidt, C.Woo, E.Yu, Cooperative information systems: A
manifesto, in: M. P. Papazoglou, G. Schlageter (Eds.), Cooperative Information
Systems: Trends and Directions, Academic Press, 1997.

34



3]

M. T. Roth, P. M. Schwarz, Don’t scrap it, wrap it! A wrapper architecture for
legacy data sources, in: Proceedings of the International Conference on Very
Large Databases (VLDB), 1997, pp. 266-275.

A. Sahuguet, F. Azavant, Building light-weight wrappers for legacy Web data-
sources using W4F, in: Proceedings of the International Conference on Very
Large Databases (VLDB), 1999, pp. 738-741.

D. Maier, J. D. Ullman, M. Y. Vardi, On the foundations of the universal
relation model, ACM Transactions on Database Systems (TODS) 9(2) (1984)
283-308.

R. Hull, Managing semantic heterogeneity in databases: A theoretical
perspective, in: Proceedings of the Symposium on Principles of Database
Systems (PODS), Tuscon, Arizona, 1997, pp. 51-61.

A. Gupta, Some data integration and database issues in e-commerce (and world
peace), Invited talk at the International Conference on Extending Database
Technology (EDBT) (2000).

D. Bitton, D. J. DeWitt, Duplicate record elimination in large data files, ACM
Transactions on Database Systems (TODS) 8(2) (1983) 255-265.

H. Newcombe, Handbook of Record Linkage, Oxford University Press, Oxford,
UK, 1988.

[10] M. Neiling, H.-J. Lenz, Data integration by means of object identification in

information systems, in: Proceedings of European Conference on Information
Systems, Vienna, Austria, 2000.

[11] Y. Papakonstantinou, S. Abiteboul, H. Garcia-Molina, Object fusion in

mediator systems, in: Proceedings of the International Conference on Very Large
Databases (VLDB), Bombay, India, 1996, pp. 413-424.

[12] C. Yu, W. Meng, Principles of database query processing for advanced

applications, Morgan Kaufmann, San Francisco, CA, USA, 1998.

[13] F. Naumann, M. H&aussler, Declarative data merging with conflict resolution,

in: Proceedings of the International Conference on Information Quality (IQ),
Cambridge, MA, 2002.

[14] The MetaCrawler meta-search engine, www.metacrawler. com.

[15] The AltaVista search engine, www.altavista.com.

[16] The Google search engine, www.google.com.

[17] Web.de, a german search engine, www.web.de.

[18] E. Codd, Extending the relational database model to capture more meaning,

ACM Transactions on Database Systems (TODS) 4(4) (1979) 397-434.

[19] M. LaCroix, A. Pirotte, Generalized joins, SIGMOD Record 8(3) (1976) 14-15.

35



[20] C. Galindo-Legaria, A. Rosenthal, Outerjoin simplification and reordering for
query optimization, ACM Transactions on Database Systems (TODS) 22(1)
(1997) 43-74.

[21] R. Elmasri, S. B. Navathe, Fundamentals of Database Systems, 2nd Edition,
Benjamin/Cummings Publishing Company, Redwood City, 1994.

[22] J. D. Ullman, Information integration using logical views, in: Proceedings of the
International Conference on Database Theory (ICDT), Delphi, Greece, 1997,
pp. 19-40.

[23] M. Lenzerini, Data integration: A theoretical perspective, in: Proceedings of the
Symposium on Principles of Database Systems (PODS), Madison, WN, 2002,
pp. 233-246.

[24] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv,
J. D. Ullman, V. Vassalos, J. Widom, The TSIMMIS approach to mediation:
Data models and languages, Journal of Intelligent Information Systems 8(2)
(1997) 117-132.

[25] A. Y. Levy, A. Rajaraman, J. J. Ordille, Querying heterogeneous information
sources using source descriptions, in: Proceedings of the International
Conference on Very Large Databases (VLDB), Bombay, India, 1996, pp. 251
262.

[26] R. Fagin, P. G. Kolaitis, R. J. Miller, L. Popa, Data exchange: Semantics and
query answering, in: Proceedings of the International Conference on Database
Theory (ICDT), Siena, Italy, 2003.

[27] A. Y. Levy, A. O. Mendelzon, Y. Sagiv, D. Srivastava, Answering queries using
views, in: Proceedings of the Symposium on Principles of Database Systems
(PODS), San Jose, CA, 1995, pp. 95-104.

[28] W. Meng, K.-L. Liu, C. T. Yu, W. Wu, N. Rishe, Estimating the usefulness
of search engines, in: Proceedings of the International Conference on Data
Engineering (ICDE), Sydney, Australia, 1999, pp. 146-153.

[29] F. Naumann, U. Leser, Cooperative query answering with density scores,
in: Proceedings of the International Conference on Management of Data
(COMAD), Pune, India, 2000.

[30] L. Pipino, Y. Lee, R. Wang, Data quality assessment, Communications of the
ACM 4 (2002) 211-218.

[31] Y. Chen, Q. Zhu, N. Wang, Query processing with quality control in the World
Wide Web, World Wide Web 1(4) (1998) 241-255.

[32] A. Motro, 1. Rakov, Estimating the quality of databases, in: Proceedings of
the International Conference on Flexible Query Answering Systems (FQAS),
Springer Verlag, Roskilde, Denmark, 1998, pp. 298-307.

[33] A. Motro, Completeness information and its application to query processing, in:
Proceedings of the International Conference on Very Large Databases (VLDB),
Kyoto, 1986, pp. 170-178.

36



[34] A. Rosenthal, Note on the expected size of a join, SIGMOD Record 11(4) (1981)
19-25.

[35] D. Gardy, C. Puech, On the effects of join operations on relation sizes, ACM
Transactions on Database Systems (TODS) 14(4) (1989) 574-603.

[36] A. Swami, K. B. Schiefer, On the estimation of join result sizes, in: Proceedings
of the International Conference on Extending Database Technology (EDBT),
Vol. 779 of LNCS, Springer Verlag, Cambridge, UK, 1994, pp. 287-300.

[37] M. V. Mannino, P. Chu, T. Sager, Statistical profile estimation in database
systems, ACM Computing Surveys 20(3) (1988) 191-221.

[38] S. Christodoulakis, Implications of certain assumptions in database performance
evaluation, ACM Transactions on Database Systems (TODS) 9(2) (1984) 163—
186.

[39] D. Florescu, D. Koller, A. Levy, Using probabilistic information in data
integration, in: Proceedings of the International Conference on Very Large
Databases (VLDB), Athens, Greece, 1997, pp. 216-225.

[40] F. Naumann, U. Leser, J.-C. Freytag, Quality-driven integration of
heterogenous information systems, in: Proceedings of the International
Conference on Very Large Databases (VLDB), Edinburgh, UK, 1999, pp. 447—
458.

[41] U. Leser, F. Naumann, Query planning with information quality bounds, in:
Proceedings of the International Conference on Flexible Query Answering
Systems (FQAS), Advances in Soft Computing, Springer Verlag, Warsaw,
Poland, 2000.

37



A Proofs of Lemmata and Theorems

Theorem 16. Let S be a data source and let ¢(S) and d(S) be its coverage
and density scores, respectively. Then C(S) = ¢(S) - d(S).

PROOF.
|{a2-j 7& _L|Clz'j € S}‘ ..
c(S) = Definition 15
(S) ORI |A ( )
|S|'Za€AdS(a) L.
= Definition 12
[UR|- 4] ( )
S| 1
= — . dg(a
R Ta]” 2%
=c(5) - d(5) (Definitions 11 and 13)

Lemma 17. Let S; and S; be two independent sources. Then

Si|-1S;
|5:1.55] = |||U}’z’j| (A1) [S: S =[Si] - (A4)
1S; 3 8| = |Si] (A.5)

1% 2 5l = 15 | SUS| =18 A6
SiUS = IS+ 1S, —Isins,|  (A3)  SUSI=I1SE(A6)

PROOF. (A.1) According to Definition 5 of the join-merge operator, S; Il
S; contains only tuples that are represented both in S; and S;. The other
conditions in Definition 5 only concern construction of the tuple in the result
and do not influence the number of tuples. For each real world entity the

probability that it is represented in S; is ng%" and that it is represented in

S; is Hi;;'. Because of independence, the probability that it is represented in

both is ||5;2‘| . &El. Because there are | UR| possible entities, we have an overall

number of |UR)| - ||5}'%“ : ”5}4‘ tuples.

(A.2) follows from (A.1) and Definition 6.
(A.3) follows from (A.1) and Definition 7.

(A.4) follows from Definition 5 because S5 = S.

38



(A.5) follows from Definition 6 and (A.4).

(A.6) follows from Definition 7 and (A.4).

Theorem 18. Let S; and S; be two independent sources. Then coverage of
the merged sources is

C(SZ M S]) = C(S,L) : C(Sj) (A?)
C(SZ L S]) = C(Sl) + C(Sj) — C(Sl M SJ) (Ag)
PROOF.
|5i 1.5} |5l - [S5]
( 7) C(SZ S]) ’UR‘ (Lemma 17) |UR| . ‘UR| C(Sl) C(S])
(A.8) follows immediately from Lemma 17.
|5; US| |Sil + 1551 = [5: 11 5}
A. US)) = — =
( 9) C(SZ Sj) ’ UR‘ (Lemma 17) ‘ UR|
S IS [Sin S|

Theorem 19. Coverage is commutative, associative, and distributive for M
and LI, and associative for J for independent sources:

. C((SZ M S]) M Sk) = C(SZ M (S] M Sk)) (A15)
(A.10) c((Si 3 S5) 3 Sk) = c(S; 23 (S; 3 Sk))
(A.16)

'(A.ll) c((S: U S;) LU Sk) = (S U (S; U S,) (A17)
(SMS) = e(S)  (Ad2) C(ST(S;USD) = cl(S:M ;) U(SimS)
ASi3S)=elS) (AL o m8)) = (8L S;) M (S, u(:)l)S)
(S US) = e(Sy) (A1) CPrH BTk e

PROOF. The proofs of (A.10) — (A.14) are trivial given Lemma 17. For the

39



rest, we apply the definitions and algebraic transformations:

c(55)) - e(Sk) = e(Si) - (e(5;) - e(Sk))

(A15):  c((S;MS;) M Sk) = (c(S)) -
(S M1 (S5 11 Sk))

(Al?) . C((SZ L Sj) L Sk) = C(Sl) + C(Sj) + C(Sk) —C S])C(Sk) — C(SZ)C(Sk)
— c(53)e(S;) + e(8i)e(S;)e(Sk)
= c(S; U (S; U Sk))

(A18) 1 ¢(SiM(S;uSy)) =c(S;) - (c(S;) + c(Sk) — ¢(S;)e(Sk))
= ¢(5i)c(S;5) + c(5i)e(Sk) — (Si)e(S;)e(Sk)
= ¢(5;)c(S;) + ¢(Si)e(Sk) — e(Si 1.5;)e(S;)e(Sk)
= c(S;)c(S;) + e(Si)e(Sk) — c((S; MS;) 1 (S; MSy))
= c((S;MS;) U (S; M Sk))

(A19) 0 ¢(S;u(S;MSk)) =c(Si) +¢(S; M Sk) —c(Si M (S; 1 .Sk))

c(S; 11 (S; U S; U Sk)) + ¢(S;)c(Sk) — ¢(S:)e(S;)e(Sh)

= o(Si)(e(Sh) + (Sk) = e(Si)e(Sk) + ¢(S;) = e(Si)e(S;)
—c<s><sk>+c< 7)e(S5)c(Sk))
+¢(8;)e(Sk) — e(S1)e(S;)e(S)
< D)e(S) + e(Si)e(Sk) — e(Si)e(Si)e(Sk)

+¢(S))e(Si) + c(S)e(Sk) = e(S;)el(Si)e(Sk)

— ¢(Si)e(S))e(Si) = e(Si)e(S;)e(Sk) + e(S:)e(S;)e(S:)el(Sk)
= (c(S) + ¢(S;) = e(S)e(S;)) - (e(Si) + e(Sk) — e(S)e(Sk))
= c(S; U S;) - ¢(S; U Sk)
= ¢((S; U S;) M (Si U S))

40



Lemma 20. Let S; and S be two independent sources. We abbreviate |{t €
Si|tla] # L}| with |tg,[a] # L|. Then, for any attribute a

ts.la] # LIS;| | lts;la] # LS| [tsifa] # Lllts;la] # L|

[tsins;la] # L = |UR] |UR] B |UR]
(A.20)
B lts;la] # LIS |ts,[a] # Lllts;[a] # L|
|tSi:|Sj [CL] 7é —L| _|tSi [CL] 7£ —L| + |UR| - |UR|
(A.21)
505, ) # L] =lts.la] # L]+ [ts,fa] # 1| [ldZ Lltslal 2 L )

| UR|

PROOF.

(A.20) According to Lemma 17, ‘ﬁ%g" | is the number of tuples in S; having a

matching tuple in S;. Thus HS[G‘];&% is the number of tuples in S; having
a matching tuple in 5; Wlth a non-null value in attribute a. Analogously7
% is the number of tuples in S; having a matching tuple in S; with
a non-null value in attribute a. Finally we subtract the number of those
tuples counted twice, i.e., those that match and have a non-null value both
in S; and S;.

(A.21) The proof is similar to that of (A.20), only the first term is different. In
(A.20) only those non-null values of S; entered the sum whose tuple had a
matching tuple in S;. Here, all non-null values of S; enter the sum, because

with the left outerjoin-merge all tuples of .S; enter the result.
(A.22) follows from (A.20) and Definition 7.

Theorem 21. Let S; and S; be two independent sources. Then the density
of the merged sources is

dsins, (a) =ds,(a) + ds, (@) — ds,(a) - ds, (a) (A23)
ds,s;(a) =ds,(a) + ds;(a)c(S;) — ds,(a)ds; (a)c(S;) (A.24)
ds,(a) - c(Si) ds,(a)-c(S;)  dsins,(a) - c(S; 115;)
dsius,(a) = i&uS) c(S;US;) c(S; U S;) (A.25)
PROOF.

41



(A.23) We apply Definition 12 and transform

B 1
IEREN
| UR]
Lemma 17) — 1 &1 1o | ’tS,' S [CL] 7é J—‘
‘ TN
_ |UR|
~ |URP? - e(Si) - e(S))

dSir'Sj (a) ' ‘tsiﬂSj [CL] 7& —L|

’ |t5'ir|5j [a’] 7£ J-|

|ts.[a] # LI -15;] lts;la] # L[-[Si|  |ts[a] # L] - [ts;[a] # L]

(e 20 TURE - ¢(S5) - e(S;) | [URP? - ¢(S) - <(S)) |URJ? - ¢(S;) - ()
_ fts,la] # LIS, Its,la) # L] 1S Jtsi[a] # L] -|ts,[a] # L]

|Si] - |1S5] |Si] - 1541 |Si| - |.S5]
- d5i<a> + de (a) - dSi (CL) : dsj ((l)

(A.24) We apply Definition 12 and transform

. |tSi:|Sj [(I] 7& J—‘

dg.—g. (a) =
Jtsslol £ 1
(Lemma 17) |S,L|
_ tsla] # L] | |ts;la] # LIS |ts.[a] # Lllts;[a] # L|
(hemme 20 5] | UR||S] | UR||S;|
B |ts;la] # L] |ts;la] # L]
ts. 1 ; ts. Lle(S;
oy s Ml E LAS) sl £ Le(s)
|55 |51

= dSz‘(a) + de (G)C(Sj) - dSi (a)dsj (a)c(Sj>
(A.25) We apply Definition 12 and transform

oo sl
_ |tSiUSj [a] 7 J—’
reme S+ 1851 = 181 S
lts,la] # LI+ [ts,la] # L| — g ltsi[a] # Lllts,la] # L
(hemme 20) |UR|- (S U S;)
_|Silds,(a) + [Sjlds, (a) — 7z |5il1551ds, (a)ds, (a)
= [UR|-e(S;US,)
_ |URJ[c(S)ds, (a) + c(S;)ds, (a) — c(S;)c(S;)ds, (a)ds, (a)]
[UR[ - (5 US,)
_ds,(a) - c(Si) | ds,(a)-c(S;)  ds,(a) - ds;(a) - ¢(SiMS;)

C(S2 L Sj) C(Sz L Sj) C(SZ L SJ)

42



Theorem 22. Let S; and S; be two independent sources. Given the density
scores for all attributes of a merged result, the density of the entire result is

d(S,1S;) S ds s, (A.26)
|A| acA
|A| acA

d(S LJ S Z ds, us (A?S)
|A| acA

PROOF. The proof follows immediately from Definition 13.

Lemma 23. Source density is commutative, associative, and distributive for
M and LI for independent sources:

dsns.(a) =dg.ng (a) (A.29

dSzHSJ Ea; _ dSJrISl Ea; EA 303 d(Sz‘USj)USk (a) = dSiI_l(SjUSk)(a) (A32)
SilIS; SiUS: ' dSiﬂ(Sjl_,Sk)(a) = d(SiWSj)U(SiWSk)(a) (A.33)

d(SZTISJ)ﬂSk &) == dsiﬂ(sjrlsk)(a)

v A.31) dSi'—’(Sj'_‘Sk)(a) = d(SiUSj)H(SiUSk)(a’) (A'34)

PROOF. The proofs of (A.29) and (A.30) are trivial. The proof of (A.31) is
analog to that of (A.17) in Theorem 19. Due to the length of the following
expressions, we use a shorthand notation to prove (A.32) and abbreviate ¢(5;)
with ¢; and dg,(a) with d;. Also, we treat numerator and denominator sepa-
rately. The denominator is transformed with Theorem 19. We transform the
numerator:

desios s, (@) — ds,us, (a) - ¢(Si U S)) + ds, (a) - c(Sk) — ds,usyns, (@) - ¢((Si U S;) 11.5k)
R c((S; US;) U Sk)
(only mumerator) = diCi + djc; — dinjCing + dicy — [(diy; + di — dinjdi)civjc]
= d;c; + djcj + dcy — [d; + dj — didjlcic; — diicinice — diciicr + dinjdrcingc
= d;c; + djcj + dyey, — dicicj — djcic; + didjcic; — [dici + djc; — dinjeing)ck
— dilci + ¢ — cicjleg + [di + dj — didjldi[ci + ¢ — cicjler
= dic; +djcj + dyey, — dicicy — djcic; + didjcic; — dicic, — djcjey,
+ [d; + d; — didjleicier — dicicy — dicjer, + dicicicy,
+ [didy + djdy, — didjdi][cick + cjer — cicick]

43



= d;ic; + d;c; + dyey, — dicicj — djcic; + didjcic; — dicic, — djcjcy,
+ dicicjer, + djcicicp — didjcicicy, — dycic, — dicjcy + dicicicy,
+ didycici, + djdycicy, — didjdicicr, + didicier, + djdicicy
— did;dicicy — didicicier, — djdgeicie, + didjdiciciey
= d;ic; +djc; + dyey, — dicicj — dicicr, — djcicy — djcjer, — dycicy, — dicjcy
+ dicicjer, + djcicicp + dipcicieg + didjcicy + didiejc, + didyeic, + djdgejey,
+ d;dycicy, — didjcicicy, — didcicijer, — djdicicicy,
— didjdicicy, — d;djdycjcr, + didjdycicicy,

The final expression is symmetric with respect to 7, i.e., wherever j appears in
combination with , it also appears in combination with £ in the same manner.
Hence, we can deduce associativity.

For brevity we omit the tedious proofs of (A.33) and (A.34). Their structure
is similar to the proofs above.

Theorem 24. Source density is commutative, associative, and distributive for
M and U for independent sources:

d(S;M.S;) =d(S;nS;)
d(S;us;) =d(S;us;)
d((S; M S;) M S,) =d(S
d((S;uS;)USy) =d
d(S;m(S;USy) =d
d(S; U (S;MSk)) =d

PROOF. All properties follow trivially from Definition 13 with Lemma 23.

Theorem 25. Let P = 5y,...,5, be a set of sources. Then completeness of
Pis C(P)=c(P)-d(P).

PROOQOF. The proof follows from Theorem 16, because a plan P represents
a set of tuples, just as a source S does.

44



