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ABSTRACT 

Let P be a Horn clause log ic program and 

comp(p) be i t s completion in the sense of Clark. 

Clark gave a j u s t i f i c a t i o n fo r the negation as 

f a i l u r e ru le by showing that if a ground atom A 

is in the f i n i t e f a i l u r e set of P, then ~A is a 

l o g i c a l consequence of comp(P), that i s , the 

negation as f a i l u r e ru le is sound. We prove here 

that the converse also ho lds, that i s , the 

negation as f a i l u r e ru le is complete. 

I INTRODUCTION 

If P is a Horn clause log ic program, then 

we can use P to deduce " p o s i t i v e " in fo rmat ion . 

In other words, if A is a ground atom, then the 

i n t e r p r e t e r , by using SLD-resolut ion, can 

attempt to prove that A is indeed a l o g i c a l 

consequence of P. However, we cannot deduce 

"negat ive" in format ion using SLD-resolut ion. To 

be prec ise, we cannot prove that ~A is a l o g i c a l 

consequence of P. The reason is that P { U ) is 

s a t i s f i a b l e , having the Herbrand base as a 

model. 

To remedy t h i s defec t , l og i c programming 

i n te rp re te rs are usual ly augmented by the 

negation as f a i l u r e r u l e . This ru le s tates that 

i f A is in the f i n i t e f a i l u r e set o f P, then -A 

ho lds . Thus we i n t e rp re t the f a i l u r e of the 

This research was p a r t i a l l y supported by a grant 

from the Aust ra l ian Computer Research Board. 

attempt to prove A as a "proof" that ~A holds. 

Rules very s i m i l a r to the negation as f a i l u r e 

ru le have prev iously been widely used in 

a r t i f i c i a l i n t e l l i g e n c e systems ( f o r example, 

PLANNER, var ious non-monotonic l o g i c s ) . 

While the negation as f a i l u r e ru le is 

i n t u i t i v e l y appeal ing, i t i s preferable t o f i nd 

some f i rm theo re t i ca l foundat ion fo r i t . In 

p a r t i c u l a r , we would l i k e ~A to be a l o g i c a l 

consequence of something connected wi th P. 

Clark [ 2 ] showed that the "something" is the 

completion of P, denoted by comp(p), which is 

essen t i a l l y P together wi th the o n l y - i f halves 

of each of i t s c lauses, plus some axioms to 

const ra in the equa l i t y p red ica te . Clark showed 

that i f A is in the f i n i t e f a i l u r e set o f P, 

then -A is a l o g i c a l consequence of corap(P). 

This amounts to a soundness proof of the 

negation as f a i l u r e r u l e . (We note that Clark 

proves t h i s r esu l t f o r a more general class of 

l og ic programs, ones where l i t e r a l s in a clause 

body may be negated. For t h i s c lass , the 

converse o f h is resu l t i s f a l s e ) . 

In t h i s paper, we give the corresponding 

completeness proof of the r u l e , tha t i s , we show 

that if ~A is a l o g i c a l consequence of comp(p), 

then A is in the f i n i t e f a i l u r e set of P. 

In the next sec t i on , we discuss what is 

cu r ren t l y known about f i n i t e f a i l u r e and put our 

theorem in to tha t context . In the l a s t sec t i on , 

we give the proof of the theorem. 
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is the set of a l l ACB(p) f o r which there ex is ts 

a f i n i t e l y f a i l e d SLD t ree which has <-A at the 

roo t . 

Now in [ 1 ] the fo l l ow ing theorem is proved 

(a much shorter proof of t h i s r esu l t is given in 

[ 5 ] ) : A ia in the SLD f i n i t e f a i l u r e set i f and 

only if AE T } u i . However, i t ia easy to show 

that FF - B(P)\T ui [ 4 ] and thus t h i s resu l t of 

[ l ] can be considered as a form of soundness and 

completeness fo r an SLD implementation of f i n i t e 

f a i l u r e . However, t h i s is not qu i te 

s a t i s f a c t o r y : SLD f i n i t e f a i l u r e only guarantees 

the existence of one f i n i t e l y f a i l e d SLD tree -

others may be i n f i n i t e . The problem is to 

i d e n t i f y exact ly those computation ru les which 

guarantee to f i nd a f i n i t e l y f a i l e d SLD t ree , i f 

one ex is ts a t a l l . 

D e f i n i t i o n A computation ru le is a ru le 

which selects the atom to be expanded in the 

current goa l . A computation ru le i s f a i r i f f o r 

every atom B in a de r i va t i on using t h i s r u l e , 

e i t he r (some fu r t he r i ns tan t i a ted version o f ) B 

is selected w i t h i n a f i n i t e number of steps or 

(some fu r t he r i ns tan t i a ted vers ion o f ) B ia in a 

f a i l e d goa l . A f a i r SLD t ree is an SLD t ree 

obtained v ia a f a i r computation r u l e . 

Then in [ 4 ] the fo l l ow ing r esu l t is proved: 

AEFF i f f , f o r every f a i r computation r u l e , the 

corresponding SLD t ree w i th <—A at the root is 

f i n i t e l y f a i l e d . Furthermore, the desi rable 

strong form of completeness is obta ined: a l l 

f a i r SLD trees are equivalent in the sense that 

i f any one i s f i n i t e l y f a i l e d , a l l a re . 

Summarizing the resu l t s so f a r , we have: 

Propos i t ion 2.1 The fo l low ing are 

equiva lent : 

(a) A i s in the f i n i t e f a i l u r e se t . 

(b) AE T p | m . 

(c) There ex i s t s an SLD t ree w i th <-A at the 

root which i s f i n i t e l y f a i l e d . 

(d) Every f a i r SLD t ree wi th <-A at the root is 

f i n i t e l y f a i l e d . 
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D e f i n i t i o n The completion of P, denoted 

comp(P), is the c o l l e c t i o n of the completed 

d e f i n i t i o n s fo r each predicate in P and the 

above equa l i t y axiom schemas. 

The resu l t of t h i s paper is as f o l l ows : 

Theorem If -A. is a l o g i c a l consequence of 

comp(p), then' A is in the f i n i t e f a i l u r e set of 

P. 

Using t h i s theorem, propos i t ion 2.1 and 

C la rk 's theorem, we obta in the fo l low ing r e s u l t : 

Theorem A is in the f i n i t e f a i l u r e set of 

P i f f ~A is a l o g i c a l consequence of comp(p). 

I l l PROOF 0£ THE THEOREM 

This sect ion contains a proof of our 

theorem. In f a c t , we prove the cont rapos i t i ve of 

the r e s u l t . Thus we assume that A is not in the 

f i n i t e f a i l u r e set of P and prove tha t 

comp(p)U{A( has a model. Unfor tunate ly , we 

cannot r e s t r i c t a t t en t i on to Herbrand models. 

It is easy to construct examples where A is not 

in the f i n i t e f a i l u r e set and yet comp(P)U (A) 

has no Herbrand model. Indeed, t h i s is the main 

d i f f i c u l t y of the proof - to f i nd the r i g h t kind 

of model. 

The f i r s t task is to general ize the mapping 

Tp introduced e a r l i e r . Let D be a f i xed domain 

of i n t e r p r e t a t i o n fo r P and assume some f i xed 

assignment of constants in P to elements of D 

and funct ions in P to funct ions on D. With a l l 

t h i s f i x e d , we can now obta in a v a r i e t y of 

i n t e r p r e t a t i o n s f o r P by vary ing the assignments 

of the predicates of P. In f a c t , as f o r Herbrand 

i n t e r p r e t a t i o n s , each such i n t e r p r e t a t i o n can be 

i d e n t i f i e d w i th some subset of "atoms'' (where 
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We assign each constant c in P to the 

equivalence class [ c ] . Note that if s and t are 

d i s t i n c t ground terras, then [ s ] = [ t ] . Thus D 

contains an isomorphic copy of the usual 

Herbrand universe. This completes the d e f i n i t i o n 

of the domain of the model and the assignment of 

the funct ions and constants. It remains to give 

the assignments of the pred icates. For t h i s 

purpose, we are going to use the mapping Tp 

corresponding to t h i s p a r t i c u l a r domain and 

assignment of funct ions and constants. 
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K n a s t e r - T a r s k i theorem abou t f i x p o i n t s f o r 

monoton ic f u n c t i o n s , t h e r e e x i s t s an I such t h a t 

I 0 C I and I - T p ( l ) . Thus A i s t r u e i n I . 

We a s s i g n to ■ t h e i d e n t i t y r e l a t i o n on D. 

A c c o r d i n g t o p r o p o s i t i o n 3-1 , i t o n l y remains t o 

check t h a t e q u a l i t y axioms 1 to 8 a re s a t i s f i e d . 

Axioms 6 to 3 a re o b v i o u s l y s a t i s f i e d because -

i s ass i gned t h e i d e n t i t y r e l a t i o n . Axioms 1 and 

4 a re s a t i s f i e d because e v e r y r e w r i t e i s 

s u p e r f l u o u s f o r c o n s t a n t s . Axiom 2 i s s a t i s f i e d 

by p r o p o s i t i o n 3-2a and axiom 3 by p r o p o s i t i o n 

3 . 2 b . Only ax iom 5 r e q u i r e s some e f f o r t . We 

p rove t h i s a s f o l l o w s . 
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