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Abstract

Our goal is to recover a complete 3D model from a depth

image of an object. Existing approaches rely on user inter-

action or apply to a limited class of objects, such as chairs.

We aim to fully automatically reconstruct a 3D model from

any category. We take an exemplar-based approach: re-

trieve similar objects in a database of 3D models using

view-based matching and transfer the symmetries and sur-

faces from retrieved models. We investigate completion of

3D models in three cases: novel view (model in database);

novel model (models for other objects of the same category

in database); and novel category (no models from the cate-

gory in database).

1. Introduction

Consider the building in Figure 1. Although we only

see a small portion of the object, we can accurately predict

the entire shape. This ability to infer complete 3D shape

from a single view is important for grasping, as we often

reach around an object to grasp its unseen surfaces. Like-

wise, shape provides cues to category, affordance, and other

properties. Recovery of 3D shape from a depth image is

also useful for content creation and augmented reality ap-

plications. But how do we guess the shape of unseen sur-

faces? One approach is to recognize the same object or a

similar object from past experience: the hidden surfaces of

a favorite coffee mug can be inferred from earlier views or

handling. Another is to infer missing surfaces using sym-

metries to duplicate and transform observed surfaces.

In this paper, we combine these strategies. Given a depth

image, we find similar 3D models in similar viewpoints us-

ing view-specific matching of observed surfaces. The re-

trieved models are deformed to better approximate the vis-

ible portion of the query object. Deformations are con-

strained by smoothness and symmetries recovered from the

3D models to maintain a plausible shape. In some cases,

such as when the instance or category is known, the de-

formed model will fit the observed surface, and hidden sur-

faces can be transferred from the model. In many cases,

however, the deformed model does not fit the details of the

observed surfaces, yet the query and retrieved object have

similar symmetries. Thus, rather than transferring surfaces

from the retrieved model, we instead transfer local symme-

tries to complete missing surfaces.

1.1. Related Work

Most previous approaches in shape completion require

user interaction (e.g. [34, 33, 10, 40, 4]) or are restricted to

a limited set of objects or categories (e.g., [29, 2, 23, 32],

often chairs, as models are plentiful, and silhouettes in-

formative. Our paper is unusual in its focus on quanti-

tatively accurate reconstruction for a broad range of ob-

jects, rather than visually pleasing reconstruction for graph-

ics content generation. We are the first to include a broad

quantitative analysis of automatic 3D shape reconstruction

of known objects from novel viewpoints, novel objects from

known categories, and novel objects from unknown cate-

gories. Our approach includes techniques for viewpoint-

based shape matching, 3D deformation, 3D mesh analysis,

and 3D model synthesis that draw from or relate to a rich

literature in graphics and computer vision.

Matching aims to find a complete 3D model from the li-

brary that has a similar shape to the depth-imaged object. A

common approach, which we adopt, is to render each object

from the library of meshes from many viewpoints and find a

depth image that matches the query depth image to recover

a similar 3D model from a similar viewpoint. For exam-

ple, Ohbuchi et al. [28] propose an approach for retrieval

based on SIFT applied to depth images, which is used by

Goldfeder et al. [11] to retrieve models in order to transfer

grasp points. Wohlkinger and Vincze [37] describe a vari-

ety of matching features and an algorithm for partial-view

to partial-view matching. Hinterstoisser et al. [12] perform

template matching to localize objects in videos of cluttered

scenes. Tejani et al. [35] propose a tree based structured

prediction for determining object and pose from RGB-D
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(a) Query Depthmap (b) Query Mesh

(Ground Truth)

(c) Pointcloud Mesh (d) Reconstruct Baseline (e) Ours

Figure 1: While depth images and point clouds appear to have enough information for us to reconstruct, we are implicitly

applying our intuition about what objects look like. We recognize that this building is wider than it is long, and that the

chimney does not extend the whole length, even though that information is not directly captured in the depthmap. (d) shows

a reconstruction using a simple reflection about the image plane at maximum depth. (e) shows our reconstruction result and

conforms to our expectation of the object better.

images. Wang et al. [36] retrieve CAD models that are

similar to a noisy 3D point cloud scan using local point

descriptors and Regression Tree Fields. We experimented

with many matching techniques but found that using Ran-

dom Forests [3] to hash based on similarity and depth order-

ing of pixels provides a simple, fast, and effective retrieval

mechanism.

Deformation aims to geometrically transform the re-

trieved mesh so that part of its surface aligns well with the

observed query depth image. The key problems are find-

ing local correspondences and defining a regularized defor-

mation model that has sufficient flexibility but discourages

unlikely shapes. Motivated in part by work in graphics on

image-based modeling (e.g., Chen et al. [5]), we believe that

symmetry-constrained deformations provide the right com-

promise between rigidity and arbitrary deformation. Our

method for finding symmetries in the retrieved mesh is

based on [26]. We use the Spin Image Descriptor [15] to

find long-range correspondences for coarse, global (sim-

ilarity) transformation, followed by nearest-point match-

ing for symmetry-constrained, thin plate spline deforma-

tion. Geometrically-constrained thin-plate spline models

have been applied in various fields such as 2D graphic mod-

eling [8] and medical imaging [1]. Kurz et al. [19] explore a

generic constrained optimization framework for symmetry-

preserving deformation that minimizes an energy function

in a grid of B-spline basis functions. Other techniques that

may be applicable include Sorkine and Alexa’s As-Rigid-

As-Possible deformation [33] and the cuboid-based defor-

mations of Zheng et al. [40].

Completing a 3D model from an RGB image or depth

image can be attempted by fitting a parameterized model

based on contours, shape priors, and detected symmetries

or by deforming an exemplar mesh. Contour-based meth-

ods often have limited applicability to specific classes, such

as generalized cylinders (e.g., [24, 30]) or blocky struc-

tures [40], or require substantial user interaction (e.g., [5,

14]). Exemplar-based reconstruction typically requires

finding very precise correspondences to very similar exem-

plar 3D meshes. Automatic and semi-automatic approaches

exist for chairs [2] and furniture [23, 39] that have highly in-

formative contours and an enormous supply of available 3D

models. Kholgade et al. [18] propose a general exemplar-

based completion approach that requires carefully chosen

user correspondences. In other recent work, Wu et al. [38]

present preliminary results on automatic shape completion

from depth by classifying hidden voxels with a deep net-

work. We combine voxel prediction with shape priors from

deformed exemplar meshes.

2. Method overview

From an input segmented depth image, we wish to pro-

duce a complete 3D mesh. As we show in Figure 1, this

is a highly challenging problem that requires recognition

or strong priors about likely shapes, and simple methods

such as reflecting the depth points along the camera axis are

rarely effective.

Our approach, illustrated in Figure 2 is to first find a sim-

ilar depth image from a training set of meshes (Sec. 2.1).

For retrieval, speed may trump clever similarity measures,

because sublinear methods enable querying into a large

dataset of meshes rendered from many viewpoints. We use

random forests as a hashing function to produce several can-

didates. The candidate with minimum surface-to-surface

distance based on the query and retrieved depth images is

selected to produce an exemplar mesh and camera view-

point.

The retrieved model may be of a different instance or

category, and is likely to have a slightly different viewpoint.

We, therefore, deform the retrieved mesh to better approx-



Figure 2: Pipeline for mesh reconstruction from depth image. A depth image of a piano is matched to a depth image of a

table. The exemplar table is retrieved and deformed to better fit the observed depth points. Finally, a reconstructed mesh is

created based on the observed depth points and deformed table exemplar. This mesh outperforms a mesh constructed from

only depth points alone (“Reconstruct Depth”).

imate the depth image (Sec. 2.2.3). Finding deformations

to align different object models typically requires an expe-

rienced annotator to find corresponding points. We apply

automatic methods to find likely correspondences between

models and find symmetries within the exemplar mesh that

can be used as constraints to avoid unlikely warping. We

apply a similarity transformation, followed by a symmetry-

preserving thin-plate-spline deformation.

Our final step is to use the deformed exemplar mesh to

complete the input depth image (Sec. 2.3). If the exem-

plar mesh is similar to the query object, the deformed ex-

emplar may provide a good estimate for the 3D shape of the

query object. However, in many cases a similar object to

the query will not exist in the dataset. For example, we may

match a barrel to a building due to the similarity of their sil-

houettes and relative depth patterns from a particular view-

point. Even in such cases, we show that the exemplar mesh

can be useful in estimating the object’s extent and for pre-

dicting symmetries of the query object which are used to

reflect observed points. Then, a complete 3D mesh for the

query object is constructed using graph cut to optimize a

function that preserves observed and reflected depth points,

conforms to the exemplar mesh, and discourages accidental

alignment.

2.1. Retrieving similar exemplar 3D meshes

Given a depth image of an object, we want to find a sim-

ilar 3D mesh and viewpoint in our training set. In this dis-

cussion, we consider 3D shape to be view-specific because

we wish to recover the 3D surface within the camera’s ref-

erence frame. We render each training mesh from many

viewpoints, so the goal is to retrieve the training depth im-

age, such that the corresponding rotated 3D mesh will align

with the partially observed 3D query object. Retrieval com-

plexity is important because the training set may contain

many meshes rendered from many viewpoints.

Our approach is to use a random forest, trained to parti-

tion the training set into similar 3D shapes based on features

of a depth image. Each tree of the forest acts as a hashing

function, mapping the input features to a set of training ex-

amples. Random forests have been used for retrieval, e.g.

by Fu and Qiu [9]. To retrieve based on shape similarity,

we need to define entropy over a multi-dimensional vari-

able (3D voxels), related to [7]. Our approach outperforms

direct similarity-based matching and enables sublinear re-

trieval from a database of more than 22500 images.

Features. Depth maps are first cropped and resized to im-

prove alignment of silhouettes. We use two simple features:

whether a pixel at a given position is inside the silhouette

and which of a pair of pixels is closer to the camera. The

former encodes silhouette shape, and the latter encodes 3D

shape in a manner that is invariant to depth scale.

3D Shape Similarity Entropy. Random forest training in-

volves finding feature-based splits of the data that reduce

entropy of the split groups. For each training image, we

compute a 3D shape representation of 503 voxels for the

corresponding mesh and rotation. Since it is not feasible

to calculate entropy of 503 dimension feature, we take a



low dimensional projection of the voxels using non-negative

matrix factorization (NNMF) [20] with dimension 50. For

efficiency, we randomly subsample images before applying

NNMF, which experiments indicate has little effect on ac-

curacy while greatly improving speed. Then, we compute

the coefficients of each new image using non-negative lin-

ear least-squares. We discretize the NNMF coefficients into

3 bins based on percentiles of non-zero values, and compute

entropy for a set of images on the discretized coefficients,

assuming that coefficients are independent.

Figure 3: Voxel intersection (red) and union (green) of 3D

shape examples in the same leaf node of our 3d-aware ran-

dom forest. We can observe that similar objects with similar

orientations are grouped into the same leaf node. For exam-

ple, bikes and motorcycles in the top left, fish in the bottom

left, or generic elongated shapes on the right.

Training. We train five trees, splitting until all leaf nodes

contain five or fewer examples or cannot be improved with

further splits. At each node, a random set of features is

chosen (250 of each type). The feature that maximizes in-

formation gain and maintains a balanced split is selected. A

balanced split is one which maintains at least max(.1S, 2)
images in the smaller child, where S is the number of im-

ages in the node to be split. Leaf nodes tend to group similar

objects, visualized in Figure 3.

Retrieval. Our random forest returns fifteen to twenty five

potential matches. We select the match that has minimum

surface-to-surface distance (Eq. 6) based on the query and

retrieved depth images. Experimentally, we found that this

selection procedure is nearly as effective as an oracle that

selects the best potential match based on mesh-to-mesh dis-

tance.

2.2. Fitting retrieved exemplar to depth image

The exemplar retrieval process returns the 3D model in

the training dataset with the most similar depth map to the

query image. While the retrieved model is similar to the one

in the query, it still needs to be deformed to fit the query

point cloud in order to get a better approximation of shape.

Here we describe our approach for symmetry constrained

deformation for fitting a mesh to the query depth map.

2.2.1 Coarse Alignment

We back project both the query and the retrieved depth maps

into the 3D world coordinates using the camera parame-

ters of the retrieved depth map. These two point clouds

are aligned through a similarity transformation using spin-

images [16] based correspondences. Since we are matching

2.5D point clouds of different 3D models with similar but

different orientations there are a significant number of out-

liers. These outliers are first pruned by Euclidean distance

and then by a spectral correspondence matching technique

[21] which considers geometrically conforming set of cor-

respondence pairs as the inliers. The similarity transform

is obtained using Horn’s closed form solution to the least

square problem [13].

2.2.2 Symmetry Detection

We preserve the symmetry of the retrieved mesh because the

random forest matcher groups objects with similar global

structure, for example bikes and motorcycles (Figure 3).

While a motorcycle is not a good stand-in for a bike, sym-

metries are shared in a meaningful way. We use this symme-

try as a constraint in deformation (Sec. 2.2.3) to determine

the unseen parts of the object.

We find the significant symmetries in the retrieved mesh

using [27]. We use a simplified version of this technique

where we only consider planar symmetries and omit the

symmetry basis reduction step. We also include a normal

pruning step which is crucial in getting rid of the false sym-

metry matches. This is based on the fact that lines pass-

ing through the symmetry points should intersect at a point

on the plane of symmetry (details in supplementary). This

technique produces a number of symmetry proposals from

which we choose the top few based on the size of the mean-

shift clusters.

While this gives us the major symmetry planes in the

mesh, we need to distribute these symmetries across the sur-

face of the mesh. To do this, we sample points uniformly

at random over the surface of the mesh. Then we reflect

each point across every symmetry plane and match the re-

flection to the nearest sampled point. We retain points with

a symmetric pair within a threshold of the match distance.



2.2.3 Deformation

We model the deformation using a 3D approximation thin-

plate splines (TPS) model with additional symmetry con-

straints. Because we only see the object from a single view,

correspondences for TPS deformation are only present on

one side of the object. We must also deform unseen por-

tions to preserve symmetry. We therefore choose control

points for the TPS model by uniformly sampling points on

the surface of the mesh. This is in contrast to the usual

TPS model where the source points are generally chosen as

the control points. Our choice of control points decouples

the learning of weights for control points on either side of

the symmetry plane leading to better deformation behavior

when used with symmetry constraints. We also replace the

usual radial basis function (r2logr) with r3.

The usual approximation TPS deformation model [31]

regresses the parameters of a function f which maps every

source point u to an approximation of their target location

v within a certain tolerance to the bending energy involved.

This is different from interpolation TPS where we require

f(u) = v for all specified correspondence pairs (u,v).
However, in our symmetry constrained approximation

TPS model we enforce symmetric points to deform in such

a way that the symmetry is preserved. Thus given N cor-

respondences (ui,vi), M symmetry pairs (pj,qj) and their

corresponding symmetry planes characterized by reflection

mappings Rj such that Rj(pj) = qj, we solve for a linear

function f that minimizes the following objective

N∑

i=1

‖vi−f(ui)‖+λJ (f)+γ

M∑

j=1

‖Rj(f(pj))−f(qj)‖ (1)

Here J is the bending energy involved in a given defor-

mation and λ specifies our tolerance to this bending energy.

λ → 0 implies that don’t want to enforce any smoothness

constraint while larger λ would result in a smoother defor-

mation achieved by relaxing the correspondence mapping.

The parameter γ enforces the strength of symmetry con-

straints. Since there could be a significant difference be-

tween the number of symmetry pairs and the number of cor-

respondences, we use the following normalization to avoid

bias

γ = α×
Number of correspondences

Number of symmetry pairs
(2)

Now α weighs the strength of the symmetry constraints

relative to the correspondence constraints. We have used

α = 2 and λ = 0.001. If we are unable to extract any

symmetries, we revert back to TPS without symmetry con-

straints and use λ = .01.

Finding parameters that minimize eq (1) is equivalent

to finding the least square approximation to a set of linear

equations. The linear equations for the usual approximation

TPS model can be found in [31]. However, to minimize

eq (1) we add the additional linear constraints

Rj(f(pj))− f(qj) = 0 ∀ j = 1, · · · ,M (3)

For a given symmetry plane defined by normal n and a point

m on it, the reflection mapping R is a generalization of

the Householder transformation (which defines a reflection

about a plane passing through the origin) to reflection about

an arbitrary plane. Specifically, R is defined by a matrix-

vector pair (A, t) where

A = I− 2nnT (4)

t = 2nnTm (5)

Any point p can then be reflected about the plane by using

the function R(p) = Ap+ t

2.3. Completing missing surfaces

Finally, we need to construct a 3D mesh for our query

object based on the observed depth points and retrieved and

deformed exemplar mesh. We pose this as a problem of

predicting which voxels are occupied by the object. Voxels

outside the depth silhouette or in front of observed depth

points are observed to be empty, while voxels around ob-

served points are known to be occupied by the object. We

then predict which unobserved voxels are occupied based

on six types of cues.

Features. The first two types of features are based on

the observed depth map. First, voxels near observed depth

points are likely to be occupied. Vdist(i) is the negative ex-

ponential of the distance of voxel i behind the depth map,

in an orthographic projection. Voxels in front of the depth

map have a distance of 1. Second, voxels that would require

a large rotation to be exposed are more likely to be occu-

pied (similar in concept to the accidental alignment princi-

ple). For example, a voxel behind a chair leg would have a

higher accidental occlusion score than one behind the center

of a wall. We compute Vang(i) as the angle that the cam-

era needs to move to make voxel i visible based on nearest

point on the contour of the depthmap silhouette.

The third and fourth types of features are based on the

retrieved and deformed mesh. We expect the query ob-

ject to have similar symmetries to the matched object. We

reflect points on the query depth map using symmetries

of the closest points from the matched mesh. VSym(i) is

the negative exponential distance of voxel i in front of the

symmetry-generated points. The final cue is that the query

mesh should tend to have the same voxels occupied as the

retrieved mesh. Vmesh(i) indicates whether voxel i is occu-

pied in the deformed exemplar mesh.

The last two features are based on the similarity of the

query and match. One of them is depth distance between



query and match depthmaps. The other is the distance from

the query point cloud to the deformed mesh surface.

Learning. We train a boosted decision tree (20 trees, 4

nodes per tree) based on LogitBoost [6] to predict which

voxels are occupied. The boosted decision trees predicts a

confidence of each voxel being occupied. Our purely depth-

based reconstruction “reconstruct depth” uses only the first

two feature types, our full reconstruction uses all six. We

also learn a bias term on the validation set.

Voxel Prediction. The model produces per-voxel unary

terms, indicating the log ratio probability that the voxel is

occupied. For voxels observed to be occupied or unoccu-

pied, the unaries have a value of 5 added or subtracted to

strongly encourage labels to fit observations. We then per-

form min cut using a pairwise constant smoothing term of

10 in a 6-connected neighborhood in the 3D voxel space.

Reconstruction. We use two different reconstructions de-

pending on how a mesh will be used. The first, applying

marching cubes [25] directly to the predicted voxels pro-

duces meshes which are quantitatively accurate, but qual-

itatively unappealing due to small surface artifacts which

render poorly. The second, Poisson reconstruction [17]

produces smooth meshes which are visually appealing, but

caused a performance decrease on validation. As such, we

report quantitative results using the more direct marching

cubes approach, and visualize results from Poisson recon-

struction.

3. Evaluation

3.1. Datasets

We introduce a synthetic dataset built from the

SHREC12 mesh classification dataset [22]. The SHREC

dataset consists of twenty unaligned meshes from sixty di-

verse classes, including musical instruments, buildings, and

vehicles. We align the meshes from each class consistently.

The models are aligned such that the class of object is in the

same viewpoint as the others. In Figure ?? we show aligned

models. We align the models so that we can generate sam-

ple viewpoints that avoid unlikely angles (e.g., looking at

the bottom of the car), but knowledge of alignment is not

explicitly used in reconstruction.

We generate 50 views rejection-sampled on a unit sphere

bounded within 20 degrees of the equator. We limit to this

partial sphere to avoid strange or ambiguous views, for ex-

ample, looking at a car from beneath.

We consider three reconstruction problems:

• Novel View: An object is seen from a new viewpoint,

but the 3D model of the object is present in the dataset.

• Novel Model: The target object is from a known cate-

gory, but the instance is new. For example, the input is

Figure 4: Manual alignment of our meshes allows us to

eliminate unlikely and ambiguous views, for example, look-

ing at a car from below or looking at the tip of a sword.

a depth image of a car that is not present in the exem-

plar dataset, but models of other cars are present.

• Novel Category: The target object is from an un-

known category. For example, the target object is an

airplane, and there are no airplanes in the exemplar set.

In total, our training set is 22500 images and we have 600

examples for testing each of the three experiments. It is not

known to the algorithm whether the corresponding model

or category of a viewed object is present in the exemplar

set. Additional details of our dataset can be found in the

supplementary materials.

3.2. Metrics

For evaluation we propose two metrics. The first is the

intersection over union for two voxels (Viou). We construct

a voxel map of 200 voxels squared for both our query and

match, and compute the intersection over union.

The second is a surface distance metric, Vpcl computed

by densely sampling points on the meshes and using a nor-

malized pointcloud distance. This gives us an estimate of

the surface agreement of our meshes,

Vpcl = meanmin
m

‖q −m‖+min
q

‖m− q‖ (6)

Note that larger numbers are better for voxel I/U, and

smaller numbers are better for surface distance.

3.3. Experiments

Shape retrieval. In Table 1, we compare similarity of the

retrieved and query mesh before deformation. We compare

retrieval using completely random forests (choosing fea-

tures so that nodes are balanced) using silhouette features

or silhouette and depth features, and our proposed entropy

random forest retrieval. Our proposed method performs bet-

ter for novel class and novel model and similarly for novel



Voxel I/U Baseline Reconstruct Depth Matched Mesh Aligned Deformed Reconstruct Full

Novel Class Mean 0.164 0.425 0.224 0.243 0.265 0.439

Median 0.138 0.429 0.177 0.207 0.236 0.459

Novel Model Mean 0.124 0.424 0.302 0.349 0.368 0.490

Median 0.107 0.408 0.249 0.289 0.322 0.489

Novel View Mean 0.185 0.453 0.453 0.525 0.537 0.565

Median 0.174 0.439 0.430 0.523 0.544 0.582

Surface Distance Baseline Reconstruct Depth Matched Mesh Aligned Deformed Reconstruct Full

Novel Class Mean 0.292 0.030 0.057 0.065 0.057 0.030

Median 0.286 0.025 0.053 0.058 0.048 0.025

Novel Model Mean 0.264 0.028 0.039 0.042 0.037 0.022

Median 0.267 0.022 0.033 0.035 0.029 0.018

Novel View Mean 0.241 0.032 0.030 0.029 0.025 0.023

Median 0.241 0.026 0.025 0.019 0.025 0.019

Table 2: Shape reconstruction on test. Our method achieves drastic improvements over the baseline depth reflection, and

when we have a well matching mesh (Novel model and Novel View), retrieving a match allows us to make significant

improvements over our depthmap based reconstruction method.

Voxel I/U RF Sil +Depth Entropy

Novel Class Mean 0.131 0.135 0.131

Median 0.072 0.096 0.086

Novel Model Mean 0.318 0.310 0.333

Median 0.240 0.206 0.251

Novel View Mean 0.301 0.291 0.322

Median 0.254 0.206 0.256

Surface Dist RF Sil +Depth Entropy

Novel Class Mean 0.074 0.076 0.075

Median 0.071 0.070 0.072

Novel Model Mean 0.038 0.041 0.037

Median 0.035 0.039 0.032

Novel View Mean 0.040 0.041 0.037

Median 0.038 0.039 0.032

Table 1: Shape retrieval on validation. Using additional

information improves results for queries with similar mod-

els (Novel Model and Novel View) and does not hurt the

matches when only dissimilar models are available (Novel

Class). RF Sil uses only features based on whether a pixel

is inside the object silhouette, +Depth, additionally uses

which of a pair of pixels is closer to the camera, and En-

tropy uses an entropy measure based on mesh similarity to

chose the best split with both features.

view. As expected, the similarity of the retrieved mesh is

better when similar meshes are available, “novel view” and

“novel model”, when compared to “novel class”.

Shape completion. We compare our reconstruction method

with several baselines and intermediate results in Table 2.

“Baseline” is computed by reflecting the observed depth

across a plane parallel to the image plane at maximum

depth. It performs very poorly. “Reconstructed Depth”,

based solely on the query depth map, uses the first two fea-

ture types to predict voxel occupancy. “Matched Mesh”

shows reconstruction accuracy proposing the retrieved 3d

exemplar mesh directly, “Aligned” is after similarity trans-

form, and “Deform” after symmetric-preserving thin-plate-

spline transform. These measures use only the retrieved ex-

emplar to predict the query object shape. Finally, “Recon-

structed Full” is our full proposed method that combines

features from the retrieved exemplar and observed depth

points to predict complete object shape.

Our deformation improves results over a simple align-

ment in all experiments. Matching and deformation per-

form best in the “novel view” case where often the retrieved

mesh is the same as the query mesh. Our full method out-

performs “Reconstruct Depth” substantially for the “novel

model” and “novel view” cases, and performs similarly in

the “novel class” case. Thus, the retrieved meshes are more

helpful when examples are available of the same or similar

model. See Figure 5 for examples of reconstructions.

4. Conclusion

We proposed a method to reconstruct a complete 3D

model from a single depth observation: retrieve a similar

3D mesh exemplar based on depth image matching; deform

the exemplar mesh to better fit the observed depth points;

and predict the complete shape of the target object based on

both the deformed exemplar and observed depths. We pro-

pose a new dataset to evaluate shape reconstruction based

on the SHREC’12 dataset. Our experiments indicate that

the quality of the reconstruction depends strongly on the

similarity of available exemplar meshes, but that good re-



Figure 5: Examples of completed shapes. We view the objects from a view that is different from the input view so that

unobserved parts of the object are visible. We wish to draw attention to the variety of deformations our model encodes. The

barrel deforms to be more rectangular, the keyboard becomes tapered, and the spoon handle thins while the bowl takes on the

cello’s curves. Also note the information that the mesh provides in the reconstruction, the top of the bed, front of the couch,

and top of the table are correctly hallucinated by our full approach.

constructions are sometimes possible, even when a simi-

lar exemplar is not available. We hope that by providing

a benchmark dataset, we will encourage future research in

object shape reconstruction. Future directions for this work

include evaluating on sensor depth images from Kinect or

other similar hardware, utilizing a similar pipeline for mul-

tiview reconstruction, and incorporating partial matches.
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