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Abstract

Theories with massive gravitons are interesting for a variety of physical applications,

ranging from cosmological phenomena to holographic modeling of condensed matter

systems. To date, they have been formulated as effective field theories with a cutoff

proportional to a positive power of the graviton mass mg and much smaller than that

of the massless theory (MP ≈ 1019 GeV in the case of general relativity). In this

paper we present an ultraviolet completion for massive gravity valid up to a high

energy scale independent of the graviton mass. The construction is based on the

existence of a preferred time foliation combined with spontaneous condensation of

vector fields. The perturbations of these fields are massive and below their mass the

theory reduces to a model of Lorentz violating massive gravity. The latter theory

possesses instantaneous modes whose consistent quantization we discuss in detail. We

briefly study some modifications to gravitational phenomenology at low-energies. The

homogeneous cosmological solutions are the same as in the standard cosmology. The

gravitational potential of point sources agrees with the Newtonian one at distances

small with respect to m−1
g . Interestingly, it becomes repulsive at larger distances.

∗Prepared for a special issue of JETP dedicated to the 60th birthday of Valery Rubakov.
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1 Introduction

Can gravity be mediated by a massive tensor field ? This straightforward question has

generated a lot of controversy since it was first formulated by Fierz and Pauli [1]. The

situation is remarkably different from the case of gauge interactions mediated by vector

fields, where the Higgs mechanism provides a clear-cut way to give mass to the vector

bosons within a weakly coupled theory. The differences fall into two categories. First, a

generic Lorentz invariant theory with massive spin-2 fields (gravitons) presents instabilities

in the sector of additional polarizations appearing in the massive, as opposed to massless,

case — the “Goldstone” sector. These instabilities arise around realistic backgrounds and

endanger the consistency of the theory even at low energies [2, 3]. It was first realized by

V. Rubakov [4] that these problems can be avoided by breaking the Lorentz invariance. This

approach has lead to the formulation of a class of Lorentz violating (LV) massive gravities

as consistent effective field theories (EFTs) [5] (see [6] for review). An alternative way to

improve the behavior of the Goldstone sector while preserving the Lorentz invariance has

been found in [7] and consists in a judicious choice of the couplings for the interactions of the
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massive gravitons (see e.g. [8, 9]) for reviews). It has been argued [10, 11] that this tuning

might be stable under quantum corrections, but it is not clear at the moment if there is any

symmetry behind.

The second difference between massive spin-2 and spin-1 theories lies in their different

behavior at high energies. The interactions in the Goldstone sector of massive gravity become

strong and the perturbation theory breaks down at a certain cutoff scale1 Λlow depending on

the graviton massmg. In the limit of vanishing mass this scale goes down to zero and, instead

of recovering the massless case, the theory ceases to exist. In fact, the same is also true for a

pure theory of massive vector fields with non-abelian interaction. However, in the latter case

the ultraviolet (UV) completion is known in the form of the Higgs mechanism which makes

the theory renormalizable by adding a handful of new degrees of freedom (Higgs bosons).

Importantly, in the resulting theory the massless limit is perfectly smooth and corresponds

to the restoration of the spontaneously broken gauge symmetry2.

No such mechanism has been found so far for massive gravity3. Of course, in this case one

cannot insist on an embedding into a fully UV complete theory — the massless theory being

non-renormalizable anyway with the cutoff at the Planck massMP ≈ 1019GeV (see, however,

Sec. 3.1). Still, it makes sense to search for a setup, whose cutoff would be independent of

the graviton mass and as close to the Planck scale as possible. To preserve the analogy

with the Higgs mechanism, the embedding theory must contain only a finite number of new

degrees of freedom compared to massive gravity itself4, these degrees of freedom must be

weakly coupled and the limit mg → 0 must be regular. The goal of this work is to present a

setup fulfilling the above requirements.

The reasons for pursuing this endeavor are not merely academic. First, massive gravity

is a very natural candidate for an infrared (IR) modification of general relativity (GR) [14].

1Throughout the paper we identify the cutoff with the strong coupling scale of the perturbation the-

ory around the Minkowski background. In the setup of [7] the scale of strong coupling may be raised in

curved space-time due to the Vainshtein mechanism (see the discussion in [9]). However, the validity of the

corresponding backgrounds is under debate [12].
2From a purist’s viewpoint, no symmetry is broken in the Higgs mechanism, gauge invariance being just

a redundancy in the description. However, we allow ourserves this abuse of terminology because of its clear

intuitive meaning.
3Exceptions are theories in AdS where the mass of the graviton can appear due to non-trivial conditions

at the time-like boundary [13, 16, 17]. However, these constructions rely heavily on the peculiar properties

of the AdS geometry. In particular, the resulting graviton mass is always parametrically smaller than the

inverse AdS radius.
4This excludes the known theories with massive spin-2 fields, such as Kaluza–Klein models or string

theory: both imply the presence of an infinite tower of new degrees of freedom with masses of order Λlow.
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Such modifications are an interesting playground to look for alternatives to the cosmological

constant as the source of cosmic acceleration (see e.g. [15]). The acceleration may be

generated at the level of the background (new contribution to the Friedmann equation) or

of perturbations (weaker or repulsive gravitational potential at distances larger than m−1
g ).

It is fair to say that none of these possibilities have been satisfactory implemented so far in

concrete models. In any event, any candidate to explain cosmic acceleration should have a

completion at high energies, which is important for predictions related to the early universe

or very dense objects. This can also allow to understand the relevance of certain tunings

of the IR parameters. We will see how a concrete ultraviolet (UV) completion can have

nontrivial consequences at very large distances.

Massive gravity has also been discussed in the context of the gauge/gravity correspon-

dence [16, 17]. Various phases of massive gravity may be useful to describe different phe-

nomenology at strong coupling. In particular, it was recently realized that LV massive gravity

is relevant for the description of systems with broken translational invariance [18, 19]. The

completion of the theory to smaller distances on the gravity side yields access to the operators

of higher dimensions in the strongly coupled field theory5.

Finally, the theory of massive gravity is related to the spontaneous breaking of space-time

symmetries [20, 5]. This is an appropriate language to describe different states of matter

within the EFT framework [21, 22]. One can speculate that the Higgs mechanism for massive

gravity will be relevant to describe the phase transitions in such systems.

In this paper we will focus on the LV massive gravity of [4, 5]. Our main motivation

for this choice is the already mentioned validity of this theory as a low-energy EFT, whose

structure is protected by symmetries. Besides, the fundamental role of Lorentz invariance

in quantum gravity has been questioned recently [23]. It is interesting to explore if massive

gravity can be naturally embedded in this framework6. We will assume that at the funda-

mental level the violation of Lorentz invariance is minimal and amounts to the existence of a

preferred foliation of space time [23, 25]. It is worth noting that the presence of superluminal

propagation [26, 27, 28] in the seemingly Lorentz invariant massive gravity of [7] makes a

Lorentz invariant Wilsonian UV completion of this theory problematic [29]. Thus, even in

this case the UV completion (if any) is likely to be Lorentz violating.

The paper is organized as follows. In Sec. 2 we briefly summarize the formalism of LV

massive gravity and define the phase that we will consider. In Sec. 3 we introduce the UV

completion that allows to push the cutoff of the theory to values close toMP . We analyze the

5We thank Riccardo Rattazzi for the discussion of this point.
6See [24] for an early attempt in this direction.
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background solutions of the theory in Sec. 4 and show that the LV massive gravity of Sec. 2

appears in the IR limit. Section 5 is devoted to the analysis of the degrees of freedom in the

theory at different scales. We also discuss in some detail the quantization of instantaneous

modes present in the LV massive gravity and their relation to a certain type of non-locality

along the spatial directions. First results in phenomenology are presented in Sec. 6. We

conclude with the summary and discussion in Sec. 7.

2 Lorentz violating massive gravity

We will now briefly review the construction of LV massive gravity. We will formulate these

theories in a language closer to the symmetry breaking mechanism by introducing Stückelberg

fields [20, 5]. This formulation is useful to understand many features of the theories, in

particular the strong coupling scale.

We focus on the setup where Lorentz invariance is broken down to the subgroup of spatial

rotations [4]. To describe this situation, let us consider four scalar Stückelberg fields, φ0, φa,

a = 1, 2, 3, with internal SO(3) symmetry acting on the indices a, coupled to the metric in

a covariant way. Additional symmetries must be imposed on this sector to protect it from

pathologies [5]. We start by requiring invariance under the shifts7 of φ0,

φ0 7→ φ0 + const , (1a)

and the φ0-dependent shifts of φa,

φa 7→ φa + fa(φ0) , (1b)

where fa are arbitrary functions. We assume that in the stationary state the Stückelberg

fields acquire coordinate-dependent vacuum expectation values (VEVs),

φ0 = µ2
0 t , φa = µ2xa . (2)

These VEVs break the product of 4-dimensional diffeomorphisms and the internal symme-

tries of Stückelberg fields down to the diagonal subgroup consisting of the time shifts,

t 7→ t+ const , (3a)

time-dependent shifts of the spatial coordinates,

xa 7→ xa + fa(t) (3b)

7We start from the simple φ0-shifts to make contact with [5]. Later on we will promote them to a larger

symmetry, see Eq. (14).

5



and SO(3) spatial rotations. A simple Lagrangian that obeys the imposed symmetries and

admits the VEVs (2) has the form8 LS = LS1 + LS2,

LS1 =
1

8µ4
0

(

(∂µφ
0)2 − µ4

0

)2 − κ0
4µ4

0

(

(∂µφ
0)2 − µ4

0

)(

∑

a

P µν∂µφ
a∂νφ

a + 3µ4
)

, (4a)

LS2 = − 1

8µ4

∑

a,b

(

P µν∂µφ
a∂νφ

b + µ4δab
)2

+
κ

8µ4

(

∑

a

P µν∂µφ
a∂νφ

a + 3µ4
)2
, (4b)

where κ0, κ are dimensionless constants and

Pµν = gµν −
∂µφ

0∂νφ
0

gλρ∂λφ0∂ρφ0
, (5)

is the projector on the subspace orthogonal to the gradient of φ0 which ensures invariance

under (1b).

To understand the physical content of the theory, let us consider small fluctuations of the

metric and expand to the quadratic order in hµν ≡ gµν − ηµν . Using general covariance, we

can identify the coordinates with the Stückelberg fields, as in (2). In other words, we work

in the gauge, where the fields φ0, φa do not fluctuate; we call it “unitary gauge”. Then, the

quadratic Lagrangian takes the form,

L(2)
S =

µ4
0

8
h200 −

µ4κ0
4

h00haa −
µ4

8
habhab +

µ4κ

8
h2aa , (6)

where the summation over repeated indices is understood. This is precisely a mass term for

the metric perturbation. In particular, the graviton (the helicity-2 component) acquires the

mass

mg =
µ2

MP
, (7)

where MP is the Planck mass. Note that the term h0ah0a which is missing in (6) compared

to the most general expression [4] is forbidden by the residual symmetry (3b). The quadratic

Lagrangian of the form (6) appears also in bimetric theories [30, 31].

Let us return from the unitary gauge to the covariant Lagrangian (4) which is more

suitable to study the non-linear properties. Importantly, in the case when µ0, µ are much

smaller thanMP we can decouple the metric fluctuations and concentrate on the Stückelberg

fields, as if they were living in flat space-time. We write

φ0 = µ2
0t+ ψ0 , φa = µ2xa + ψa (8)

8This Lagrangian is not the most general one, but it is sufficient for our purposes, as it reproduces all

possible mass terms for the metric which are allowed by the symmetries (1).

6



and obtain

LS =
(ψ̇0)2

2
+
κ0µ

2

µ2
0

ψ̇0∂aψ
a − ∂aψ

b∂aψ
b

4
− (1− κ)

4
(∂aψ

a)2 + Lint

(

∂ψ0

µ2
0

,
∂ψa

µ2

)

, (9)

where the last term stands for the derivative interactions of cubic and higher orders. By

power-counting, the strength of these interactions grows with the increase of energy or mo-

mentum and the theory breaks down at the scale

Λ = min{µ0, µ} . (10)

Comparing with (7) we conclude that the cutoff is bounded from above,

Λ < Λ2 ≡
√

mgMP . (11)

Actually, this conclusion is not related to the specific form of the Lagrangian (4). As discussed

in [5], Λ2 provides an absolute upper bound on the cutoff in a general massive gravity theory

formulated in terms of the metric and Stückelberg fields only9. Thus the theory does not

admit a smooth limit mg → 0.

From the quadratic part of (9) we read off that a linear combination of ψ0 and the

longitudinal part of ψa has degenerate dispersion relation

ω2 = 0 . (12)

This presents a potential danger, as in non-trivial backgrounds the r.h.s. of the dispersion

relation can become negative leading to an instability. In [5] it was suggested to lift the

degeneracy by adding to the Lagrangian quadratic terms with higher derivatives as in the

ghost condensate model [33]. In the next section we will take a different route and embed

the field φ0 into the khronometric model [25].

The rest of the modes in (9) — the transverse part of ψa and the longitudinal component

of ψa linearly independent from ψ0 — obey the equations of the form,

k̄2ψ = 0 , (13)

where k̄ is the absolute value of the three-momentum k̄i. Thus, for any non-zero spatial

momentum these modes must vanish implying that there are no propagating degrees of

freedom associated with ψa. The symmetry (1b) ensures that this property is preserved

upon inclusion of higher-order operators [5] and in curved backgrounds [34]. Therefore the

theories based on the symmetries (1) present a class of well-defined EFTs10.

9The cutoff is even lower, Λ < Λ3 ≡ (m2
gMP )

1/3, if one restricts to the Lorentz invariant theories [20, 32].
10A subtle issue of the proper treatment of the non-propagating modes at the quantum level will be

discussed in Sec. 5.3.
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3 Going beyond Λ2: ingredients

3.1 The field φ0

There are two natural ways to deal with the field φ0 to complete the previous actions to

energies higher than (10). First, as we mentioned above, the degeneracy of the dispersion

relation (12) can be lifted by adding higher derivative terms as in the ghost condensate [33].

This theory is still an effective theory with a cutoff of order µ0, but since this is independent

of the mass of the graviton, this scale can be quite high. Phenomenological bounds set the

constrain µ0 . 10MeV. It was argued in [35] that these bounds can be relaxed by the

non-linear dynamics which may push the upper limit on µ0 to 100GeV. This still remains

much below the Planck scale. The way to raise the cutoff of the theory to (almost) Planckian

was proposed in [36]. It uses the embedding of the ghost condensate into the khronometric

model [25] and requires the introduction of a new degree of freedom — khronon — at a scale

below µ0. One could use this strategy here.

However, it is more economical to use the second option and identify the Stückelberg field

φ0 directly with the khronon, thus keeping only a single degree of freedom in this sector. In

this case the symmetry (1a) is extended to the full reparameterization invariance,

φ0 7→ f 0(φ0) , (14)

for an arbitrary monotonic function f 0. This larger symmetry forbids the terms present in

(4a). Instead, the Lagrangian must be constructed using the unit vector

uµ ≡ ∂µφ
0

√

gλρ∂λφ0∂ρφ0
(15)

invariant under the symmetry (14). The most general Lagrangian with the lowest number

of derivatives, and thus dominant at low energies, reads [25],

Lkh = −M
2
P

2

(

R + β∇µu
ν∇νu

µ + λ(∇µu
µ)2 + αuµuν∇µu

ρ∇νuρ
)

, (16)

where we have also included the standard GR action; α, β, λ are dimensionless coupling

constants. This can be combined with (4b) to give an action of LV massive gravity. Note

that in the unitary gauge11 (2) the Lagrangian (16) gives rise only to terms with derivatives

11Because of the invariance (14) the choice of the constant µ2
0
in the first formula of (2) is now arbitrary

and unrelated to the parameters of the theory.
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of the metric perturbations and thus does not contribute to the mass term for hµν . The

latter reduces to

Lmass = −µ
4

8
habhab +

µ4κ

8
h2aa . (17)

This can be understood as the consequence of the time-reparameterization invariance

t 7→ f 0(t) , (18)

which, being now a residual symmetry in the unitary gauge, forbids any contributions con-

taining h00 without derivatives. This version of massive gravity was considered in [37].

The Lagrangian (16) contains higher derivatives of the field φ0 and one may be worried

that this can lead to pathologies (ghosts or gradient instabilities). In fact, this does not

happen, as the extra derivatives act in the spatial directions. This property becomes explicit

in the gauge where the time coordinate is identified with φ0 as in the first equation of (2).

Note, that this identification still leaves the free choice of the spatial coordinates, so it should

not be confused with the unitary gauge where all coordinates are fixed. We will call this

partial gauge fixing ADM gauge. The action of the khronometric model takes the form,

Skh =
M2

P

2

∫

dt d3x
√
γN

[

(1− β)KijK
ij − (1 + λ)K2 + (3)R + α

(

∂iN

N

)2]

, (19)

where we used the Arnowitt–Deser–Misner (ADM) decomposition for the metric,

ds2 = dt2 − γij(dx
i +N idt)(dxj +N jdt) , (20)

the extrinsic curvature of the constant-time slices

Kij =
1

2N
(γ̇ij −∇iNj −∇jNi) , K = γijKij, (21)

and denoted (3)R the three-dimensional curvature constructed from the metric γij. Apart

from the symmetry (18), this action is invariant under time-dependent spatial diffeomor-

phisms

xi 7→ x̃i(x, t) . (22)

We will refer to the group consisting of the transformations (18) and (22) as foliation-

preserving diffeomorphisms (FDiff). Clearly, the action (19) leads to equations of motion

which are second order in time derivatives. We will work in the ADM gauge from now on.

The choice α = β = λ = 0 corresponds to GR and the restoration of the full diffeomor-

phisms-invariance. However, the limit α, β, λ→ 0 is not smooth. At any non-zero values of

α, β, λ the theory propagates in addition to the helicity-2 gravitons a single helicity-0 mode

9



(khronon). The latter has linear dispersion relation; in the case α, β, λ ≪ 1 (which is the

relevant one for phenomenology) it reads12 [25],

ω2 =
β + λ

α
k2 . (23)

Due to the non-linear interactions of the khronon present in (19) the model has a cutoff

Λkh ∼MP min{
√
α,

√

β,
√
λ} . (24)

Phenomenological considerations put upper bounds on α, β, λ [25, 38, 39] and hence con-

strain the cutoff to be somewhat smaller than the Planck scale,

Λkh . 1015GeV . (25)

Still, this is well above virtually any scale that can appear in the astrophysical or cosmo-

logical context13. Furthermore, it is known how to complete the action (19) beyond Λkh

by embedding it into the Hořava gravity [23, 40]. The latter presents a power-counting

renormalizable theory. However, due to the technical complexity, the question about its

renormalizability in the strict sense and UV behavior still remains open (see Refs. [41, 42]

addressing this issue in restricted settings). In these circumstances a cautious reader may

prefer to take modest attitude and view the khronometric model as an EFT with the cutoff

(24), which is sufficient for the purposes of this work.

Finally, let us mention the following peculiarity of the action (19). As described in [25],

it leads to a certain type of instantaneous interactions mediated by a non-propagating mode.

The latter is similar to the non-propagating modes of massive gravity discussed in Sec. 2.

We will study the instantaneous modes in more detail in Sec. 5.3.

3.2 The fields φa and their coupling to Higgs vectors

Next we consider the triplet of Stückelberg fields invariant under

φa 7→ φa + fa(t) , (26)

which is nothing but the symmetry (1b) in the ADM gauge. We want a Lagrangian that

admits the coordinate-dependent VEVs (2), but at the same time is UV complete past

12This relation gets modified — in particular, the khronon acquires a mass gap — when the action (19) is

coupled to the other sectors needed to reproduce the massive gravity, see Sec. 6 below.
13In the applications unrelated to astrophysics, such as non-relativistic holography or description of solids,

the parameters α, β, λ are a priori constrained only by the stability requirements, that are mild, and the

scale Λkh can be as high as MP .
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the scale µ. This precludes from introducing any self-interaction of the Stückelberg fields

involving the scale µ. Then the simplest option is to choose the Lagrangian to be quadratic

in φa. To respect the symmetry (26), it must depend only on the spatial derivatives of these

fields,

Sφ =

∫

dt d3x
√
γN

[

− 1

2
γij∂iφ

a∂jφ
a

]

. (27)

This does not introduce any new strong coupling scale. However, without any further in-

teractions this Lagrangian is not enough to provide non-zero graviton mass. Though the

configuration φa = Φxa is a solution of the equations following from (27) for any constant Φ,

it introduces non-vanishing energy density and pressure which make the universe expand14.

As will become clear in the Sec. 4, in this case the generated mass will decrease with time

and will asymptotically vanish. Time varying masses can be interesting (see e.g. [34]) but

are not the aim of this paper. To give constant graviton mass, the VEVs in an expanding

universe must grow proportionally to the scale factor, φa ∝ a(t)xa, which is not a solution

of the field equations implied by (19) and (27). We have to add more ingredients.

Consider a triplet of vector fields with purely spatial components V i
a . These transform

as vectors under the diffeomorphisms preserving the foliation structure of the ADM gauge,

which act on the i-index. Besides, they form the fundamental representation of a global

internal SO(3) acting on the index a. We do not assume any gauge invariance associated to

these vectors. To avoid strong coupling, we focus on Lagrangians which are renormalizable in

flat space-time. By the standard power-counting, they can contain the derivatives of V i
a only

quadratically and up to quartic terms in the potential. The generic Lagrangian satisfying

these properties and invariant under FDiff × SO(3) reads

SV =

∫

dtd3x
√
γN

[

1

2N2
(V̇ i

a −N j∇jV
i
a + V j

a∇jN
i)2 − c21

2
(∇iV

j
a )

2 − c22
2
(∇iV

i
a )

2

− κ1

4
(V i

aV
j
b γij −M2

V δab)
2 − κ2

4
(V i

aV
j
a γij − 3M2

V )
2

]

,

(28)

where c1, c2, κ1, κ2 are dimensionless couplings and we have chosen the overall constant

in the potential to have vanishing vacuum energy (we will shortly introduce a cosmological

constant term in a different part of the action). For clarity, we have omitted non-minimal

interactions with the metric, such as (3)RijV
i
aV

j
a ,

(3)RV i
aV

j
a γij, which vanish in Minkowski

space-time. These terms would make the analysis more cumbersome without changing it

qualitatively.

14These density and pressure cannot be canceled by any bare cosmological constant.
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When M2
V > 0 the vectors develop VEVs,

V i
a =MV δ

i
a , (29)

which break the product SO(3)×SO(3) of spatial and internal rotations down to the diagonal

subgroup, cf. [43, 44, 45, 46]. Below the scale ∼ √
κMV the dynamics is described by the

σ-model corresponding to this pattern of symmetry breaking with the coset space defined

by

V i
aV

j
b γij =M2

V δab . (30)

As the vector VEVs introduce an additional source of Lorentz symmetry breaking, it is

natural to expect that the phenomenological constraint on the scale MV will be similar to

that of Λkh, Eq. (25). Notice, however, thatMV is not related to the cutoff and can be much

lower than Λkh without jeopardizing the validity of the theory.

Finally, we complete our Lagrangian with a term mixing the vectors and the Stückelberg

fields,

SV φ =

∫

dt d3x
√
γN

[

mAV
i
a∂iφ

a − V0

]

. (31)

This mixing operator has dimension 3 and thus is just a relevant deformation of the previous

action. It does not affect the UV properties of the theory, in particular, it does not introduce

any new UV cutoff, and the parameter mA can be arbitrarily small without encountering

any singularity. We are going to see that in IR this coupling leads to the generation of the

VEVs (2) with µ2 = mAMV and the graviton mass (7). The last term in (31) represents a

cosmological constant and can be tuned to cancel the negative vacuum energy that would

be generated otherwise (see below). Note that it is technically natural to take the parameter

mA to be much smaller than the other scales of the theory as it is protected from large

quantum corrections by the discrete symmetry15 φa 7→ −φa. In what follows we will assume

the hierarchy of scales,

MP & Λkh &MV ≫ mA . (32)

It is worth stressing that this hierarchy is not required by the internal consistency of the

theory. For example, one could consider instead mA ∼ MV . However, assuming (32) makes

the physical picture particularly transparent.

15A similar argument is used to protect the small coupling between a time-like vector field and an ordinary

massless scalar in the technically natural dark energy model of [47].
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4 Generation of VEVs in expanding backgrounds

Let us now show that the construction of the previous section gives rise to the VEVs for the

fields φa of the desired form. We assume a homogeneous and isotropic Ansatz with spatially

flat metric allowing for a general cosmological evolution,

N(t) , γij = a2(t)δij , V i
a =

MV

a(t)
δia , φa = Φ(t)xa . (33)

Substituting this Ansatz into the equations of motion obtained from putting together the

actions (19), (27), (28) and (31) we obtain,16

3M2
cH

2 − 3Φ2

2a(t)2
+

3µ2Φ

a(t)
− V0 = ρmat , (34a)

2M2
c Ḣ + 3M2

cH
2 − Φ2

2a(t)2
+

2µ2Φ

a(t)
− V0 = −pmat , (34b)

where

µ2 = mAMV (35)

and

M2
c ≡M2

P

(

1 +
β + 3λ

2

)

− M2
V

2
, (36)

is the “cosmological Planck mass”. In Eqs. (34) we fixed the gauge N = 1 and assumed that

the universe is filled with matter with energy density ρmat and pressure pmat. Taking the

derivative of (34a) and using the energy conservation in the matter sector,

ρ̇mat + 3H(ρmat + pmat) = 0 , (37)

we obtain the following equation for Φ,

Φ̇(Φ− µ2a(t)) = 0 . (38)

This has two branches of solutions. On the branch Φ = const the VEVs of the Stückelberg

fields actually disappear with time. Indeed, the invariant quantity γij∂iφ
a∂jφ

a = 3Φ2/a(t)2

decreases as the universe expands. Besides, we will see shortly that this branch is unstable

at late times whenever µ 6= 0. The other branch is

Φ = µ2a(t) . (39)

16The simplest way to derive these equations is to substitute the Ansatz (33) into the action and perform

variation with respect to the free functions N(t) and a(t) afterwards. Note, however, that it would be

incorrect to vary this action with respect to Φ as the corresponding variation δφa = δΦxa would not be

bounded at spatial infinity.
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It corresponds to constant strength of the Stückelberg fields’ gradients and is stable. In this

latter case the cosmological equations (34) reduce to the form,

3M2
cH

2 = ρmat + V0 −
3µ4

2
, (40a)

2M2
c Ḣ + 3M2

cH
2 = −pmat + V0 −

3µ4

2
. (40b)

We see that in this phase µ produces a negative shift of the cosmological constant. In what

follows we will assume that this contribution is canceled by the bare cosmological constant,

V0 =
3µ4

2
, (41)

so that the Minkowski space-time is a solution in the absence of matter. This is just the

usual fine-tuning of the cosmological constant.

5 Hierarchy of EFTs and the graviton mass

5.1 Phases with massive gravitons

To understand the effect of the mixing term (31) on the spectrum of the theory let us study

small perturbations. As before, we work in the ADM gauge and first focus on the phase

with a vacuum from the branch of solutions (39). To simplify the analysis, we freeze out the

perturbations in the khronometric sector by sending MP and Λkh to infinity while keeping

MV and mA finite. For the perturbations of the vectors and the Stückelberg fields we write,

V i
a =MV δ

i
a + via , φa = µ2xa + ψa . (42)

If we are interested in energies below
√
κMV we can adopt the σ-model description. Inserting

(42) in the constraint equation (30) yields,

via = Ai
a −

Aj
iA

j
a

2MV
+O(A3) , (43)

where Ai
a is an antisymmetric matrix, Ai

a + Aa
i = 0. Substituting this into the Lagrangian

we obtain,

Lφ + LV φ = −(∂iψ
a)2

2
− m2

A

2
Aj

aA
j
a +mAA

i
a∂iψ

a . (44)

The second term gives mass of order mA to the antisymmetric perturbations Ai
a. Below this

scale the perturbations of the vectors can be integrated out completely. From (44) we find

Ai
a =

1

2mA
(∂iψ

a − ∂aψ
i) , (45)
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which substituted back into (44) gives (up to a total derivative)

Lφ + LV φ = −∂iψ
a∂iψ

a

4
− (∂aψ

a)2

4
. (46)

This coincides with the third and fourth terms (with κ = 0) of the quadratic Stückelberg

Lagrangian (9) arising in massive gravity. The “massless” fields ψa can be interpreted as

the Goldstone bosons for the broken symmetries FDiff × SO(3) → SO(3)diag. Recall that

since we are dealing with LV theories, the counting and properties of such fields are different

from the Lorentz invariant case, see e.g. [48, 49, 50]. In the same spirit, the vector fields

Ai
a that have been integrated out can be interpreted as the “Higgs” fields regularising the

bad behaviour of the Goldstone sector at energies above mA. Given the previous results, we

expect that the graviton in this model will acquire the mass (7). For the caseMP ≫MV the

vector and graviton masses are well separated and at energies mA ≫ E ≫ mg the dynamics

is well described by the EFT for the Stückelberg fields. The hierarchy of various scales in

the theory and the corresponding EFT descriptions are summarized in Fig. 1.

Alternatively, we can work in the unitary gauge and fix ψa = 0 at the expense of allowing

for the fluctuations of the metric

N = 1 + n , N i , γij = δij + hij . (47)

The relevant part of the Lagrangian takes the form,

Lφ + LV φ = µ4

[

− γaa

2
+
V a
a

MV
− 3

2

]

. (48)

The solution of the constraint (30) now reads,

via = Ai
a −

MV

2
hai −

Aj
iA

j
a

2MV

− Aj
ihja
4

− Aj
ahji
4

+
3MV

8
hjihja +O(A3, h3) . (49)

Substituting this formula and the expression

γij = δij − hij + hikhkj +O(h3) (50)

into (48) we obtain at the quadratic level,

Lφ + LV φ = −m
2
A

2
Ai

aA
i
a −

µ4

8
hiahia . (51)

The first term again gives mass to the antisymmetric perturbations, while the second explic-

itly provides the mass term for helicity-2 graviton. As we are going to see in Sec. 6, it also
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Figure 1: Relevant energy scales in the theory and the number of propagating degrees of

freedom in each sector at different scales. Rectangles represent the energy scales at which a

sector gets UV completed (we do not make any assumptions about the UV completion of the

khronon and spin-2 sectors, but Hořava gravity [23] would be a natural option). Rhomboids

mark the scales below which a sector loses all its propagating degrees of freedom. The

khronon mass mkh will be derived in Sec. 6 (see Eq. (83)). Note that nothing happens at

the scale µ ≡ Λ2 which set the cutoff in the original EFT formulation of massive gravity.

gives mass to the khronon (see Eq. (83)). Note that we obtain only one of the two structures

for the metric mass term allowed by the symmetries, cf. (17). This a consequence of the

assumption MV ≫ mA which implies that the symmetric part of the vector fluctuations is

much heavier (with the mass of order
√
κMV ) than the antisymmetric part. This renders

the parameter κ in (17) suppressed by the ratio m2
A/κM

2
V which we neglected in the above

analysis. Were we to make a different assumption MV ∼ mA, we would obtain both terms

of (17) with comparable coefficients. Finally, if instead of the khronometric setting one used

the ghost condensate for the φ0-sector, which in the ADM gauge amounts to promoting all

couplings in the action to functions of the lapse N [25], one would be able to reproduce also

the other terms in the general Lagrangian (6) of the massive gravity discussed in Sec. 2.

5.2 Other phases?

In the previous section we focused on the branch (39) of the background solutions. However,

as noticed before, the equation (38) also admits a second branch

Φ̇ = 0 . (52)
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On this branch the effect of the Stückelberg gradients (if non-zero initially) decays with time

in an expanding universe. For completeness we now analyze the small perturbations around

this branch. We write,

φa = Φxa + ψa , (53)

with Φ = const and take the Friedmann–Robertson–Walker (FRW) form for the metric. We

again work in the decoupling limit MP ,Λkh → ∞, so that the metric fluctuations are frozen.

Below the scale
√
κMV the fluctuations of the vectors are restricted to the antisymmetric

part Ai
a. Expanding the relevant part of the action to quadratic order we obtain,

SV + Sφ + SV φ =
∫

dt d3x

[

a3

2
(Ȧi

a)
2 − a

2

(

c21(∂iA
j
a)

2 + c22(∂iA
i
a)

2 + (∂iψ
a)2

)

− a2mAΦ

2MV

(Ai
a)

2 + a2mAA
i
a∂iψ

a

]

.

(54)

Restricting to the modes with frequencies much higher than the Hubble rate, we can neglect

the terms with derivatives of the scale factor in the equations of motion. This yields,

− Äi
a +

c21
a2
∂2jA

i
a +

c22
a2
∂j∂[iA

j
a] −

mAΦ

MV a
Ai

a +
mA

a
∂[iψ

a] = 0 , (55a)

∂2i ψ
a − amA∂iA

i
a = 0 , (55b)

where the square brackets stand for the antisymmetrization of indices. Let us perform the

Fourier transform and concentrate on the transverse modes

ψa = e(α)a ψ(α) , Ai
a =

k̄ie
(α)
a − k̄ae

(α)
i

k̄
A(α) , (56)

where e
(α)
i , α = 1, 2, are unit polarization vectors orthogonal to the 3-momentum k̄i. Sub-

stituting this into Eqs. (55) and eliminating ψ(α) we obtain,

[

ω2 −
(

c21 +
c22
2

)

k̄2

a2
− mA

MV

(

Φ

a
− µ2

2

)]

A(α) = 0 , (57)

where we used µ2 defined in (35). We see that whenever Φ < µ2a/2 the mode is tachyonic. In

particular, the trivial configuration of the Stückelberg fields φa = 0 is unstable. Furthermore,

in an expanding universe µ2a/2 will exceed any constant value of Φ and the instability will

set in at late times. Thus we conclude that in an expanding universe this branch is unstable

and we do not consider it any more in this paper.
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5.3 Quantum treatment of instantaneous modes

We have argued above that the constructed model is a valid quantum theory up to the scale

(24). We have based this claim on the scaling argument borrowed from relativistic theories,

so it is worth taking a closer look at it to check if it is not spoiled by Lorentz violation.

To get a flavor of the potential problems consider the instantaneous modes φa. Let us first

switch off their mixing with the vectors by setting mA = 0 and perform their perturbative

quantization using the path integral formalism. From (27) one reads off the propagator,

p
φa φb = − i

p̄2
δab, (58)

where we denoted by the bar the spatial part of a four-vector pµ = (p0, p̄i). This propagator

does not depend on the frequency p0. The fields φ
a couple to the metric and contribute into

the effective action for the perturbations hij . For example, the one-loop contribution into

the quadratic part is

p+ q

q

hij hkl =
1

4
hij(p)hkl(−p)

∫

dq0
2π

∫

d3q̄

(2π)3
q̄iq̄k(q̄ + p̄)j(q̄ + p̄)l

q̄2(q̄ + p̄)2
. (59)

This expression contains two types of divergences. The integral over the spatial momentum

can be regulated by subtracting a finite number of local counterterms. However, the whole

contribution will still be infinite because of the overall divergent integral over q0. Note that

this divergence has non-polynomial dependence on the external spatial momentum p̄i and

therefore is non-local in space. On the other hand, it does not depend on p0 and hence is local

in time. Thus it can be regulated by introducing a spatially non-local counterterm in the

bare action. Though unusual, such counterterms do not spoil the validity of the theory. In

particular, the diagram (59) does not contain any imaginary part and thus the corresponding

counterterm does not violate unitarity.

One may object that allowing for non-locality, even restricted to only spatial dimensions,

introduces an infinite freedom in the choice of the bare action. However, we now argue that

there is a natural choice of counterterms for the diagrams where, like in (59), a divergent

integral over the loop frequency completely factors out of a frequency-independent part.

This consists in canceling these diagrams altogether. In the present case this would mean

that all loop diagrams containing the instantaneous fields φa must be put to zero. Two

arguments support this prescription. First, the integrals over frequency diverge linearly and
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thus vanish identically in dimensional regularization. Second, we can appeal to the canonical

quantization. In this formalism, the fields φa are subject to second-class constraints which

force them to vanish. Indeed, as the action does not depend on the time-derivative of these

fields, the canonical momenta conjugate to them vanish trivially, while the fields themselves

obey the equation,

∇i(N∇iφa) = 0 . (60)

Supplemented by the vanishing boundary conditions at spatial infinity it forces17 φa = 0.

In the canonical approach such constrained degrees of freedom must be eliminated from the

start, even prior to quantization, implying that they completely drop off from the quantum

theory18.

There is a way to implement the above prescription within the path integral approach

without introducing non-local counterterms from the start. One notices that the overall

result of integration over φa is a factor

[

det(iγij∂i∂j)
]−3/2

(61)

in the partition function. This can be canceled by adding to the system three real bosonic

fields φ̃a and three complex fermionic fields ηa with the action,

Sφ̃η =

∫

dt d3x
√
γN

[

− 1

2
γij∂iφ̃

a∂jφ̃
a − γij∂iη

a∂j η̄
a

]

. (62)

Integrating out these “remover” fields multiplies the partition function by,

[

det(iγij∂i∂j)
]3

[

det(iγij∂i∂j)
]3/2

=
[

det(iγij∂i∂j)
]3/2

, (63)

which precisely compensates (61). The expression (63) corresponds to the spatially non-local

counterterms discussed above.

Turning on mA makes the situation less trivial. However, given that the mixing (31) is

a relevant deformation it clearly cannot spoil the UV consistency of the theory. A compre-

hensive analysis of the quantum properties of the theory introduced in Sec. 3 is beyond the

17Multiplying (60) by φa and integrating over the three-dimensional space we obtain,

0 =

∫

d3xφa∇i(N∇iφa) = −
∫

d3xN∇iφ
a∇iφa .

As the lapse function is non-zero everywhere, one concludes that ∇iφ
a = 0 and hence φa vanishes due to

the boundary conditions.
18There is no modification of the canonical structure for the remaining fields as in the case at hand Dirac

and Poisson brackets are identical.
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scope of this paper. Instead, we illustrate the expected behavior in a toy model containing

a scalar and a vector without any VEVs in an external non-dynamical metric (we assume

Ni = 0),

S =

∫

dtd3x
√
γN

[

γijV̇
iV̇ j

2N2
− γjk∇iV

j∇iV k

2
− 1

2
γij∂iφ∂jφ+mAV

i∂iφ−
M2

V

2
γijV

iV j

]

. (64)

For simplicity, we have retained only one of the gradient terms for the vector putting the

coefficient in front of it to c21 = 1. As before, there are two ways to proceed. In the canonical

approach we have to solve for the field φ before quantization,

φ =
mA(∇iV

i + aiV
i)

γkl∇k∇l + al∇l
, (65)

where

ai ≡ N−1∂iN . (66)

Substituting this into (64) we obtain a non-local action which depends only on V i,

S =

∫

dt d3x
√
γN

[

γijV̇
iV̇ j

2N2
− γjk∇iV

j∇iV k

2
− M2

V γijV
iV j

2

− (∇iV
i + aiV

i)
m2

A

2(γkl∇k∇l + ak∇k)
(∇jV

j + ajV
j)

]

.

(67)

The Dirac bracket remains identical to the canonical commutator. One observes that the

limit mA → 0 is smooth and corresponds to restoration of locality. As non-locality is purely

spatial, it does not, in principle, present an obstruction to canonical quantization.

However, in practice it is very inconvenient to work with the non-local action (67). It is

more efficient to use the path integral approach and retain φ as a quantum field. Assuming

that the metric is close to flat, we obtain from (64) the propagators for φ and V i,

p
φ φ = − i

p̄2
+

im2
A

p̄2(p20 − p̄2 −M2
V +m2

A)
, (68a)

p
φ V i =

−mAp̄i
p̄2(p20 − p̄2 −M2

V +m2
A)

, (68b)

p
V i V j =

(

δij −
p̄ip̄j
p̄2

)

i

p̄20 − p̄2 −M2
V

+
p̄ip̄j
p̄2

i

p20 − p̄2 −M2
V +m2

A

. (68c)

To avoid cluttered formulas, we will set MV = mA in what follows. This does not affect

the UV properties of the theory. Consider again the diagram (59). Now it contains three

contributions. The first one comes from the product of the first terms in the propagator
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(68a) and, as before, is eliminated by adding to the path integral the fields φ̃, η with the

action (62). Besides, there are contributions coming from the cross-product of the two terms

in (68a),

− m2
A

2
hij(p)hkl(−p)

∫

dq0d
3q̄

(2π)4
q̄iq̄k(q + p̄)j(q̄ + p̄)l
q̄2(q20 − q̄2)(q̄ + p̄)2

, (69)

as well as from the square of the second term,

m4
A

4
hij(p)hkl(−p)

∫

dq0d
3q̄

(2π)4
q̄iq̄k(q̄ + p̄)j(q̄ + p̄)l

q̄2(q20 − q̄2)(q̄ + p̄)2((q0 + p0)2 − (q̄ + p̄)2)
. (70)

The divergences in these expressions can be removed by genuinely local counterterms. Con-

sider, for example, Eq. (69). Introducing Feynman parameters we obtain,
∫

dq0d
3q̄

(2π)4
q̄iq̄k(q̄ + p̄)j(q̄ + p̄)l
q̄2(q20 − q̄2)(q + p)2

= 2

∫ 1

0

dx1√
x1

∫ 1−x1

0

dx2

∫

dq′0d
3q̄

(2π)4
q̄iq̄k(q̄ + p̄)j(q̄ + p̄)l

(q′0
2 − q̄2 − 2q̄p̄x2 − p̄2x2)3

,

(71)

where in the last integral we rescaled the loop frequency. The integral over the four-

momentum on the r.h.s. has the standard form and its divergent part is a polynomial

in momenta p̄. It is straightforward to check that the integration over Feynman parameters

does not contain any additional divergences. Thus, we conclude that the overall divergence

of (71) is local both in time and space. Similar reasoning applies to (70).

One may worry that a divergence in the Feynman parameters can appear in the diagrams

that contain the loop frequency in the numerator of the integrand, because then more powers

of the Feynman parameters descend into the denominator. Let us show that this does not

happen. Consider the diagram arising from the interactions given by the first and the third

terms in (64),
p+ q

q

hij hkl =
m2

A

2
hij(p)h

kl(−p)
∫

dq0d
3q̄

(2π)4
q0(q0 + p0)q̄iq̄k(q̄ + p̄)j(q̄ + p̄)l

q̄2(q20−q̄2)(q̄+p̄)2((q0+p0)2−(q̄+p̄)2)
.

(72)

Passing to the Feynman parameterization we obtain,
∫

dq0d
3q̄

(2π)4
q0(q0 + p0)q̄iq̄k(q̄ + p̄)j(q̄ + p̄)l

q̄2(q20 − q̄2)(q̄ + p̄)2((q0 + p0)2 − (q̄ + p̄)2)

= 6

∫ 1

0

dx1

∫ 1−x1

0

dx2

∫ 1−x1−x2

0

dx3

×
∫

dq0d
3q̄

(2π)4
q0(q0 + p0)q̄iq̄k(q̄ + p̄)j(q̄ + p̄)l

[

(x1 + x2)q20 + 2q0p0x2 + p20x2 − q̄2 − 2q̄p̄(x2 + x3)− p̄2(x2 + x3)
]4 .

(73)
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Figure 2: Generic diagram with instantaneous modes and gravitons propagating in the loops.

Summing it with the diagrams of the same topology where the different subsets of the φ-loops

are replaced by those of φ̃ and η will remove all non-local divergences.

Upon rescaling of the loop frequency, q0 7→ q′0 = q0/
√
x1 + x2, the most singular contribution

in the integral over Feynman parameters is proportional to (x1 + x2)
−3/2 which is again

integrable. At the heuristic level this can be understood as follows. The divergences in

the integrals over Feynman parameters are usually associated to the infrared (or collinear)

divergences, which are absent in our case because the original expressions (69) and (72) are

IR safe.

By extending the above reasoning to other diagrams in the model (64) the reader will

easily convince herself that the only class of divergences that require (spatially) non-local

counterterms are those where all propagators in a given loop are equated to the first term

in (68a). These divergences are independent of mA and are exactly canceled by the remover

fields φ̃, η with the action (62). Furthermore, this cancellation persists upon making the

metric hij dynamical and allowing it to propagate in the loops. Thus, it is natural to

conjecture that no matter how complicated a diagram is (see an example in Fig. 2), it will

require only local counterterms after addition of similar diagrams with the fields φ̃ and η.

So far we have discussed only the instantaneous modes associated with the Stückelberg

fields φa of massive gravity. The dynamics of these fields is relatively simple: they enter

in the UV action (27), (31) quadratically and do not contain any propagating degrees of

freedom. This allowed us to eliminate all unusual non-local divergences appearing due to

these fields by adding the “remover” sector φ̃a, ηa with the simple action (62). However,

as pointed out in [25], another source of instantaneous interactions is the khronon field
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φ0. Here the situation appears to be more complicated: the khronon describes, besides the

instantaneous mode, a genuine propagating degree of freedom and, furthermore, enters into

the action non-linearly. This produces difficulties with the quantization which are intrinsic

of Hořava (or khronometric) proposal. We plan to address them elsewhere. For now, we just

point out that the discussion of this section suggests that a consistent quantization of the

theory exists. Indeed, in the decoupling limit the propagator of the khronon has the form

similar to the second term in (68a) [25]. We have seen that the divergences associated with

such propagators can be removed by local counterterms.

6 Modification of the Newton’s law

Having addressed the theoretical consistency of the model, we now study its immediate phe-

nomenological consequences. Let us consider the gravitational field of a point mass M⊙ at a

fixed position xi = 0. We will focus on the weak field (linear) regime and assume the minimal

coupling of the metric to the matter sector; the latter is justified by the phenomenological

constraints on deviations from the Lorentz invariance [51]. There are two important changes

with respect to the massive gravity phase (3) described in [5, 52]. First, at any energy the

role of the Stückelberg field φ0 is played by the khronon. Second, the theory is defined also

above the energy Λ2, which can have experimental consequences at short distances relevant

e.g. in the early universe or in very dense stars. We will only consider the large distance

modification in this section.

We work in the unitary gauge19, and restrict the vector fields to the coset space (30).

We consider the scalar part of the perturbations. The expansion around the Minkowski

background to linear order reads,

N = 1 + ϕ , (74a)

Ni = ∂iB , (74b)

γij = δij − 2

(

δij −
∂i∂j
∆

)

Ψ− 2
∂i∂j
∆

E , (74c)

V i
a =MV δ

i
a + ǫiaj∂jC +MV

(

δia −
∂i∂a
∆

)

Ψ+MV
∂i∂a
∆

E , (74d)

where we have used the linear part of Eq. (49). Using the expression (51) and expanding

19Recall that it is consistent to first fix the unitary gauge and take the variation of the action afterwards [53].
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the khronometric and vector Lagrangians (19) and (28) to quadratic order one obtains20,

L(2)
scal =

M2
P

2

[

(1− β)(−2Ψ̇2 + 4ΨË + 4Ψ∆Ḃ)− (λ+ β)(2Ψ̇ + Ė +∆B)2

− 2Ψ∆Ψ+ 4ϕ∆Ψ+ α(∂iϕ)
2

]

+
M2

V

2

(

2Ψ̇2 + (Ė +∆B)2 − 4(c21 + c22)(∂iΨ)2
)

+ (∂iĊ)
2 − c21(∂i∂kC)

2 − µ4Ψ2 − µ4

2
E2 −m2

A(∂iC)
2 − ϕM⊙δ(x) .

(75)

We see that the pseudoscalar mode C completely decouples and has the dispersion relation

ω2 = c21k̄
2 +m2

A . (76)

For the other components we obtain the set of equations,

2M2
P∆Ψ− αM2

P∆ϕ−M⊙δ(x) = 0 , (77a)

2M2
P (1 + λ)Ψ̇ +

[

M2
P (λ+ β)−M2

V

]

(Ė +∆B) = 0 , (77b)
[

M2
P (1 + β + 2λ)−M2

V

]

Ψ̈ +M2
P (1 + λ)(Ë +∆Ḃ)

−
[

M2
P − 2M2

V (c
2
1 + c22)

]

∆Ψ− µ4Ψ+M2
P∆ϕ = 0 , (77c)

2M2
P (1 + λ)Ψ̈ +

[

M2
P (λ+ β)−M2

V

]

(Ë +∆Ḃ)− µ4E = 0 . (77d)

Combining the second and fourth equations we find

E = 0 , ∆B = − 2M2
P (1 + λ)

M2
P (λ+ β)−M2

V

Ψ̇ . (78)

Substituting this into Eq. (77c) and using (77a) to express ϕ we find the equation for the

single variable Ψ,

− αM2
P

M2
P (2 + 3λ− β)−M2

V

M2
P (λ+ β)−M2

V

Ψ̈ + 2M2
P

(

1− α

2

)

∆Ψ− µ4αΨ =M⊙δ
(3)(x) , (79)

where we have assumed α, β, λ,MV /MP ≪ 1 and kept only up to the first subleading order

in these parameters.

Let us momentarily put the source to zero, M⊙ = 0. Then (79) reduces to the wave

equation for the helicity-0 graviton mode — the khronon. To the leading order, its dispersion

relation reads,

ω2 = k̄2
(

λ+ β

α
− M2

V

αM2
P

)

+
µ4

2M2
P

(

λ+ β − M2
V

M2
P

)

. (80)

20We remind that µ is defined in (35).
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One makes two observations. First, the velocity of the khronon,

ckh =

√

λ+ β

α
− M2

V

αM2
P

, (81)

gets renormalized compared to the pure khronometric theory (see Eq. (23)) due to the VEVs

of the vector fields. The requirement that the velocity square remains positive puts an upper

bound,

MV < MP

√

λ+ β . (82)

This condition is automatically satisfied within our assumptions (32). Second, the khronon

acquires a mass gap

mkh =
µ2

MP

√

λ+ β

2
− M2

V

2M2
P

, (83)

which is parametrically smaller than the mass of the graviton (7). This is in striking contrast

to the case of [5] where the Stückelberg field φ0 remains massless. It is worth stressing that

the appearance of the gap (83) is an IR phenomenon and depends only on the properties of

the Stückelberg sector φ0, φa at energies below mA. Thus one expects it to be a universal

property of massive gravities where this sector obeys the symmetries (1b), (14).

Next, we restore the source in (79) and focus on static configurations. We find,

Ψ = −GNM⊙

r
e−mkhr/ckh , (84)

where we have introduced the Newton’s constant,

GN ≡ 1

8πM2
P (1− α/2)

. (85)

Clearly, the gravitational field has a Yukawa-type behavior. Finally, from (77a) we obtain

the Newton’s potential,

ϕ = −GNM⊙

r

[

1− 2

α

(

1− e−mkhr/ckh
)

]

. (86)

This potential is plotted in Fig. 3. One observes that it markedly deviates from the Newto-

nian potential of general relativity. The most striking feature is that the gravitational force

becomes repulsive at distances r > 1/mg. At large distances the potential goes to zero. This

is different from the case of massive gravities with gapless field φ0 [5], where the gravitational

potential generically presents linear growth with distance21 [52, 34]. Note also that there
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Figure 3: The shape of the Newton potential in the massive gravity model of this paper.

The gravitational force becomes repulsive at distances larger than the inverse graviton mass.

is no van Dam–Veltman–Zakharov (vDVZ) discontinuity [56, 57]: in the limit µ → 0 the

potentials ϕ, Ψ reduce to their GR expressions.

To understand the behavior of the Newton potential in more detail, we expand the

exponent at r ≪ ckhm
−1
kh = (

√
αmg)

−1. At these distances the khronon mass is irrelevant

and one expects the potential to coincide with the results existing in the literature. We

obtain,

ϕ = GNM⊙

[

− 1

r
+

√

2

α
mg −

m2
gr

2
+ . . .

]

, (87)

where dots stand for the terms that are suppressed by the powers of the combination
√
αmgr.

The second term in brackets gives a constant shift of the Newton potential which drops off

from the observables involving only distances r . 1/mg. The third term gives precisely

the linear contribution discussed in [52, 34]. Note that for our model this contribution is

repulsive. The potential reaches a maximum at r =
√
2/mg where

ϕmax =
√

2/αGNM⊙mg .

For the validity of the linearized approximation ϕmax must be much smaller than one.

This translates into the condition that the graviton mass must be smaller than the in-

verse Schwarzschild radius of the source multiplied by
√
α. Unless α is extremely small, this

condition is not very restrictive.

21This growth may be cut by non-linearities of the model [5, 54, 55] or by non-stationary evolution of the

background [34]. Also, it is absent if the coefficients in the mass term (6) satisfy certain relations [5, 52].
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Stronger phenomenological constraints come from the requirement that the gravitational

field of localized sources should not significantly deviate from the standard form at astrophys-

ical scales. The Solar System tests put a limit on the difference between the two gravitational

potentials ϕ and Ψ. In the post-Newtonian framework this is traditionally parameterized

by the ratio γ ≡ Ψ/ϕ and the current constraint (measured at the orbit of Saturn by the

Cassini satellite) reads [58],

γ − 1 = (2.1± 2.3)× 10−5 . (88)

From the expressions22 (84), (87) we obtain the formula for γ in our model at distances

shorter than inverse khronon mass,

γ = 1− (mgr)
2

2
. (89)

This gives an upper bound mg < 4 × 10−17cm−1 ∼ 120 pc−1. A tighter limit comes from

the gravitational field of galaxies. The requirement that it matches the standard expression

implies

mg . (1 Mpc)−1 . (90)

It is likely that yet stronger bounds can be obtained from the large scale structure and the

cosmic microwave background (CMB). We leave this analysis for future.

It would be also interesting to explore if the gravitational repulsion found above can be

active at the cosmological scales and lead to accelerated expansion of the universe. Note

that this mechanism of acceleration would rely crucially on the presence of inhomogeneities,

as the homogeneous FRW Ansatz does not exhibit any self-accelerated behavior (see Sec. 4).

Before closing this section, let us mention that a complementary way to constrain the

graviton mass is by looking directly at the modifications in the helicity-2 sector. These

have consequences for radiation and propagation of gravity waves [52, 59, 60]. Having a

more complete theory allows to put these studies on the firm ground in the situations with

characteristic scales smaller than Λ−1
2 , such as inflation and reheating.

7 Summary and discussion

In this paper we have proposed an embedding of Lorentz violating massive gravity above

the scale Λ2 ≡
√

mgMP . The proposed theory has a high cutoff scale only a few orders

of magnitude below the Planck mass and independent of the mass of the graviton. At

22We subtract the constant piece from (87).
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high energies the theory possesses a large symmetry FDiff × SO(3) which is spontaneously

broken at lower energy to a diagonal global SO(3) subgroup23. This pattern of symmetry

breaking is realized by a triplet of space-like vector fields which develop non-zero VEVs

and play the role of the “Higgs” fields. A crucial technical role is played by a quadratic

mixing between the vectors and the Stückelberg fields φa of massive gravity. Once the

vectors acquire VEVs, this mixing forces the Stückelbergs to develop coordinate-dependent

profiles, which eventually translates into the graviton mass. This means that no non-linear

interactions in the Stückelberg sector are required to do this job and one can restrict to

purely quadratic action for the fields φa, thus eliminating any strong coupling from this

sector. This mechanism is reminiscent of the proposal for the (partial) UV completion of

the ghost condensate model [47, 36] where a mixing between a time-like vector acquiring a

VEV and a massless scalar forces the latter to evolve in time.

The graviton mass in the model is proportional to the product of the vector VEVs and

the coefficient in front of the vector-Stückelberg mixing. Thus, it vanishes both if the vector

VEVs disappear (in the unbroken phase) or if the mixing is switched off. The action stays

regular in the limit of vanishing mass and therefore one expects all observable quantities,

with the quantum corrections included, to behave smoothly in this limit. In this sense our

mechanism is analogous to the Higgs mechanism of gauge theories. It is worth stressing that

in our model the mixing between the vector and Stückelberg fields is protected by a discrete

symmetry φa 7→ −φa and thus a small coefficient in front of it is technically natural. This

implies that the graviton mass is stable under quantum corrections.

We analyzed the structure of the theory at different energies and explicitly verified the

expectation that new degrees of freedom, besides those of pure massive gravity, must exist

below the scale Λ2. Indeed, we found that certain components of the vector fields propagate

at these energies. These degrees of freedom have a mass gap which is parametrically smaller

than Λ2, but still bigger than mg. It would be interesting to work out the consequences of

these new light degrees of freedom for phenomenology.

We also found that the helicity-0 component of the graviton, which in our model is

identified with the khronon of the khronometric model, acquires a mass parametrically lower

thanmg. This has important implications for the gravitational potentials of localized sources:

unlike previous models of LV massive gravity, in our case the potentials fall of exponentially

at large distances. Remarkably, the shape of the Newton potential is not monotonic. It

grows from negative values at short distances, changes sign, reaches a positive maximum at

r =
√
2m−1

g and then decreases towards r → ∞. This implies that the gravitational force

23Notice that Lorentz invariance is broken explicitly all the way up to the cutoff.
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becomes repulsive at r >
√
2m−1

g . This property may lead to a rich phenomenology which

we leave for future studies. An interesting question is whether the gravitational repulsion

between the inhomogeneities present in the universe can provide the accelerated expansion

at recent epoch, despite the fact that for the strictly homogeneous Ansatz our model does

not exhibit any self-acceleration.

A subtle theoretical aspect of our model, inherited from the effective theory of LV mas-

sive gravity, is the presence of instantaneous interactions. We have addressed the issue of

quantization of the instantaneous modes and argued that it can be performed consistently.

We also pointed out that in the canonical formalism the instantaneous modes must be inter-

preted as a certain type of non-locality along the spatial dimensions. To make the discussion

concise, we focused on simplified toy models. A more comprehensive study of this topic is

definitely required owing to its importance for LV proposals for quantum gravity [23, 25].

Another open question left for future research is to understand how the strong coupling of

LV massive gravity manifests itself at the level of Feynman diagrams and how it is canceled

by the new degrees of freedom appearing in our model (see [32, 61] for related works in the

Lorentz invariant context). This may shed light on possible generalizations of the mechanism

proposed in this paper to other IR modifications of gravity, such as multi-metric theories

and the Lorentz invariant setup of [7]. In particular, it would be interesting to prove at the

diagrammatic level the (im)possibility of a Lorentz invariant Wilsonian UV completion of

the latter setup.
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