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1 Introduction

In this paper we extend our previous discussion [1] of the T2/Z2 orbifold. T2/Z2 is the
only two-dimensional orbifold with two unconstrained moduli T , U that transform under
SL(2,Z)T × SL(2,Z)U and under mirror symmetry, which interchanges T and U . Hence,
it can serve as a building block for the discussion of six-dimensional orbifolds.1 In our
previous study, ref. [1], we had identified the traditional flavor symmetries and the finite
modular symmetries ΓN for the T2/Z2 orbifold. The groups ΓN (for small N) are isomor-
phic to groups like S3, A4, S4 and A5 that could be suitable for a description of discrete
flavor symmetries in particle physics [7–9]. Modular symmetries, however, require more
than just a discussion of the finite modular groups ΓN . In addition, we have to include
automorphy factors corresponding to the explicit modular weights of matter fields. In
the present paper, we discuss the implications of these automorphy factors in the case of
the T2/Z2 orbifold. Once they are taken into account, we find an extension of the finite
modular flavor symmetry in form of an R-symmetry, which implies further restrictions to
the superpotential and Kähler potential of the theory. This is one of the reasons why a
modular flavor symmetry has more predictive power than traditional flavor symmetries.
In the top-down approach (which we adopt here), this extension of the symmetry reflects
the symmetries of the underlying string theory, which restrict the modular weights to well-
defined specific values.2 In the bottom-up approach to modular flavor symmetries, the
choice of the modular weights of matter fields is part of model building and can be used
to obtain so-called “shaping symmetries” that appear as additional accidental symmetries
for specific choices of the modular weights [10, 11].

The main results of the paper can be summarized as follows:

• We identify the full eclectic flavor symmetry [12] of the T2/Z2 orbifold to be

[(D8 ×D8)/Z2] ∪
[
(ST3 × SU3 ) oZM̂4

]
∪ ZR4 . (1.1)

It includes a ZR4 R-symmetry that originates from the discussion of the automorphy
factors and extends the order of the eclectic flavor group from 2304 to 4608. With CP ,
the order of the eclectic flavor symmetry is further enhanced to a group of order 9216.

1For a general discussion of T2/ZK including K > 2, we refer to refs. [2, 3] and [4–6] for K = 3.
2For a previous discussion on the modular weights of the T2/Z3 orbifold, see refs. [2, 3, 6]. Although in

this case the modulus U is fixed, there remains a discrete R-symmetry from SL(2,Z)U .
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• We provide a discussion of the landscape of flavor symmetries in (T, U)-moduli space
and identify the local unified flavor groups at specific points and lines in this moduli
space. The results are given in figure 3, accompanied by an explicit discussion of the
flavor symmetries in the cases of two specific geometrical shapes (the tetrahedron
and the squared raviolo) as well as T ↔ U mirror symmetry in section 4.

• We observe a specific relation between mirror symmetry and the allowed values of
modular weights of matter fields (discussed explicitly in section 3).

• The additional R-symmetry is closely related to the modular symmetry and leads to
further constraints on the allowed values of modular weights of matter fields. Hence,
it further restricts the form of superpotential and Kähler potential, as explicitly
discussed in section 5.

• We discover the appearance of continuous gauge symmetries for specific configurations
in moduli space.

The paper is structured as follows. In section 2, we recall the results of our previous
study [1]. Section 3 discusses the automorphy factors and modular weights of matter fields.
We identify the additional R-symmetry and the extended eclectic flavor group accordingly.
This includes a discussion of the interplay of the modular weights with both, T ↔ U

mirror symmetry and the R-symmetry. In section 4 we analyze the unified local flavor
groups that appear at specific points, lines and other hyper-surfaces in moduli space. The
results including CP are illustrated in figure 3. Section 5 is devoted to the discussion
of the superpotential and Kähler potential. We observe the appearance of continuous
gauge symmetries for certain configurations of the moduli (naïvely, they might appear
as accidental symmetries, but they are consequences of underlying symmetries in string
theory). In section 6 we give conclusions and outlook. Technical details are relegated to
several appendices that complete the general discussion of ref. [1].

2 What do we know already?

Technical details of the eclectic flavor symmetries of T2/ZK orbifolds (K = 2, 3, 4, 6)
have been given in section 2 of ref. [3]. In the cases K > 2, the complex structure
modulus U has to be fixed to allow for the orbifold twist. For T2/Z2, in contrast, we
have two unconstrained moduli T and U with the corresponding modular transformations
SL(2,Z)T × SL(2,Z)U . For generic values of the moduli, we find the traditional flavor
symmetry (we use the Small Group notation from GAP [13])

(D8 ×D8)/Z2 ∼= [32, 49] (2.1)

as the result of geometry and string selection rules (see refs. [14, 15]) or, equivalently,
as a result of the outer automorphisms of the (Narain) space group that describes the
orbifold [4, 5]. Furthermore, the finite modular symmetry for the T2/Z2 orbifold is shown
to be the multiplicative closure of ΓT2 × ΓU2 = ST3 × SU3 and mirror symmetry (which
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exchanges T and U), as discussed in ref. [1]. The full mirror symmetry acting on the
matter fields turns out to be ZM̂4 (which acts on the moduli as Z2, cf. [16]). This leads to
the finite modular group [144, 115]. If we include a CP-like symmetry acting on the moduli
as T → −T and U → −U , the finite modular group enhances to

[
(ST3 × SU3 ) oZM̂4

]
× ZCP2

∼= [288, 880] . (2.2)

In combination with the generators of the traditional flavor symmetry [32, 49], we obtained
an eclectic flavor group with 4608 elements (2304 without CP).

Only some of the eclectic flavor symmetries are linearly realized. For generic values
of the moduli just the traditional flavor group [32, 49] remains unbroken. For specific
“geometrical” configurations, this symmetry is enhanced to a larger subgroup of the eclectic
flavor group (via the so-called stabilizer subgroups). The generators of the unbroken groups
are displayed explicitly in figure 7 of ref. [1]. Relevant values correspond to the moduli
〈U〉 = i (the squared raviolo) and 〈U〉 = exp(πi/3) (the tetrahedron) as well as the line
〈T 〉 = 〈U〉 as a consequence of mirror symmetry. At 〈T 〉 = 〈U〉, we find the enhancement
of [32, 49] to [64, 257]. For the tetrahedron, the group [32, 49] is enhanced to [96, 204] as
discussed in section 4.2 of ref. [1], while for the raviolo, we shall see here in section 4
that [32, 49] is enhanced to [128, 523]. If we include the CP-like transformation, we gain
a further enhancement of the number of elements by a factor of two. The largest linearly
realized subgroup of the eclectic flavor group (including CP) was found (in ref. [1]) to be
[1152, 157463] at 〈T 〉 = 〈U〉 = exp(πi/3).

So far the results are based on the finite modular groups. A full discussion of modular
symmetries should, however, not only include the finite symmetries ΓN (here ΓT2 × ΓU2 =
ST3 × SU3 ), but also the so-called automorphy factors that arise from the non-trivial (frac-
tional) modular weights (nT , nU ) of SL(2,Z)T×SL(2,Z)U . This leads to further restrictions
on the action (given by Kähler and superpotential) of the theory with an enhancement of
the symmetries. As discussed in refs. [2, 3], these automorphy factors lead to discrete phases
resulting in R-symmetries. In our previous paper [1], for the sake of clarity and simplicity,
we had not included these automorphy factors in our discussion. We shall include them in
the following in full detail.

3 Discrete R-symmetries and mirror symmetry

In this section, we show that a T2/Z2 orbifold sector gives rise to a ZR4 symmetry that
originates from modular transformations, where the automorphy factors of certain modular
transformations give rise to the R-charges. As the T2/Z2 orbifold sector is equipped
with two moduli, T and U , there exists a modular group for each of them, SL(2,Z)T
and SL(2,Z)U , each associated with a modular weight (nT , nU ). Since R-charges can be
defined in terms of both modular groups, these modular weights are highly constrained.
Furthermore, we give a detailed discussion about the action of mirror symmetry on matter
fields and discover a new relation between mirror symmetry and the R-symmetry.
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3.1 Automorphy factors of modular transformations

Let us consider a general matter field Φ(nT ,nU ) originating from string theory with modular
weights nT and nU corresponding to SL(2,Z)T and SL(2,Z)U . Then, under a (non CP-like)
modular transformation Σ̂ ∈ Oη̂(2, 2,Z), the field transforms as

Φ(nT ,nU )
Σ̂7−−→ j(nT ,nU )(Σ̂, T, U) ρr(Σ̂) Φ(nT ,nU ) . (3.1)

Here, j(nT ,nU )(Σ̂, T, U) is the automorphy factor of the modular transformation and ρr(Σ̂)
is the representation matrix of Σ̂ that forms a representation r of the finite modular group,
as derived in appendix D.

The modular weights of matter fields can be computed in string theory, as reviewed in
appendix B, and it turns out that, apart from nT = nU , there is also the possibility

nT 6= nU (3.2)

in string theory. In order to determine the automorphy factor j(nT ,nU )(Σ̂, T, U), we might
use as a first step the analogy to Siegel modular forms based on Sp(4,Z). However, Siegel
modular forms are defined for parallel weights n := nT = nU only. In this case, following
refs. [16, 17], we have

j(n)(M,T,U) =
(

det(C Ω +D)
)n for M =

(
A B

C D

)
∈ Sp(4,Z) and Ω =

(
U 0
0 T

)
. (3.3)

Sp(4,Z) contains SL(2,Z)T and SL(2,Z)U via the element M(γT ,γU ) ∈ Sp(4,Z), where

γT :=
(
aT bT
cT dT

)
∈ SL(2,Z)T and γU :=

(
aU bU
cU dU

)
∈ SL(2,Z)U , (3.4)

as defined in ref. [18]. Then, eq. (3.3) yields

j(n)(M(γT ,γU ), T, U) = (cT T + dT )n (cU U + dU )n . (3.5)

Using the dictionary [18] that relates Sp(4,Z) with the modular group Oη̂(2, 2+16,Z) of our
string setting, the Sp(4,Z) element M(γT ,γU ) is equivalent to Σ̂(γT ,γU ) ∈ Oη̂(2, 2 + 16,Z)
defined in appendix A.1. This is consistent with the string setup discussed in ref. [19],
resulting in

j(nT ,nU )
(
Σ̂(γT ,γU ), T, U

)
:= (cT T + dT )nT (cU U + dU )nU , (3.6)

also for the case nT 6= nU . It turns out that for the other cases Σ̂ 6= Σ̂(γT ,γU ) one can use
the automorphy factor eq. (3.3) for the element M ∈ Sp(4,Z) that corresponds to Σ̂ using
again the dictionary of ref. [18]. It is important to note that the resulting automorphy
factor will be independent of the specific choice n = nT or n = nU , since nT = nU mod 2.
In the following, we will see this explicitly at some examples.
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bulk matter twisted matter
Φ(0,0) Φ(−1,−1) Φ(−1/2,−1/2) Φ(−3/2, 1/2) Φ( 1/2,−3/2) Y

(2)
43 W

traditional 10 10 4 4 4 10 10
modular 10 10 41 (41 ⊕ 41) 43 10
nT 0 −1 −1/2 −3/2 1/2 2 −1
nU 0 −1 −1/2 1/2 −3/2 2 −1
R-charge 0 2 3 1 1 0 2 mod 4

Table 1. All admissible modular weights of massless matter fields Φ(nT ,nU ) as well as their rep-
resentations under the flavor symmetries and ZR4 of a T2/Z2 orbifold sector, see appendix D. The
ZR4 R-charges are normalized to be integer for matter superfields Φ(nT ,nU ). The traditional flavor
group is [64, 266] and the modular flavor group is [144, 115].

3.2 Discrete R-symmetry

In the T2/Z2 orbifold sector, a Z2 sublattice rotation is given by

Θ̂(2) := Ĉ2
S = K̂2

S = −14 ∈ Oη̂(2, 2,Z) , (3.7)

i.e. in the Narain formulation, Θ̂(2) = −14 is a left-right symmetric 180◦ rotation in the
T2/Z2 orbifold sector that leaves the orthogonal compact dimensions invariant, see refs. [2,
3]. It is an outer automorphism of the full Narain space group of the six-dimensional
orbifold and, hence, it is a symmetry of the theory. Using the definition of Σ̂(γT ,γU ) given
in eq. (A.19) of appendix A.1, this Oη̂(2, 2,Z) transformation can be expressed in two
ways as

Θ̂(2) = Σ̂(R,12) = Σ̂(12,R) , where R = S2 =
(
−1 0
0 −1

)
∈ SL(2,Z) . (3.8)

As the generalized metric H(T, U) is invariant under a transformation (A.29) with Θ̂(2),
this Z2 sublattice rotation leaves T and U invariant. Hence, the sublattice rotation Θ̂(2)
corresponds to a traditional flavor symmetry. Still, the transformation with Θ̂(2) originates
from a modular transformation, Θ̂(2) = Ĉ2

S = K̂2
S. So, we expect the appearance of an

automorphy factor. Since R ∈ SL(2,Z)T and R ∈ SL(2,Z)U are identified in Oη̂(2, 2,Z),
we have to ensure that we compute the automorphy factor correctly: we can use either the
factor (cTT + dT )nT = (−1)nT or (cUU + dU )nU = (−1)nU for the transformation R. Yet,
the resulting automorphy factor must coincide in both cases, (−1)nT = (−1)nU . Hence, we
see that

nU
!= nT mod 2 . (3.9)

This relation is satisfied for all (massless) matter from the T2/Z2 orbifold sector, as one
can see from table 1. Moreover, eq. (3.9) also holds for all massive strings, as shown
in appendix B. Consequently, having control over the automorphy factor, we can choose
R ∈ SL(2,Z)U and the modular weight nU in the following.

The superpotential W transforms under Θ̂(2) as

W
Θ̂(2)7−−−→ −W , (3.10)

– 5 –
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due to the automorphy factor (cUU +dU )−1 = −1 evaluated for R given in eq. (3.8). Thus,
the transformation Θ̂(2) generates a discrete R-symmetry [2, 3].

The action of Θ̂(2) on matter fields Φ(nT ,nU ) with SL(2,Z)U modular weights nU ∈
{0,−1,−1/2, 1/2,−3/2}, as listed in table 1, is given by

Φ(nT ,nU )
Θ̂(2)7−−−→ (−1)nU ρr(Θ̂(2)) Φ(nT ,nU ) = (−1)nU Φ(nT ,nU ) =: exp (2πiR/4) Φ(nT ,nU ) .

(3.11)
Here, we used that ρr(Θ̂(2)) = ρr(K̂S)2 = ρr(ĈS)2 = 1. For the allowed modular weights
nU ∈ {0,−1,−1/2, 1/2,−3/2} the multivalued phase factor gives rise to ZR4 R-charges R ∈
{0, 2, 3, 1, 1}, respectively. Thus, for the T2/Z2 orbifold sector we find that the R-charge
R is given in terms of the modular weight nU (or nT ) as

R = 2nU mod 4 = 2nT mod 4 , (3.12)

cf. ref. [20]. Note that due to the fractional modular weights nU , (Θ̂(2))2 gives a non-trivial
transformation with charges 2R = 4nU mod 4 that turns out to be equivalent to the point
group selection rule of eq. (D.24a). Since the R-symmetry transformation acts trivially on
all moduli, it belongs to the traditional flavor symmetry, which gets enhanced to

(D8 ×D8) /Z2 × ZR4
Z2

∼= [64, 266] , (3.13)

where the Z2 in the latter quotient identifies the point group selection rule of T2/Z2 con-
tained in both the ZR4 and the traditional symmetry (D8 ×D8) /Z2. In string theory,
modular symmetries are anomaly-free (see e.g. [19, 21] for details on anomaly cancellation
for modular symmetries). Hence, since the ZR4 R-symmetry arises from modular symme-
tries, it is anomaly-free.

Due to the ZR4 R-symmetry, the eclectic flavor group of a T2/Z2 orbifold sector gets
extended to

[(D8 ×D8)/Z2] ∪
[
(ST3 × SU3 ) oZM̂4

]
∪ ZR4 , (3.14)

which results in a group of order 4608. Including a CP-like transformation, the order of
the eclectic flavor group is further enhanced to a group of order 9216.

3.3 The action of mirror symmetry on matter fields

In order to analyze the action of mirror symmetry M̂ ∈ Oη̂(2, 2,Z) on matter fields in
our string setup, we have to determine the automorphy factor first. Using the results of
section 3.1, we consider the mirror element in Sp(4,Z), which reads

M× =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∈ Sp(4,Z) . (3.15)

Thus, the automorphy factor (3.3) of a mirror transformation is given by (−1)n. Since
nT = nU mod 2 as derived in eq. (3.9), one can assign n = nU and the automorphy factor

– 6 –
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of a mirror transformation M̂ is given as (−1)nU , without loss of generality. Moreover, note
that the ZR4 R-charges given in eq. (3.11) are analogously defined. Thus, the automorphy
factor of M̂ can be removed using the ZR4 R-symmetry, as we will do in the following.

Now, let us assume that under a mirror transformation M̂ we have

Φ(nT ,nU )
M̂7−−→ ρr(M̂) Φ(nT ,nU ) , (3.16)

for a matter field Φ(nT ,nU ) that transforms in the representation r of the finite modular
group (ST3 × SU3 ) o ZM̂4

∼= [144, 115] (where we have absorbed the automorphy factor
(−1)nU using ZR4 ). In the following, we will see from a bottom-up perspective that the
transformation (3.16) is correct for nT = nU , but must be modified in the case nT 6= nU .
To do so, let us consider the following chain of transformations

Φ(nT ,nU )
M̂7−−−−→ ρr(M̂) Φ(nT ,nU ) (3.17a)

Σ̂(12,γU )7−−−−−→ (cU U + dU )nU ρr(M̂) ρr(Σ̂(12,γU )) Φ(nT ,nU ) (3.17b)
M̂−1
7−−−−→ (cU T + dU )nU ρr(M̂) ρr(Σ̂(12,γU )) ρr(M̂)−1 Φ(nT ,nU ) , (3.17c)

under the assumption that eq. (3.16) were correct. However, a mirror transformation maps
an element Σ̂(12,γU ) ∈ SL(2,Z)U to an element Σ̂(γU ,12) ∈ SL(2,Z)T , see eq. (A.25). Thus,
eq. (3.17c) must be equal to

Φ(nT ,nU )
Σ̂(γU ,12)7−−−−−→ (cU T + dU )nT ρr(Σ̂(γU ,12)) Φ(nT ,nU ) , (3.18)

where the 2 × 2 matrix γT ∈ SL(2,Z)T in Σ̂(γT ,12) has to be equal to the matrix γU
used in eq. (3.17b). Now, in the case of so-called parallel weights (i.e. if nT = nU ) the
representation matrices ρr(Σ̂(γU ,12)) and ρr(Σ̂(12,γU )) have to be related as follows

ρr(Σ̂(γU ,12)) = ρr(M̂) ρr(Σ̂(12,γU )) ρr(M̂)−1 , (3.19)

and eq. (3.17c) coincides with eq. (3.18). In contrast, eqs. (3.17c) and (3.18) are inconsistent
if nT 6= nU . Consequently, the (preliminary) chain of transformations given in eq. (3.17)
has to be modified. The only possibility turns out to be

Φ(nT ,nU )
M̂7−−−−→ ρr(M̂) Φ(nU ,nT ) (3.20a)

Σ̂(12,γU )7−−−−−→ (cU U + dU )nT ρr(M̂) ρr(Σ̂(12,γU )) Φ(nU ,nT ) (3.20b)
M̂−1
7−−−−→ (cU T + dU )nT ρr(M̂) ρr(Σ̂(12,γU )) ρr(M̂)−1 Φ(nT ,nU ) . (3.20c)

Then, we have to impose condition (3.19) and, consequently, eq. (3.20c) coincides with
eq. (3.18) using Σ̂(γT ,12) with γT equal to γU .

To summarize, for each matter field Φ(nT ,nU ) with nT 6= nU (satisfying the con-
straint (3.9)) there must exist a partner field, denoted by Φ(nU ,nT ), which coincides in
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all properties with Φ(nT ,nU ) but has interchanged modular weights. Then, a mirror trans-
formation has to act on matter fields (Φ(nT ,nU ),Φ(nU ,nT )) as(

Φ(nT ,nU )
Φ(nU ,nT )

)
M̂7−−→

(
0 ρr(M̂)

ρr(M̂) 0

) (
Φ(nT ,nU )
Φ(nU ,nT )

)
if nT 6= nU , (3.21)

and eq. (3.19) has to hold. On the other hand, the transformations K̂S, K̂T, ĈS and ĈT
act diagonally on (Φ(nT ,nU ),Φ(nU ,nT )).

Finally, this bottom-up derivation of eq. (3.21) is confirmed in our string setting. In
appendix B we show for Z2 orbifolds that a matter field Φ(nT ,nU ) with nT 6= nU is always
accompanied by a mirror partner Φ(nU ,nT ) such that a mirror transformation interchanges
Φ(nT ,nU ) and Φ(nU ,nT ). In addition, we follow ref. [22] stating that all twisted strings from
the same twisted sector differ only in their modular weights but otherwise share the same
transformation properties with respect to the finite modular group, see section D.3. Hence,
one can perform an appropriate basis change and check using the character table 4 that
the twisted matter fields (Φ(−3/2, 1/2),Φ( 1/2,−3/2)) transform in the representations 41⊕ 41 of
the finite modular group (ST3 × SU3 ) oZM̂4

∼= [144, 115] (see table 1).

4 Local flavor unification

The full eclectic flavor group of the T2/Z2 orbifold sector is a group of order 4608 that
consists of the enhanced traditional flavor symmetry (D8 ×D8)/Z2 ∪ ZR4 ∼= [64, 266], and
the finite modular symmetry (ST3 × SU3 ) oZM̂4

∼= [144, 115]. Adding the CP-like generator
Σ̂∗ (see eq. (A.24)) enhances the finite modular symmetry to [288, 880] and the eclectic
flavor group with CP has order 9216. However, the full eclectic flavor group gets broken
spontaneously by non-vanishing vevs of the moduli (T, U). In this section, we complete
the analysis of ref. [1] of the unbroken groups at various points (〈T 〉, 〈U〉) in moduli space.

The couplings of interest among matter fields are governed by the modular forms of
(parallel) weight (2, 2). They can be spanned by

Ŷ
(2)

43 (T, U) =


Ŷ1(T, U)
Ŷ2(T, U)
Ŷ3(T, U)
Ŷ4(T, U)

 :=


Ŷ1(T ) Ŷ1(U)
Ŷ2(T ) Ŷ1(U)
Ŷ1(T ) Ŷ2(U)
Ŷ2(T ) Ŷ2(U)

 , (4.1)

where Ŷ1(τ) and Ŷ2(τ) are the S3 modular forms of weight 2, see for example refs. [16, 23].
Ŷ1(τ) and Ŷ2(τ) can be written as

Ŷ1(τ) := 1
16
(
(ϑ00(0; τ))4 + (ϑ01(0; τ))4

)
, (4.2a)

Ŷ2(τ) :=
√

3
16
(
(ϑ00(0; τ))4 − (ϑ01(0; τ))4

)
, (4.2b)

in terms of the Jacobi theta function

ϑ(z, τ) :=
∑
m∈Z

exp
(
πiτm2 + 2πimz

)
, (4.3)
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where we have defined ϑ00(z, τ) := ϑ(z, τ) and ϑ01(z, τ) := ϑ(z+ 1/2, τ). The modular form
Ŷ

(2)
43 (T, U) transforms under modular transformations according to eq. (E.1) as a 43 of the

finite modular group [144, 115], but is invariant under the traditional flavor group. Further
details are given in appendix E.1, see also table 1.

At special points in moduli space, i.e. for fixed vacuum expectation values (〈T 〉, 〈U〉),
some of the modular transformations are left unbroken in the vacuum, i.e. they leave
invariant the moduli, building the so-called stabilizer subgroup,

H(〈T 〉,〈U〉) :=
〈
γ
∣∣ γ ∈ Oη̂(2, 2,Z) with γ(〈T 〉) = 〈T 〉 and γ(〈U〉) = 〈U〉

〉
. (4.4)

Here, Oη̂(2, 2,Z), generated by {K̂S, K̂T, ĈS, ĈT, Σ̂∗, M̂}, is the modular group of the
T2/Z2 orbifold sector, see appendix A.1.

At these points, the couplings Ŷ (2)
43 (〈T 〉, 〈U〉) are left invariant under stabilizer elements

γ ∈ H(〈T 〉,〈U〉). If γ takes the form given in eq. (A.19), i.e. if it is an SL(2,Z)T × SL(2,Z)U
element, its action on the couplings, eq. (E.1), becomes the eigenvalue equation

ρ43(γ) Ŷ (2)
43 (〈T 〉, 〈U〉) != (cT 〈T 〉+ dT )−2 (cU 〈U〉+ dU )−2 Ŷ

(2)
43 (〈T 〉, 〈U〉) , (4.5)

where cT , dT , cU , dU are integers that define γ. On the other hand, if the stabilizer element
is given by the mirror symmetry M̂ or the CP-like generator Σ̂∗, the couplings satisfy
the relations

γ = M̂ at 〈T 〉 = 〈U〉 : Ŷ
(2)

43 (〈U〉, 〈T 〉) != Ŷ
(2)

43 (〈T 〉, 〈U〉) , (4.6a)

γ = Σ̂∗ at Re〈T 〉 = Re〈U〉 = 0 :
(
Ŷ

(2)
43 (〈T 〉, 〈U〉)

)∗ != Ŷ
(2)

43 (〈T 〉, 〈U〉) . (4.6b)

Note that eq. (4.6a) is consistent with the automorphy factor (−1)n discussed in section 3.3
using n = 2. Further, eq. (4.6b) is shown as follows: the CP transformation acting on
the moduli results in complex conjugation for the explicit expressions eq. (4.2) of Ŷ1 and
Ŷ2. Since the representation ρ43(γ) of the finite modular group is unitary, its eigenvalues
and hence the automorphy factors must be phases, see also ref. [3, section 6]. Note that
eq. (4.5) corresponds to the mechanism of flavon alignment in the context of modular flavor
symmetries, as also discussed in e.g. refs. [24–26].

A consequence of the automorphy factors being phases at (〈T 〉, 〈U〉) is that the modular
transformations from H(〈T 〉,〈U〉) act linearly on matter fields. Hence, the stabilizer enhances
the traditional flavor symmetry to the multiplicative closure of the traditional flavor group
and the stabilizer modular subgroup, i.e. to the so-called unified flavor group[

(D8 ×D8)/Z2 ×ZR4
]
/Z2 ∪ H(〈T 〉,〈U〉) . (4.7)

Explicitly, from eqs. (3.1) and (3.6), the action of a (non-CP-like) stabilizer element γ ∈
H(〈T 〉,〈U〉) on a field Φ(nT ,nU ) with modular weights (nT , nU ) is given by

Φ(nT ,nU )
γ7−−→ ρt,(〈T 〉,〈U〉)Φ(nT ,nU ) := (cT 〈T 〉+ dT )nT (cU 〈U〉+ dU )nUρr(γ)Φ(nT ,nU ) , (4.8)

where ρt,(〈T 〉,〈U〉) is a t-dimensional representation t of the unified flavor group, whereas r

is a representation of the finite modular group [144, 115]. We stress here the presence of
the automorphy factors in the transformation (4.8), which can enhance the order of the
unbroken transformations due to the possibility of fractional weights of matter fields.
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Im T

Re T
−0.5 0 0.5

1

[64, 266]

[192, 1509]

[128, 523]

〈U〉 = generic

(a) U fixed at a generic value 〈U〉 6= i, eπi/3.

Im U

Re U
−0.5 0 0.5

1

[64, 266]

[192, 1509]

[128, 523]

〈T 〉 = generic

(b) T fixed at a generic value 〈T 〉 6= i, eπi/3.

Figure 1. Unified flavor groups at special points in moduli space, including the ZR4 symmetry. (a)
For generic 〈U〉, only at 〈T 〉 = i (square) and 〈T 〉 = eπi/3 (bullet) the traditional flavor symmetry is
enhanced by H(i,〈U〉) = 〈K̂S〉 and H(eπi/3,〈U〉) = 〈K̂TK̂S〉, respectively. (b) For generic 〈T 〉, the re-
sults are equivalent due to mirror symmetry M̂ , which exchanges T ↔ U , K̂T ↔ ĈT and K̂S ↔ ĈS.

4.1 Unified flavor groups at generic points in moduli space

Even for generic values of the moduli, the traditional flavor group is enhanced for 〈T 〉 = 〈U〉.
In this case, the mirror transformation M̂ is left unbroken. Considering its ZM̂4 action on
matter fields, as given by eqs. (3.16) or (3.21), we find that the unified flavor group in this
case is given by [128, 2316].

We can consider also the case that one of the moduli has a generic value while the
second modulus is fixed at one of the special points, i or eπi/3. In figure 1, we display the
different unified flavor groups achieved by incorporating the unbroken modular transfor-
mations at those special points in moduli space. Let us consider the results for generic 〈U〉,
as presented in figure 1a. At 〈T 〉 = i, we know (cf. ref. [1]) that the stabilizer subgroup is
generated by K̂S, which becomes a Z8 generator, considering the admissible automorphy
factors (−i)nT = e−πinT/2 for matter fields with nT ∈ {0,−1,±1/2,−3/2}. However, the tradi-
tional flavor group [64, 266] is only enhanced to [128, 523] because (K̂S)2 = (ĈS)2 amounts
to the ZR4 symmetry already contained in the traditional symmetry. Further, at 〈T 〉 = eπi/3,
the stabilizer is generated by K̂TK̂S. Taking the automorphy factor (−eπi/3)nT = e−2πinT/3,
it corresponds to a Z6 symmetry, such that (K̂TK̂S)3 is equivalent to the point group of
T2/Z2. Thus, the order of the traditional flavor group is only enhanced by a factor of
three, leading to the unified flavor group [192, 1509]. Because of the mirror symmetry M̂ ,
it suffices to consider generic 〈U〉 to learn what happens also for generic 〈T 〉, as we notice
by comparing figures 1b and 1a. For example, for generic value of the Kähler modulus
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and 〈U〉 = i, the stabilizer is generated by ĈS, which enhances the traditional flavor group
[64, 266] to the unified flavor group [128, 523].

4.2 Unified flavor groups of the raviolo

At 〈U〉 = i (cf. ref. [11]), the geometry of the T2/Z2 orbifold adopts the form of a square
raviolo, where the corners correspond to the singularities of the orbifold and the edges are
perpendicular and have the same length. As just mentioned, in this case the traditional
flavor group is enhanced by ĈS to the unified flavor group [128, 523], considering the Z8
phases (−i)nU = e−πinU/2 associated with the automorphy factors of the matter fields.
Since ĈS acts on the compact space as a π/2 rotation [3, eq. (63a)], the unified flavor
group contains a remnant of the Lorentz symmetry in higher dimensions and is hence a
discrete R-symmetry.

There are two special points in moduli space for the raviolo, where further enhance-
ments occur if the CP-like modular transformation Σ̂∗ is considered. First, at 〈T 〉 = i we
find the stabilizer H(i,i) = 〈ĈS, M̂ , Σ̂∗〉, which enhances the traditional flavor symmetry to

D8 ×D8
Z2

∪ (D8 oD8) ∼=
[32, 49] × [64, 130]

Z2
, (4.9)

where (D8 × D8)/Z2 ∼= [32, 49] is the traditional flavor group without ZR4 , D8 o D8 ∼=
[64, 130] is the modular group corresponding to H(i,i) including the automorphy factors,
and the Z2 in the quotient on the right-hand side identifies the point group selection rule
of the T2/Z2 orbifold sector present in both groups. The unified flavor group (4.9) has
thus order 1024, which corresponds to the maximal enhancement of the traditional flavor
symmetry for 〈U〉 = i. Secondly, at 〈T 〉 = eπi/3, the traditional flavor group is enhanced
by the subgroup of modular transformations H(eπi/3,i) = 〈ĈS, K̂TK̂S, K̂SΣ̂∗〉 to the group
[768, 1086024]. These enhancements are illustrated in figure 2a.

Additionally, on the line in moduli space described by the boundary λT of the fun-
damental domain, depicted in figure 2a, we find two more enhancements. We see that
the Kähler modulus fixed at 〈T 〉 = i Im〈T 〉 > i is left invariant by 〈ĈS, Σ̂∗〉. Acting on
matter fields along with their corresponding automorphy factors, this yields the unified
flavor group [256, 25882]. Furthermore, the traditional flavor symmetry is enhanced to
[256, 6341] along the regions of the locus λT where 〈T 〉 = eiϕ with π/3 < ϕ < π/2, and
〈T 〉 = 1/2 + i Im〈T 〉 with Im〈T 〉 >

√
3/2. In these regions, the stabilizers are given by

〈ĈS, K̂SΣ̂∗〉 and 〈ĈS, K̂TΣ̂∗〉, respectively.

4.3 Unified flavor groups of the tetrahedron

When the complex structure is stabilized at 〈U〉 = eπi/3, the T2/Z2 orbifold sector has
the shape of a tetrahedron, cf. ref. [1, figure 5]. As can be read off from figure 1b, in the
tetrahedron with a generic value for T , the ĈTĈS modular transformation leaves the moduli
invariant and enhances the traditional flavor group to the unified flavor group [192, 1509],
the generic flavor symmetry of the tetrahedron. This contains discrete R-symmetries due
to the inclusion of the discrete rotation in the compact space generated by ĈTĈS.
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[128, 523]

[768, 1086024]

[32, 49] ∪ [64, 130]

[256, 6341]

[256, 25882]

〈U〉 = i

(a) T2/Z2 with 〈U〉 = i

Im T

Re T
−0.5 0 0.5

1

λT

[192, 1509]

[1152, 157463] ∪ ZR
4

[768, 1086024]

[384, 20098]

[384, 20097]

〈U〉 = eπi/3

(b) T2/Z2 with 〈U〉 = e
πi/3

Figure 2. Unified flavor groups at different points 〈T 〉 and the boundary λT of the fundamental do-
main of SL(2,Z)T for two special vevs 〈U〉 of the complex structure modulus. We use the shorthands
[32, 49] ∪ [64, 130] ∼=

[
[32, 49]× [64, 130]

]
/Z2 and [1152, 157463] ∪ ZR4 ∼=

[
[1152, 157463]×ZR4

]
/Z2,

where the Z2 identifies the point group selection rule of T2/Z2 contained in the multiplied groups.

The symmetry of the tetrahedron can be further enlarged if the Kähler modulus is
fixed e.g. at the special values 〈T 〉 = eπi/3 or 〈T 〉 = i. At these points, the respective stabi-
lizer subgroups are H(eπi/3,eπi/3) = 〈ĈTĈS, ĈTK̂TΣ̂∗, M̂〉 and H(i,eπi/3) = 〈ĈTĈS, ĈSΣ̂∗, K̂S〉,
which include the CP-like modular transformation Σ̂∗. Considering the action of the stabi-
lizer elements in each case, including their automorphy factors, we find the enhancements
shown in figure 2b. Note that, like in the case of the raviolo, the point at which both moduli
values coincide, i.e. at (〈T 〉, 〈U〉) = (eπi/3, eπi/3), is endowed with the largest possible linear
enhancement of the traditional flavor symmetry in the T2/Z2 orbifold sector, the group

[1152, 157463] × ZR4
Z2

, (4.10)

which is of order 2304. Here, as before, the Z2 corresponds to the identification of the point
group selection rule of this orbifold sector, which appears in both groups, [1152, 157463]
and ZR4 .

Along the locus λT , there are two more enhancements of the traditional flavor group.
For 〈T 〉 = i Im〈T 〉 > i, not only ĈTĈS leaves the moduli invariant but also ĈTΣ̂∗. This
implies that the flavor symmetry of the tetrahedron [192, 1509] is enhanced to the unified
flavor group [384, 20097]. Besides, for 〈T 〉 = eiϕ with π/3 < ϕ < π/2, the stabilizer is
〈ĈTĈS, K̂SĈSΣ̂∗〉 and leads to the unified flavor group [384, 20098]. The same flavor en-
hancement is obtained if the Kähler modulus sits at 〈T 〉 = 1/2+i Im〈T 〉 with Im〈T 〉 >

√
3/2,

where the stabilizer is generated by ĈTĈS and K̂TĈSΣ̂∗.
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4.3.1 A4 flavor symmetry from the tetrahedron

Let us turn back to the case of the tetrahedron, 〈U〉 = eπi/3, with a generic value for the
Kähler modulus. In this case, according to eq. (4.8), the stabilizer modular generator ĈTĈS
acts on matter fields as

Φ(nT ,nU )
ĈT ĈS7−−−−→ ρr,(〈T 〉,eπi/3)(ĈT ĈS) Φ(nT ,nU ) , (4.11)

where due to the automorphy factor (cU 〈U〉+ dU )nU we get

ρr,(〈T 〉,eπi/3)(ĈT ĈS) := (exp (−2πi/3))nUρr(ĈT)ρr(ĈS) . (4.12)

The admissible modular weights of massless matter fields are nU ∈ {0,−1} for bulk matter,
and nU ∈ {−3/2,−1/2, 1/2} for twisted matter. Hence, eq. (4.11) describes a Z6 transforma-
tion that we can write as Z2 ×Z3, generated by

Z
(PG)
2 :

(
ρr,(〈T 〉,eπi/3)(ĈT ĈS)

)3
= exp (−2πinU ) 1 , (4.13a)

ZR3 :
(
ρr,(〈T 〉,eπi/3)(ĈT ĈS)

)2
= exp (−4πinU/3)

(
ρr(ĈT)ρr(ĈS)

)2
, (4.13b)

respectively. Using the admissible modular weights, we note that the Z2 factor in eq. (4.13a)
corresponds to the Z(PG)

2 point group selection rule of the T2/Z2 orbifold sector. Moreover,
the Z3 factor eq. (4.13b) acts on the superpotential W as

W
(ĈT ĈS)2

7−−−−−−→ ω2W , (4.14)

which is a discrete ZR3 R-symmetry using the definition ω := exp (2πi/3).
The group generated by the traditional flavor group elements ρ4(h1), ρ4(h2) from

eq. (D.21) together with the Z(PG)
2 factor from eq. (4.13a) and the ZR3 factor from eq. (4.13b)

turns out to be
AR4 × Z

(PG)
2

∼= [24, 13] . (4.15)

Here, the alternating group AR4 is a non-Abelian R-symmetry as it arises from ρ4(h1),
ρ4(h2) and the ZR3 R-symmetry, cf. ref. [27] for a general discussion on non-Abelian R-
symmetries. The matter fields and the superpotentialW build the following representations
of AR4 ×Z

(PG)
2

Φ(0,0) : (1,10) , (4.16a)
Φ(−1,−1) : (1′,10) , (4.16b)

Φ(−1/2,−1/2) : (3,11) ⊕ (1′′,11) , (4.16c)
W : (1′,10) , (4.16d)

where we denote the irreducible representations of Z2 by 10 and 11 and the ones of AR4 by
3, 1, 1′ and 1′′, see appendix E.4.

Combined with the ZR4 symmetry associated with the sublattice rotation Θ̂(2) and the
Z2 × Z2 generators ρ4(h3) and ρ4(h4) of the traditional flavor group, associated with the
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space group selection rule of the T2/Z2 orbifold sector, the group AR4 ×Z2 enhances to the
unified flavor group of the tetrahedron, [192, 1509], see figure 2b.

Compared to the literature (see e.g. refs. [28–30]), we see that in the consistent string
approach the naïve A4 symmetry obtained by the compactification of two extra dimensions
on a tetrahedron has to be extended in two ways: first, the Z3 generator of AR4 turns out
to be an R-symmetry. This can be understood equivalently either as a discrete remnant of
the extra-dimensional Lorentz symmetry or as a discrete remnant of an SL(2,Z)U modular
symmetry. In addition, AR4 is enhanced in the full string approach by stringy selection
rules to [192, 1509] of order 192, which still contrasts with previous results [14].

4.4 Other CP-enhanced unified flavor groups

Figure 3 displays all unified flavor groups of the T2/Z2 orbifold sector that include i) the
ZR4 symmetry arising from embedding the orbifold sector in higher dimensions, ii) the CP-
like modular transformation Σ̂∗, and iii) the phases associated with the automorphy factors
of modular transformations acting on matter fields Φ(nT ,nU ). We use as reference axes the
straightened lines describing the boundaries λT and λU of the T and U moduli spaces,
respectively. For example, λT is illustrated in figure 2. Note that the flavor enhancements
along the horizontal lines in figure 3 have already been discussed in sections 4.2 (bottom
line with 〈U〉 = i) and 4.3 (upper line with 〈U〉 = eπi/3).

Mirror symmetry M̂ acts on the moduli and the modular generators as U ↔ T ,
ĈS ↔ K̂S, and ĈT ↔ K̂T. As a first consequence, the points along the diagonal in figure 3,
defined by 〈T 〉 = 〈U〉, are left invariant by M̂ . Furthermore, the points below and above
this diagonal are connected by a mirror transformation. It then follows that M̂ identifies
the unified flavor groups in these two sectors of moduli space.

Focusing on the lower half of the plane, below the diagonal of figure 3, we see that the
sole enhancements that have not been discussed in the preceding subsections are those that
lie at the diagonal, and those that are valid in the squared and triangular regions of figure 3.
Let us consider two examples. In the lowest part of the diagonal, the stabilizer modular
subgroup is H(ix,ix) = 〈M̂, Σ̂∗〉, with x > 1. Considering the associated transformations
on matter fields with their corresponding automorphy factors, as given in appendix D.3.2,
we find that the traditional flavor group [64, 266] is in this case enhanced to [256, 56079].
Similarly, in the bottom triangle of the figure, the stabilizer is given just by H(ix,iy) = 〈Σ̂∗〉,
with x, y > 1 and y > x, which yields the unified flavor group [128, 2326]. Other cases
can be easily determined by using the proper stabilizer subgroups provided in our previous
work [1, figure 7].

5 Effective field theory of the Z2 orbifold

In this section, we focus on four 4-plets of twisted matter fields Φi
(nT ,nU ), for i ∈ {1, 2, 3, 4},

with modular weights nT = nU = −1/2, see table 1. Each 4-plet contains four fields φi(n1,n2)
that we label by the winding numbers (n1, n2) ∈ {(0, 0), (1, 0), (0, 1), (1, 1)} and not by the
modular weights nT and nU . Hence, each twisted matter field φi(n1,n2) is localized at one of
the four fixed points of the T2/Z2 orbifold sector, see appendix A and ref. [1, figure 1]. In
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[128, 1753]
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[128, 1753]
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[2
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Figure 3. Unified flavor groups with CP at 〈T 〉 ∈ λT and 〈U〉 ∈ λU . We use the shorthands
[32, 49] ∪ [64, 130] ∼=

[
[32, 49]× [64, 130]

]
/Z2 and [1152, 157463] ∪ ZR4 ∼=

[
[1152, 157463]×ZR4

]
/Z2,

where the Z2 corresponds to the point group selection rule of the T2/Z2 orbifold sector, contained
in both groups in the product. The axes λT and λU describe the boundaries of the fundamental
domains of T and U , see e.g. figure 2 for λT . The diagonal depicts the hypersurface where 〈U〉 = 〈T 〉
on the curves λT and λU . The unified flavor groups above and below the diagonal are related by
mirror symmetry M̂ .

other words, we consider four 4-plets Φi
(−1/2,−1/2) := (φi(0,0), φ

i
(1,0), φ

i
(0,1), φ

i
(1,1))T. We assume

that the 4-plets differ in some additional charges, for example with respect to the unbroken
gauge group from E8×E8 (or SO(32)). Then, we use the eclectic flavor symmetry to write
down the most general Kähler and superpotential to lowest order in these fields.

5.1 The Kähler potential

The Hermitian Kähler potential K of a single twisted matter field Φ(−1/2,−1/2) reads to
leading order [31]

K ⊃ (−iT + iT̄ )−1/2 (−iU + iŪ)−1/2 K̃ , (5.1)
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where K̃ is an Hermitian bilinear polynomial of the form K̃ = cn1n2n′1n
′
2
φ(n1,n2) φ̄(n′1,n′2).

In the following, we constrain K̃ by imposing the traditional flavor symmetry step by
step. First, the space and point group selection rules (D.24) enforce n′1 = n1 and n′2 =
n2, resulting in K̃ = cn1n2φ(n1,n2) φ̄(n1,n2). Then, invariance under eq. (D.21a) forces all
coefficients cn1n2 to be equal (and we normalize them to 1). Hence,

K̃ =
(
|φ(0,0)|2 + |φ(1,0)|2 + |φ(0,1)|2 + |φ(1,1)|2

)
. (5.2)

Now, we can generalize this easily to four 4-plets of twisted matter fields Φi
(−1/2,−1/2), for

i ∈ {1, 2, 3, 4}. Due to our assumption of additional (gauge) charges that distinguish
between φi(n1,n2) and φj(n1,n2) for i 6= j, we obtain

K̃ =
4∑
i=1

(
|φi(0,0)|

2 + |φi(1,0)|
2 + |φi(0,1)|

2 + |φi(1,1)|
2
)
. (5.3)

Consequently, for the T2/Z2 orbifold sector the traditional flavor symmetry already en-
forces the Kähler potential to be diagonal in twisted matter fields. Hence, this diagonal
structure can not be changed by the full eclectic flavor symmetry: since additional terms
involving modular forms Ŷ (T, U) (as suggested by ref. [32]) are singlets of the traditional
flavor group, the Kähler potential must remain diagonal, cf. ref. [6]. Yet, additional cor-
rections to the Kähler potential that involve flavons are still possible, cf. ref. [33].

5.2 The superpotential

To lowest order in twisted matter fields Φi
(−1/2,−1/2), the superpotential reads schematically

W ⊃ Ŷ (0)(T, U) Φ(0,0) Φi
(−1/2,−1/2) Φj

(−1/2,−1/2) (5.4a)

+ Ŷ (2)(T, U) Φ(−1,−1) Φ1
(−1/2,−1/2) Φ2

(−1/2,−1/2) Φ3
(−1/2,−1/2) Φ4

(−1/2,−1/2) . (5.4b)

Here, we have imposed the ZR4 R-symmetry and the fact that the modular weights of
matter fields and couplings have to add up to (−1,−1) for the superpotential, see table 1.
Thus, Ŷ (0)(T, U) has to carry modular weights (0, 0), while the modular form Ŷ (2)(T, U)
has modular weights (2, 2). There exists a unique modular form of weight (2, 2), which we
denote by Ŷ (2)

43 (T, U) in the following (see eq. (4.1)). In addition, the superpotential has
to be covariant under the full eclectic flavor symmetry, i.e. it has to be invariant simulta-
neously under the traditional non-R symmetries and the finite modular flavor symmetry
but transform with the appropriate phases (automorphy factors) under the R-symmetry
(modular symmetry). Note that Φ(0,0) is required in eq. (5.4a) because the lowest-order
possible couplings of massless fields are trilinear. This can be seen as a result of additional
discrete R-symmetries that appear in a full 6D orbifold compactification [20, 34]. From
a more phenomenological point of view, this becomes clear from the fact that the strings
under consideration are massless by construction such that a bilinear term would give a
contradiction. Note additionally that the twisted fields Φi

(−1/2,−1/2) in eq. (5.4b) need not
be all different.
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5.2.1 Constraints from the traditional flavor symmetry

Let us start with invariance under the traditional flavor symmetry (D8 ×D8) /Z2 ∼= [32, 49].
First, we consider the product of two twisted matter fields Φi

(−1/2,−1/2) Φj
(−1/2,−1/2) needed for

the terms (5.4a) in the superpotential W. The fields Φi
(−1/2,−1/2) transform as irreducible 4-

plets of the traditional flavor group [32, 49]. Hence, we need to consider the tensor product

4 ⊗ 4 =
⊕

α,β,γ,δ ∈ {−,+}
1αβγδ . (5.5)

This tensor product contains one trivial singlet 1++++, which corresponds to the terms

Iij0 = φi(0,0)φ
j
(0,0) + φi(1,0)φ

j
(1,0) + φi(0,1)φ

j
(0,1) + φi(1,1)φ

j
(1,1) , (5.6)

for i, j ∈ {1, 2, 3, 4}. The total R-charge is 2 as one can see easily from table 1. As a
remark, one can check the invariance of the terms Iij0 explicitly using the orthogonality
of the representation matrices given in eq. (D.21). Since Φ(0,0) is a trivial singlet 1++++
of [32, 49] with R-charge 0, the terms Φ(0,0) I

ij
0 ⊂ W are allowed by both, the traditional

flavor symmetry and ZR4 .
Next, we study the product of four twisted matter fields in order to construct the

superpotential terms in eq. (5.4b). Since

1αβγδ ⊗ 1αβγδ = 1++++ , (5.7)

we know from eq. (5.5) that there are 16 invariant combinations Ii, i ∈ {1, . . . , 16}.
We list them in appendix E.2. Consequently, out of the 44 = 256 possible terms from
Φ1

(−1/2,−1/2) Φ2
(−1/2,−1/2) Φ3

(−1/2,−1/2) Φ4
(−1/2,−1/2), invariance under the traditional flavor symme-

try [32, 49] allows only 16.

5.2.2 Constraints from the modular symmetry

As explained in ref. [1] and derived in appendix D, the modular symmetry (SL(2,Z)T ×
SL(2,Z)U ) o Z2 of the Kähler and complex structure modulus T and U , respectively, is
realized as finite modular group (ST3 × SU3 ) oZM̂4

∼= [144, 115] on twisted matter fields.
Using the matrix representation eq. (D.26) of the twisted matter fields Φi

(−1/2,−1/2), we
see that the terms Ŷ (0)(T, U) Φ(0,0) I

ij
0 in eq. (5.4a) are invariant under the finite modular

symmetry. In contrast, the terms Ii, i ∈ {1, . . . , 16}, defined in appendix E.2, do not
transform trivially under the generators ĈS, ĈT and M̂ of the finite modular symmetry,

I1
...
I16

 Σ̂7−−→
(
j(−1/2)(Σ̂, T, U)

)4
R(Σ̂)


I1
...
I16

 . (5.8)

We list the 16× 16 matrices R(Σ̂) in appendix E.2. Comparing the traces of R(Σ̂) to the
character table of [144, 115] given in appendix E.3, we find that (I1, . . . , I16)T decomposes
into the irreducible representations

10 ⊕ 10 ⊕ 10 ⊕ 11 ⊕ 43 ⊕ 43 ⊕ 45 (5.9)
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of the finite modular group [144, 115]. Only the two 43 representations yield invariant terms
when they are combined with the modular form Ŷ

(2)
43 (T, U) defined in eq. (4.1). Hence, we

identify the two 43 representations from the tensor product eq. (5.9). We obtain

Q1 :=


2 I2 − 2 I3 + I6 + I9 − I5 − I8√

3 ( I12 + I14 − I11 − I13 )√
3 ( I6 + I8 − I5 − I9 )

2 I15 − 2 I16 + I12 + I13 − I11 − I14

 , (5.10a)

Q2 :=


2 I3 − 2 I4 + I7 + I10 − I6 − I9√

3 ( I15 + I16 − I12 − I14 )√
3 ( I7 + I9 − I6 − I10 )

2 I11 − 2 I13 + I12 + I16 − I15 − I14

 . (5.10b)

Note that the quartic polynomial Q1 is antisymmetric when Φ1
(−1/2,−1/2) ↔ Φ4

(−1/2,−1/2)
or Φ2

(−1/2,−1/2) ↔ Φ3
(−1/2,−1/2) are interchanged. Analogously, Q2 is antisymmetric under

Φ1
(−1/2,−1/2) ↔ Φ2

(−1/2,−1/2) or Φ3
(−1/2,−1/2) ↔ Φ4

(−1/2,−1/2). As a consequence, the quartic term
in Φi

(−1/2,−1/2) in the superpotential (5.4) vanishes if all twisted matter fields are equal. The
invariant terms in the superpotential then read

W(T, U, φ) ⊃ c1
(
Ŷ

(2)
43 (T, U) ·Q1

)
Φ(−1,−1) + c2

(
Ŷ

(2)
43 (T, U) ·Q2

)
Φ(−1,−1) . (5.11)

Hence, the number of unfixed superpotential parameters in eq. (5.4b) is reduced from 16
in the case of imposing only the traditional flavor symmetry to 2 (i.e. c1 and c2) when
we include the constraints from the full eclectic flavor symmetry. This is in contrast to
the leading order Kähler potential, see eq. (5.3), where the finite modular symmetry did
not yield additional constraints compared to the traditional flavor symmetry. Finally, the
superpotential of eq. (5.4) is thus explicitly given by

W(T, U, φ) = cij0 Ŷ
(0)

10 (T, U) Iij0 Φ(0,0) (5.12a)

+ c1
(
Ŷ

(2)
43 (T, U) ·Q1

)
Φ(−1,−1) + c2

(
Ŷ

(2)
43 (T, U) ·Q2

)
Φ(−1,−1) , (5.12b)

where Q1 and Q2 are the quartic polynomials in the twisted matter fields Φi
(−1/2,−1/2), given

in eq. (5.10).

5.3 Gauge symmetry enhancement in moduli space

Let us analyze the “accidental” continuous symmetries of the superpotential eq. (5.12) that
appear at special points in (T, U) moduli space, cf. ref. [3] for the analogous discussion in
the case of the T2/Z3 orbifold sector. We assume that the four twisted matter fields
Φi

(−1/2,−1/2) transform identically under the enhanced symmetry. To identify continuous
symmetries, we define a general U(4) transformation that leaves the Kähler potential of
Φi

(−1/2,−1/2) invariant. Infinitesimally, it reads

Φi
(−1/2,−1/2)

U(4)7−−−→ (14 + iαa Ta) Φi
(−1/2,−1/2) , (5.13)

where summation over a = 1, . . . , 16 is implied and the 4 × 4 matrices Ta denote the 16
Hermitian generators of the U(4) Lie algebra. Even though the superpotential has no
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point in alignment unbroken basis enhanced charges or
moduli of coupling Lie change gauge representations of
space Ŷ

(2)
43 (〈T 〉, 〈U〉) algebra t Mg symmetry matter Φi

(−1/2,−1/2),g

〈T 〉 = 〈U〉


Ŷ1(〈T 〉, 〈T 〉)
Ŷ2(〈T 〉, 〈T 〉)
Ŷ2(〈T 〉, 〈T 〉)
Ŷ4(〈T 〉, 〈T 〉)




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 1√
2


1 −i 0 0
0 0 −i 1
0 0 1 −i
i −1 0 0

 U(1)

+1
−1
+1
−1

〈T 〉 = 〈U〉 = i ci


1

1/
√

3
1/
√

3
1/3




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 1
2


−1 i i 1
1 −i i 1
1 i −i 1
−1 −i −i 1

 U(1)2

(+1,+1)
(+1,−1)
(−1,+1)
(−1,−1)

ci := Ŷ1(i, i)
≈ 0.01706


0 0 −i 0
0 0 0 −i
i 0 0 0
0 i 0 0



〈T 〉 = 〈U〉 = ω cω


1
−i
−i
−1




0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 1√
2


1 −i 0 0
0 0 −i 1
0 0 1 −i
i −1 0 0

 SU(2) 2⊕ 2

cω := Ŷ1(ω, ω)
≈ 0.01256


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0




0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0


Table 2. Gauge symmetry enhancements by Lie algebra elements t in the case of the T2/Z2 orbifold
sector at special points in moduli space, uncovered as “accidental” symmetries of the superpotential
due to the alignment of couplings in flavor space. Note that the field basis of twisted matter fields
Φi(−1/2,−1/2),g with well-defined gauge charges differs from the field basis of localized twisted strings
Φi(−1/2,−1/2) using the basis change Mg in eq. (5.14).

continuous symmetries for general values of the moduli (T, U), we do observe subgroups of
U(4) being unbroken at special values of the moduli. We discuss such cases in the following.

Note that from the top-down perspective of string theory, the appearance of contin-
uous symmetries is expected. As discussed in appendix C, these “accidental” symmetries
are actually gauged: at special points in moduli space some winding strings become mass-
less, giving rise to the gauge bosons of enhanced gauge symmetries. Consequently, the
enhanced symmetries that we uncover in this section are exact symmetries to all orders in
the superpotential.

In the following, we briefly discuss the results for three special configurations: i) 〈T 〉 =
〈U〉 for generic 〈U〉, ii) 〈T 〉 = 〈U〉 = ω, and iii) 〈T 〉 = 〈U〉 = i. In each case, we first
evaluate the superpotential eq. (5.12) in the respective vev configuration by analyzing the
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alignment of the couplings Ŷ (2)
43 (〈T 〉, 〈U〉) in flavor space. Then, we identify the unbroken

Lie algebra elements t := αaTa from the transformation (5.13). Afterwards, we perform a
(unitary) basis change

Φi
(−1/2,−1/2),g := Mg Φi

(−1/2,−1/2) , (5.14)

such that the unbroken Lie algebra elements tg := Mg tM−1
g are (block-)diagonalized.

Finally, we identify the continuous symmetry and the charges (or representations) of the
twisted matter fields Φi

(−1/2,−1/2),g. The results are summarized in table 2.
At 〈T 〉 = 〈U〉, there appears an enhanced U(1) symmetry. Note that the traditional

flavor subgroup Z4 ⊂ (D8 ×D8)/Z2 generated by h1 h3 is a subgroup of this U(1). Hence,
one can verify that the traditional flavor symmetry gets enhanced to

Genhanced traditional = (U(1) oZ2)×D8
Z2

for 〈T 〉 = 〈U〉 , (5.15)

where the Z2 quotient identifies (h1 h3)2 from the left factor with (h2 h4)2 from the right
factor.

At 〈T 〉 = 〈U〉 = i in moduli space, there is an enhanced U(1)2 symmetry. In this case,
the traditional flavor subgroup

Z4 ×Z4
Z2

∼= Z4 ×Z2 ⊂
D8 ×D8

Z2
(5.16)

generated by the order 4 elements h1 h3 and h2 h4 is a subgroup of this U(1)2 symmetry.
Hence, the traditional flavor symmetry is enhanced to

Genhanced traditional = (U(1) oZ2)× (U(1) oZ2)
Z2

for 〈T 〉 = 〈U〉 = i , (5.17)

where the Z2 quotient identifies (h1 h3)2 with (h2 h4)2, as before.
Finally, in the case 〈T 〉 = 〈U〉 = ω, an enhanced SU(2) symmetry emerges. Note that

the traditional flavor group [32, 49] can be written as

[32, 49] ∼=
D8 ×D8

Z2
∼=

Q8 ×Q8
Z2

, (5.18)

where the first Q8 ∼= [8, 4] is generated by the elements h1 h3 and h1 h2 h4, the second Q8
is generated by h1h3h2 and h1h3h4, and the Z2 identifies the elements −1 of both groups
in each product. Now, it turns out that the first Q8 factor is contained in SU(2). Then,
we can write the enhanced traditional flavor symmetry at T = U = ω as

Genhanced traditional = SU(2)×Q8
Z2

for 〈T 〉 = 〈U〉 = ω . (5.19)

6 Conclusions and outlook

We performed a detailed analysis of the modular symmetries of the T2/Z2 orbifold which
(among others) might be relevant for the (discrete) flavor symmetries of string compact-
ifications with an elliptic fibration. The T2/Z2 case has two unconstrained moduli with
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SL(2,Z)T × SL(2,Z)U modular symmetry and allows contact with previous bottom-up
constructions that have more than one modulus [16, 17, 35–37]. In the present paper,
we completed the discussion of our earlier work [1] now including the automorphy factors
of modular symmetry. This leads to an additional R-symmetry ZR4 (for the given mod-
ular weights of matter fields) that plays the role of a so-called “shaping symmetry” and
extends the discrete flavor symmetry. In more detail, the traditional flavor symmetry of
ref. [1] is extended from [32,49] via ZR4 to [64,216], see eq. (3.13). Together with the finite
modular flavor symmetry [144,115] (and [288,880] including CP) discussed in section 3.1
and appendix D, this leads to an eclectic flavor symmetry of order 4608 (and order 9216
with CP).

This picture reveals the fact that the top-down discussion of modular flavor symmetry
constitutes an extremely restrictive scenario, which is confirmed in other top-down sce-
narios [38–42]. As in the case of the bottom-up discussion, firstly the role of (otherwise
freely chosen) flavons is played by the moduli T and U , and secondly we arrive at a specific
finite modular group, being ΓT2 × ΓU2 = ST3 × SU3 for the T2/Z2 orbifold. In addition, we
have to consider the restrictions from the automorphy factors with modular weights fixed
from string theory (in contrast to the bottom-up case where these values can be chosen
freely). Moreover, in addition to the finite modular symmetry, string theory provides a
traditional flavor symmetry, which gives severe restrictions for Kähler- and superpotential
of the theory (discussed in section 5). Finally, the representations of the relevant matter
fields of the traditional and modular flavor symmetries are determined by the theory. We
summarize them (along with the corresponding modular weights) in table 1.

Compared to the earlier discussions [4, 5] where one modulus was frozen, the two-
modulus case allows a full understanding of mirror symmetry (as discussed in section 3
and appendix B), including the situation of matter fields whose modular weights nT and
nU differ from each other, see eq. (3.9). In this case, mirror symmetry requires the presence
of matching representations where nT and nU are interchanged.

We observe enhancements of the traditional flavor group at specific locations in moduli
space. These unified flavor groups are discussed in section 4 and summarized in figure 3.
The largest group is located at T = U = exp(πi/3) and has 2304 elements (including CP).
We also provide a detailed discussion of the tetrahedral T2/Z2 orbifold, which leads to the
group [192, 1509] as extension of the traditional flavor group. It includes a “geometrical”
A4 as an R-symmetry, where twisted matter fields transform as 3 ⊕ 1′′ of this AR4 , as
explained in section 4.3.1.

The restrictions on Kähler- and superpotential are discussed in section 5. The tra-
ditional flavor symmetry is extremely powerful towards the restrictions on the Kähler
potential. As in the T2/Z3 discussed earlier [6], the traditional flavor group restricts the
Kähler potential to its trivial diagonal form (5.3): a fact that seems to hold in full gener-
ality. In contrast, both symmetries are relevant for the form of the superpotential given in
eq. (5.12). The traditional flavor symmetry reduces the 256 terms in eq. (5.4b) down to
16, and the modular flavor symmetry reduces the remaining 16 to 2, see eq. (5.12b).

A further special feature of string theory is the possible appearance of continuous gauge
(flavor) symmetries in moduli space. At special points in moduli space, winding modes
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of the string can become massless and are candidates for the gauge bosons, as discussed
in section 5.3 (see table 2) and appendix C (with table 3). These symmetries, of course,
reflect themselves in the symmetries of the superpotential. From a bottom-up perspective
they might appear as accidental symmetries, but from the top-down point of view they
correspond to continuous gauge symmetries of string theory.

Together with our earlier discussion [3] of the T2/ZK orbifolds withK = 3, 4, 6, we now
have uncovered the basic properties of the flavor symmetries of two-dimensional orbifold
compactifications for the case of up to two unconstrained moduli. One might expect that
some of these properties will generalize from the case of toroidal orbifolds to more general
string compactifications with an elliptic fibration. Moreover, from the string theory point of
view, the next step would be the consideration of orbifolds with Wilson lines as additional
moduli. This would require the embedding of SL(2,Z)T ×SL(2,Z)U and mirror symmetry
in the Siegel modular group Sp(4,Z), as discussed in ref. [18], see also refs. [16, 17], where
bottom-up model building based on Sp(4,Z) has been initiated.
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A Strings on orbifolds

Geometrically, two spatial extra dimensions are compactified on a T2/ZK orbifold by
identifying points y in R2 if they are related by the orbifold action [43–45]

y ∼ θk y + e n , (A.1)

where k ∈ {0, . . . ,K − 1} enumerates the twisted sectors and the orbifold twist θ is of
order K, i.e. θK = 12. In addition, the column vectors ei, i ∈ {1, 2}, of the geometrical
vielbein e span the two-torus T2 and n = (n1, n2)T ∈ Z2 are called winding numbers. We
focus on the case θ = −12 of order K = 2 that generates a Z2 point group. The T2/Z2
orbifold has four inequivalent fixed points where twisted strings are localized. We denote
the corresponding matter fields by (φ(0,0), φ(1,0), φ(0,1), φ(1,1))T, where φ(n1,n2) is localized
at the fixed point yf = 1/2(n1e1 + n2e2) satisfying identically the fixed point condition
yf

!= θ yf + e n from eq. (A.1).
We focus here on the case without background Wilson lines. In the Narain formulation

of the heterotic string [46–48], the string coordinate in extra-dimensional space y is split
into right- and left-moving string modes yR and yL, respectively. Then, we define

Y :=
(
yR
yL

)
(A.2)

and eq. (A.1) is extended to

Y ∼ Θk Y + E N̂ , where Θ =
(
θR 0
0 θL

)
and N̂ =

(
n

m

)
∈ Z4 . (A.3)
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Here, k ∈ {0, . . . ,K − 1} for a Narain twist Θ, with θR, θL ∈ SO(2), that is of order K,
i.e. ΘK = 14. The Narain twist generates the Narain point group PNarain ∼= ZK and the
orbifold action Y 7→ ΘkY + EN̂ defines the so-called Narain space group SNarain,

Y 7→ g Y := Θk Y + E N̂ , where g =
(
Θk, E N̂

)
∈ SNarain . (A.4)

Each (conjugacy class) g ∈ SNarain defines a closed string and, therefore, we call g the
constructing element. We focus on symmetric orbifolds by setting θR = θL = θ and choose
θ = −12 for the T2/Z2 orbifold. Furthermore, N̂ = (n,m)T contains winding numbers
n ∈ Z2 and Kaluza-Klein numbers m ∈ Z2, so that the vectors E N̂ give rise to a four-
dimensional auxiliary lattice Γ = {EN̂ | N̂ ∈ Z4}, called the Narain lattice. The 4 × 4
matrix E is called the Narain vielbein. Due to worldsheet modular invariance of the one-
loop string partition function, E has to satisfy the condition

ETη E = η̂ :=
(

0 12
12 0

)
, where η :=

(
−12 0

0 12

)
. (A.5)

Therefore, the Narain lattice Γ is an even, integer, self-dual lattice of signature (2, 2). In
the absence of Wilson lines, the Narain vielbein E can be parameterized in terms of the
geometrical vielbein e, its inverse transposed e−T, the geometrical metric G = eTe and the
B-field background B,

E :=

 1√
2α′ e

−T(G+B) −
√

α′

2 e
−T

1√
2α′ e

−T(G−B)
√

α′

2 e
−T

 , (A.6)

see for example refs. [49, 50] (where we changed the convention from B to −B). Then, a
two-torus compactification can be parameterized by a Kähler modulus T and a complex
structure modulus U , defined as

T := 1
α′

(
B12 + i

√
detG

)
, (A.7a)

U := 1
G11

(
G12 + i

√
detG

)
= e2
e1
. (A.7b)

In the last equation of U , we have taken both two-dimensional column vectors ei of the
geometrical vielbein e to be complex numbers, ei ∈ C, so that e2/e1 is defined. Note that
T determines the strength of the B-field and the area of the extra-dimensional two-torus,
while U specifies the shape of the two-torus. It is convenient to associate a generalized
metric H to the Narain vielbein E and express H in terms of the moduli T and U ,

H(T, U) = ETE = 1
ImT ImU


|T |2 |T |2 ReU −ReT ReU ReT

|T |2 ReU |T U |2 −|U |2 ReT ReT ReU
−ReT ReU −|U |2 ReT |U |2 −ReU

ReT ReT ReU −ReU 1

 ,
(A.8)

see for example ref. [3]. Furthermore, we define the Narain twist in the lattice basis as

Θ̂ := E−1ΘE ∈ GL(4,Z) , (A.9)
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such that it maps the Narain lattice Γ to itself. Θ̂ generates the Narain point group in the
lattice basis P̂Narain. Moreover, due to the left-right structure of Θ̂ given in eq. (A.3), Θ̂
has to satisfy the conditions

Θ̂Tη̂ Θ̂ = η̂ and Θ̂TH(T, U) Θ̂ = H(T, U) . (A.10)

In general, the condition that involves the generalized metric H(T, U) can stabilize T

and/or U . However, for the symmetric T2/Z2 orbifold under consideration, both moduli
remain unconstrained.

Let us focus in the following on bulk strings, i.e. on strings that close under the
identification eq. (A.3) with constructing element (14, EN̂) ∈ SNarain. Then, right- and left-
moving momenta pR and pL of a string have to be quantized, because the extra dimensions
are compact. As the Narain lattice Γ is self-dual, pR and pL must belong to Γ, too. Hence,

P :=
(
pR
pL

)
= E N̂ ∈ Γ . (A.11)

Then, one can see easily using eqs. (A.5) and (A.8) that

− (pR)2 + (pL)2 = N̂Tη̂ N̂ = 2nTm and (pR)2 + (pL)2 = N̂TH(T, U) N̂ . (A.12)

In order to identify (massless) string states from the bulk, one has to consider the right-
and left-moving mass equations

α′

2 M
2
R = q2 + (pR)2 + 2

(
NR −

1
2

)
, (A.13a)

α′

2 M
2
L = p2 + (pL)2 + 2 (NL − 1) , (A.13b)

where NR ≥ 0 and NL ≥ 0 count the number of right- and left-moving oscillator excitations.
In addition, the mass equations (A.13) are subject to level-matching M2

R = M2
L. Note that

the total massM2(N̂ ;T, U) of a bulk string with winding and KK numbers N̂ ∈ Z4 depends
on the moduli T and U via

M2(N̂ ;T, U) := α′

2
(
M2

R +M2
L

)
= N̂TH(T, U) N̂ + q2 + p2 + 2

(
NR +NL −

3
2

)
. (A.14)

In eq. (A.13a), q = (q0, q1, q2, q3) denotes the bosonized momentum of the right-moving
worldsheet fermions. It is called the H-momentum. q has to be an element of one of the
following weight lattices of SO(8): either the vector lattice 8v or the spinor lattice 8s, see
for example ref. [51]. The shortest H-momenta q satisfy q2 = 1, i.e.

q ∈
{(
±1, 0, 0, 0

)
,

(
±1

2 ,±
1
2 ,±

1
2 ,±

1
2

)}
. (A.15)

Here, in the first case (8v), the underline denotes all permutations and, in the second
case (8s), the number of plus-signs must be even. The first component q0 of q defines
the four-dimensional chirality. For example, q0 = 0 yields a scalar. Note that in the
four-dimensional effective quantum field theory, we use the convention that the scalar
components of left-chiral superfields φ from the bulk are associated with string states
having q ∈ {

(
0,+1, 0, 0

)
}, such that string states with q ∈ {

(
0,−1, 0, 0

)
} give rise to their

CPT partners.
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A.1 The origin of modular symmetries

The rotational outer automorphisms of the (2, 2)-dimensional Narain lattice Γ are given
by those transformations Σ that satisfy for all EN̂ ∈ Γ(

14, E N̂
)
7→ (Σ, 0)−1

(
14, E N̂

)
(Σ, 0) =

(
14, E Σ̂−1N̂

) !=
(
14, E N̂

′
)
, (A.16)

where we defined Σ̂ := E−1ΣE and N̂ ′ = Σ̂−1N̂ ∈ Z4 so that EN̂ ′ ∈ Γ. Hence, Σ̂ ∈
GL(4,Z). Furthermore, we demand that Σ leaves the metric η invariant,

ΣTηΣ != η ⇔ Σ̂Tη̂ Σ̂ != η̂ . (A.17)

In other words, we demand that Σ leaves any Narain scalar product PTηP ′ for P, P ′ ∈ Γ
invariant. The resulting transformations Σ̂ form a group

Oη̂(2, 2,Z) :=
〈

Σ̂
∣∣ Σ̂ ∈ GL(4,Z) with Σ̂Tη̂ Σ̂ = η̂

〉
, (A.18)

the so-called modular group of the Narain lattice Γ. It is easy to see that Oη̂(2, 2,Z)
contains two factors of SL(2,Z), i.e. we can define

Σ̂(γT ,γU ) :=


dT aU −dT bU −cT bU −cT aU
−dT cU dT dU cT dU cT cU
−bT cU bT dU aT dU aT cU
−bT aU bT bU aT bU aT aU

 . (A.19)

Then, Σ̂(γT ,γU ) ∈ Oη̂(2, 2,Z) if

γT :=
(
aT bT
cT dT

)
∈ SL(2,Z)T and γU :=

(
aU bU
cU dU

)
∈ SL(2,Z)U . (A.20)

As a remark, Σ̂(γT ,γU ) satisfies the property of being a representation,

Σ̂(γT ,γU ) Σ̂(δT ,δU ) = Σ̂(γT δT ,γU δU ) , (A.21)

for all γT , δT ∈ SL(2,Z)T and γU , δU ∈ SL(2,Z)U . The generators S and T of the modular
group SL(2,Z) can be represented by the 2× 2 matrices

S =
(

0 1
−1 0

)
and T =

(
1 1
0 1

)
, (A.22)

respectively. Then, we can define

K̂S := Σ̂(S,12) , K̂T := Σ̂(T,12) and ĈS := Σ̂(12,S) , ĈT := Σ̂(12,T) , (A.23)

where K̂S and K̂T generate the SL(2,Z)T factor associated with the Kähler modulus T and
ĈS and ĈT generate the SL(2,Z)U factor associated with the complex structure modulus
U . The two remaining generators of Oη̂(2, 2,Z) are3

M̂ :=


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 −1

 and Σ̂∗ :=


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , (A.24)

3Following ref. [18], we have changed the conventions compared to ref. [5] by redefining K̂S, ĈS and M̂ .
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where one can easily show that mirror symmetry M̂ interchanges the SL(2,Z) factors,

M̂ Σ̂(γT ,γU ) M̂
−1 = Σ̂(γU ,γT ) . (A.25)

Having identified the modular symmetries of a toroidal compactification, the modular
symmetries of an orbifold are given by the rotational outer automorphisms of the Narain
space group SNarain that preserve the Narain metric η. They can be understood as those
modular transformations Σ̂ ∈ Oη̂(D,D,Z) (with D = 2 in the present case) that are also
from the normalizer of the Narain point group,

Σ̂ P̂Narain Σ̂−1 = P̂Narain . (A.26)

Note that the Narain twist is not an outer automorphism, but an inner automorphism of
SNarain. For example, for the T2/Z2 orbifold we have Θ̂ = −14 and P̂Narain ∼= Z2. Hence,
Oη̂(2, 2,Z)/Z2 is the modular group of the T2/Z2 orbifold. However, we consider the two-
dimensional T2/Z2 orbifold to be contained in a full six-dimensional orbifold. Hence, we
assume that the underlying six-dimensional torus is factorized as T6 = T2 ⊕ T2 ⊕ T2 and
that the Narain twist of the (6, 6)-dimensional Narain lattice takes the form

Θ̂ = Θ̂(2) ⊕ Θ̂(K2) ⊕ Θ̂(K3) . (A.27)

Here, Θ̂(Ki) denotes an orderKi Narain twist of the i-th (2, 2)-dimensional Narain sublattice
for i ∈ {1, 2, 3}, where K1 = 2 and Θ̂(2) = −14. Then, we can define a so-called sublattice
rotation Θ̂(2)⊕14⊕14 which is an outer automorphism of the Narain space group of the full
six-dimensional orbifold. Consequently, the modular group in the T2/Z2 orbifold sector
is Oη̂(2, 2,Z).

A.2 Transformation of bulk fields under modular symmetries

In this section, we analyze the action of modular transformations from Oη̂(2, 2,Z) on
those fields of the effective four-dimensional theory that originate from the bulk of the
extra dimensions. The transformation of twisted matter fields will be discussed later in
appendix D.

First, we discuss the moduli (i.e. the Kähler modulus T and the complex structure mod-
ulus U , see eq. (A.7)). According to eq. (A.16), a modular transformation Σ̂ ∈ Oη̂(2, 2,Z)
acts as

E
Σ̂7−−→ E Σ̂−1 (A.28)

on the Narain vielbein E. Consequently, we can use the generalized metric to compute the
transformation of the moduli,

H(T, U) Σ̂7−−→ Σ̂−TH(T, U)Σ̂−1 =: H(T ′, U ′) . (A.29)

This can be used to show that Σ̂(γT ,γU ) from eq. (A.19) acts on the moduli as

T 7→ aT T + bT
cT T + dT

and U 7→ aU U + bU
cU U + dU

. (A.30)
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Moreover, using eq. (A.29) we can confirm that the mirror transformation M̂ interchanges
the moduli, T ↔ U , while the CP-like transformation Σ̂∗ acts as

T
Σ̂∗7−−→ −T̄ and U

Σ̂∗7−−→ −Ū . (A.31)

As a remark, we can now understand the conditions (A.10) on a Narain twist as follows:
a Narain twist Θ̂ ∈ P̂Narain must be a modular transformation (Θ̂ ∈ Oη̂(2, 2,Z)) that leaves
the moduli invariant (compare eq. (A.29) to eq. (A.10)).

Next, we consider a general (massive) bulk field φ(N̂) labeled by its winding and KK
numbers N̂ ∈ Z4 that corresponds to a closed string with boundary condition (A.4) given
by the constructing element (14, E N̂). Its total mass M2(N̂ ;T, U) is moduli dependent
via N̂TH(T, U)N̂ , as shown in eq. (A.14). Then, the corresponding mass terms in the
superpotential read schematically

W ⊃
∑
N̂∈Z4

M2(N̂ ;T, U)
(
φ(N̂)

)2
. (A.32)

Under a (non-CP-like) modular transformation Σ̂ ∈ Oη̂(2, 2,Z), moduli and bulk fields
transform as

T
Σ̂7−−→ T ′ , U

Σ̂7−−→ U ′ and φ(N̂)
Σ̂7−−→ φ′(N̂) = ±φ(N̂ ′) , (A.33)

where we suppress the automorphy factor for φ′(N̂). In addition, we have N̂ ′ = Σ̂−1N̂ as
shown in eq. (A.16) and the factor ±1 of φ(N̂ ′) will be derived later in eq. (D.15). Then,
due to its moduli-dependence, the total string mass M2(N̂ ;T, U) transforms as

M2(N̂ ;T, U) Σ̂7−−→ M2(N̂ ;T ′, U ′) = M2(N̂ ′;T, U) , (A.34)

using eq. (A.29). Thus, we obtain

M2(N̂ ;T, U)
(
φ(N̂)

)2 Σ̂7−−→ M2(N̂ ;T ′, U ′)
(
φ′(N̂)

)2
= M2(N̂ ′;T, U)

(
φ(N̂ ′)

)2
, (A.35)

as expected for the superpotential W.

B Action of mirror symmetry on strings with nT 6= nU

In the string construction of the T2/Z2 orbifold sector (without Wilson lines), a string
state reads

|pR; qsh〉R ⊗
∏
f

(
α̃if

)N i
f
(
α̃īf

)N̄ ī
f |pL; psh〉L , (B.1)

where qsh := q + kv is the so-called shifted right-moving H-momentum and psh := p+ kV

denotes the shifted left-moving gauge momentum. In addition, the string state (B.1) is
excited by N i

f ∈ N0 left-moving bosonic oscillators α̃if of “frequency” f < 0 in the complex
direction zi := y2i−1

L + i y2i
L for i ∈ {1, 2, 3} (i.e. holomorphic oscillators), while N̄ ī

f ∈ N0
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counts the (independent) anti-holomorphic oscillators in the direction z̄ ī. Moreover, k ∈
{0, 1} corresponds to an untwisted or twisted string, respectively. The right- and left-
moving momenta (pR, pL) are given in eq. (A.11), q is from an SO(8) weight lattice and p
specifies the gauge charges as p is from the E8×E8 (or Spin(32)/Z2) weight lattice. Finally,
we assume an orbifold twist θ with twist vector v = (0, 1/2, v2, v3), such that the T2/Z2
orbifold sector is in the first out of three complex extra dimensions, while the so-called
shift vector V determines the gauge embedding of v. Then, the modular weights (nT , nU )
of the string state eq. (B.1) are defined as [19, 31]

if q1
sh ∈ {0, 1} : nT := −q1

sh , nU := −q1
sh , (B.2a)

if q1
sh 6∈ {0, 1} : nT := −1 + q1

sh −∆N1 , nU := −1 + q1
sh + ∆N1 , (B.2b)

where ∆N i := N i − N̄ ī ∈ N0 is the total number of holomorphic minus anti-holomorphic
oscillators with internal index i = 1 or ī = 1̄ in the direction of the T2/Z2 orbifold sector,
i.e. N i = ∑

f N
i
f and N̄ ī = ∑

f N̄
ī
f . Hence,

nU − nT = 0 mod 2 , (B.3)

and nT and nU coincide if the associated string state carries no oscillator excitations.
For example, a massless matter field from the bulk (k = 0) has no oscillators and q ∈
{
(
0,+1, 0, 0

)
}, so that nT = nU ∈ {0,−1}, while a massless twisted matter field (k = 1)

without oscillators has q1
sh = 1

2 and nT = nU = −1/2, see table 1. In addition, there are
twisted string states (massless or massive) that are excited by oscillators. According to
eq. (B.2), the modular weights are increased/decreased by adding oscillator excitations,

add holomorphic oscillator : nT 7→ nT − 1 , nU 7→ nU + 1 (B.4a)
add anti-holomorphic oscillator : nT 7→ nT + 1 , nU 7→ nU − 1 . (B.4b)

In both cases, the resulting string states transform identically under the Z2 orbifold projec-
tion (this is a special property of Z2 orbifolds and not true for ZK orbifolds with K 6= 2).
Hence, for each matter field Φ(nT ,nU ) with nT 6= nU , there exists a partner with exactly the
same mass and identical quantum numbers except for interchanged weights, i.e. Φ(nT ,nU )
has a partner Φ(nU ,nT ) if nT 6= nU , cf. table 1.

Mirror symmetry interchanges holomorphic and anti-holomorphic left-moving oscilla-
tors. In order to see this, we rewrite M̂ (given in eq. (A.24)) into the left-right coordinate
basis (yR, yL) at T = U in moduli space. This results in

M := E M̂ E−1 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , such that


y1

R
y2

R
y1

L
y2

L

 M7−−→ M


y1

R
y2

R
y1

L
y2

L

 . (B.5)

Recall that a general transformation Σ := E Σ̂E−1 acts on the coordinate Y eq. (A.2) as
Y

Σ7−−→ ΣY [5, appendix A.2]. Hence, the mirror transformation M acts on the complex
left-moving string coordinate z1 in the direction of the T2/Z2 orbifold sector as

z1 := y1
L + i y2

L
M7−−→ y1

L − i y2
L = z̄1̄ . (B.6)
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Hence, a mirror transformation interchanges holomorphic and anti-holomorphic oscillators
resulting in eq. (3.21).

C Gauge symmetry enhancement

It is a well-known feature of string theory that at special points (T, U) in moduli space,
additional gauge symmetries arise whose gauge bosons are associated with massless winding
strings. These massless strings become massive by moving in moduli space away from the
special points. Hence, the enhanced gauge symmetry gets broken spontaneously by the
moduli vevs. In order to identify the enhanced gauge symmetries, we look for additional
massless strings from the orbifold bulk that become massless only at certain points in
moduli space. We do this in two steps: first, we construct the massless string states on the
torus T2 and then move on to the T2/Z2 orbifold by projecting the massless torus states
onto Z2-invariant states.

In general, a massless string has to satisfy M2
R = M2

L = 0. Then, from eq. (A.13a)
together with q2 = 1 it follows that NR = 0 and pR = 0. Hence, for pR = 0 eqs. (A.11)
and (A.12) yield

pL =
√

2
α′
e n and (pL)2 = N̂TH(T, U) N̂ = 2nTm. (C.1)

For generic points (T, U) in moduli space, eq. (C.1) is satisfied only for N̂ = (04), i.e.
massless strings carry in general neither KK numbers m nor winding numbers n along
the compactified dimensions. However, for special points (T, U) in moduli space, addi-
tional massless strings can originate from specific solutions of the left-moving mass equa-
tion (A.13b),

NL = 0 , p = 0 , (pL)2 = 2⇒M2
L = 0 . (C.2)

Consequently, we can find additional massless strings if the following conditions are satisfied

N̂TH(T, U) N̂ = 2 and nTm = 1 for N̂ =
(
n

m

)
∈ Z4 . (C.3)

We denote the set of all solutions {N̂} of eq. (C.3) at (T, U) in moduli space by
Ng(T, U) ⊂ Z4.

Note that if N̂ ∈ Ng(T, U), also −N̂ ∈ Ng(T, U) is a solution to eq. (C.3). This state-
ment can be generalized as follows: assume that there is a transformation Σ̂ ∈ Oη̂(2, 2,Z),
such that a specific point (T, U) in moduli space is invariant under Σ̂ (using the transfor-
mation of the generalized metric given in eq. (A.29)). Now, take a massless string solution
N̂ ∈ Ng(T, U). Then, define N̂ ′ := Σ̂ N̂ and consider

N̂ ′Tη̂ N̂ ′ = N̂TΣ̂Tη̂ Σ̂ N̂ = N̂Tη̂ N̂ = 2⇒ n′
T
m′ = 1 , (C.4)

and
N̂ ′TH(T, U) N̂ ′ = N̂TΣ̂TH(T, U) Σ̂ N̂ = N̂TH(T, U) N̂ = 2 . (C.5)
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Hence, we see from eq. (C.3) that also N̂ ′ ∈ Ng(T, U) corresponds to a massless string.
The set of transformations Σ̂ ∈ Oη̂(2, 2,Z) that leave the specific point (T, U) in moduli
space invariant is defined as the stabilizer subgroup H(T,U) of Oη̂(2, 2,Z) at (T, U).

The set of solutions Ng(T, U) gives rise to additional massless string states with non-
trivial left-moving momenta pL,

|0; qg〉R ⊗ |pL; 0〉L with pL =
√

2
α′
e n for N̂ =

(
n

m

)
∈ Ng(T, U) , (C.6)

see eq. (B.1) (with k = 0 for the bulk). As we are especially interested in the massless
gauge bosons we choose qg := (±1, 0, 0, 0) in eq. (A.15). In addition, there are two massless
gauge bosons with pR = pL = (02), p = (016), qg = (±1, 0, 0, 0) and NL = 1. The associated
string states read

|0; qg〉R ⊗ α̃1
−1|0; 0〉L and |0; qg〉R ⊗ α̃1̄

−1|0; 0〉L (C.7)

where the indices i = 1 and ī = 1̄ lie in the two-torus that will be orbifolded by the
Z2 action.

Note that the string states (C.7) correspond to the Cartan generators, while the string
states (C.6) correspond to raising operators (with +N̂ ∈ Ng(T, U)) and lowering operators
(with −N̂ ∈ Ng(T, U)) of some non-Abelian, enhanced gauge symmetry. The root lattice
of this symmetry group is spanned by the left-moving momenta pL that correspond to
the solutions N̂ ∈ Ng(T, U) using eqs. (A.6) and (A.11). Thus, the stabilizer subgroup
H(T,U) of Oη̂(2, 2,Z) at (T, U) in moduli space gives rise to the rotational symmetries of
the lattice spanned by Ng(T, U) and, as such, contains the Weyl group W of the resulting
gauge symmetry.

Under the T2/Z2 orbifold, the gauge bosons of the Cartan generators (C.7) are pro-
jected out (since α̃1

−1 → −α̃1
−1 and α̃1̄

−1 → −α̃1̄
−1 under the Z2 orbifold), while the gauge

bosons of the raising and lowering operators get combined to Z2-invariant linear combina-
tions

|0; qg〉R ⊗ |+ pL; 0〉L + |0; qg〉R ⊗ | − pL; 0〉L , (C.8)

where ±pL is given by ±N̂ ∈ Ng(T, U), respectively.
We analyze three special points in moduli space:4 i) T = U , ii) T = U = i and iii)

T = U = ω and summarize the results in table 3. Consequently, the enhanced continuous
symmetries identified in section 5.3 are actually gauge symmetries.

D Vertex operators of the Z2 Narain orbifold

The spectrum of the T2/Z2 orbifold sector includes untwisted strings, associated with con-
structing elements (1, N̂) ∈ ŜNarain, and twisted strings constructed by elements (Θ̂, N̂) ∈
ŜNarain. In this appendix, we study how the symmetries of the theory act on these strings
by inspecting the transformations of their corresponding vertex operators.

4Note that here, in contrast with section 4, we choose T = U = ω instead of T = U = e
πi/3. However,

they correspond to equivalent points.
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point in massless strings on T2 stabilizer gauge gauge

moduli Ng(T, U) H(T,U) symmetry symmetry

space for T2 for T2/Z2

T = U (1, 0, 1, 0)T, (−1, 0,−1, 0)T
〈−14, M̂〉
∼= Z2 ×Z2

SU(2)×U(1) U(1)

T = U = i
(1, 0, 1, 0)T, (−1, 0,−1, 0)T,

(0, 1, 0, 1)T, (0,−1, 0,−1)T

〈M̂, ĈS, Σ̂∗〉
∼= [32, 27] ∼= Z2 nZ4

2
SU(2)2 U(1)2

T = U = ω

(1, 0, 1, 0)T, (−1, 0,−1, 0)T,

(0, 1,−1, 1)T, (0,−1, 1,−1)T,

(1, 1, 0, 1)T, (−1,−1, 0,−1)T

〈−14, M̂ , ĈSĈT, Σ̂∗ĈTK̂T〉
∼= [72, 46]
∼= S3 × S3 ×Z2

SU(3) SU(2)

Table 3. Gauge symmetry enhancements of the T2/Z2 orbifold sector at special points in moduli
space. We use ω := e2πi/3.

D.1 Untwisted vertex operators

The zero-mode vertex operator corresponding to a bosonic string on a toroidal background
with winding and Kaluza-Klein numbers N̂ = (n,m)T ∈ Z4 is given by [52, eq. (3.41)]

V (N̂) = e−πi/4 N̂Tη̂N̂e2πi N̂Tη̂ Y , (D.1)

where the string coordinate operator Y results from promoting E−1Y to an operator
(see eq. (A.2)). Y satisfies the commutation relations5 (derived from the action of the
sigma model) [

Y ,Y T
]

= i
4π ω̂, where ω̂ =

(
0 12
−12 0

)
(D.2)

is the symplectic structure in the Narain basis. The nonzero value of the commutator (D.2)
is a result of intrinsic non-commutative effects of closed strings [52]. The zero-mode vertex
operators (D.1) in combination with the commutator (D.2) are subject to the so-called
Weyl quantization relation

V (N̂1)V (N̂2) = eπi/2 N̂T
1 (η̂+ω̂) N̂2 V (N̂1 + N̂2) . (D.3)

According to ref. [53], this relation is instrumental to evaluate the time ordering of operators
as required in the computation of scattering amplitudes. The quantization relation (D.3)
must hold independently of whether the vertex operators have been affected by modular
transformations. As we shall shortly see (cf. eqs. (D.13)), this helps determine the phases
required for the modular generators to act consistently on twisted vertex operators [54].

Using eq. (D.1), one finds that the Z2 orbifold-invariant untwisted vertex operators
are given by

V (N̂)orb. := 1√
2

(
V (N̂) + V (−N̂)

)
. (D.4)

5The matrix components of the commutators (D.2) are such that [Y ,Y T]IJ = [Y I ,Y J ] = iω̂IJ/4π.
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These untwisted vertex operators can be arranged into 16 classes (corresponding to the 16
conjugacy classes [(14, N̂

0)]),

V N̂0 := V (n0,m0)T =
∑
N̂∈Z4

eπi N̂Tη̂N̂0
V (N̂0 + 2N̂)orb. . (D.5)

They are characterized by a representative winding number n0 and a representative
KK number m0, also called charges and collected in N̂0 := (n0,m0)T, with n0,m0 ∈
{(0, 0)T, (0, 1)T, (1, 0)T, (1, 1)T}. Note that the phases in eq. (D.5) let one establish a rela-
tion between the representative vertex operator V N̂0 of a class and any other member of
the class through

V N̂0+2N̂ ′ = e−πi N̂ ′Tη̂ N̂0
V N̂0

, with N̂ ′ ∈ Z4 . (D.6)

The phases further ensure that each class holds uniform properties, particularly in couplings
and under outer automorphisms.

Let us now focus on the transformations of untwisted vertex operators V N̂0 under the
action of general outer automorphisms of the Narain orbifold space group,

Out(ŜNarain) =
〈

(Σ̂, 0), ĥi := (14, Ti)
∣∣ Σ̂ ∈ Oη̂(2, 2,Z) , Ti ∈

1
2Z

4
〉
. (D.7)

As discussed in appendix A.1, the rotational outer automorphisms defined by Σ̂ ∈
Oη̂(2, 2,Z) = 〈K̂S, K̂T, ĈS, ĈT, M̂ , Σ̂∗〉 can be interpreted as modular transformations. In
addition, the translational outer automorphisms ĥi, i = 1, 2, 3, 4, are defined by the shift
vectors Ti whose components in the lattice basis are Tij = 1

2δi
j , cf. ref. [1, appendix A].

To determine the transformation of V N̂0 under a translation ĥi, we observe that

V (N̂) ĥi7−−→ e2πiTT
i η̂ N̂ V (N̂) . (D.8)

This implies that V (N̂) acquires a Z2 phase, which is identical for V (−N̂). Consequently,
the orbifold invariant vertex operator (D.4) inherits the same phase. It thus follows that
the untwisted vertex operator class V N̂0 gets a Z2 phase too,

V N̂0 ĥi7−−→ e2πiTT
i η̂ N̂

0
V N̂0

. (D.9)

Under a rotational outer automorphism Σ̂, N̂ transforms to Σ̂−1N̂ . Then, we expect
that the vertex operator V (N̂) transforms according to

V (N̂) Σ̂7−−→ ϕΣ̂(N̂)V (Σ̂−1N̂) . (D.10)

Here, we propose, due to the nontrivial commutation relations (D.2), a phase ϕΣ̂(N̂) that
is given by the ansatz

ϕΣ̂(N̂) = eπi N̂TAΣ̂N̂+πiCT
Σ̂
N̂
. (D.11)

The 4× 4 matrix AΣ̂ (with only half-integral off-diagonal entries) and the vector CΣ̂ ∈ Z4

will be determined next. Note that, with these conditions, ϕΣ̂(N̂) can only be a Z2 phase.
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By demanding that the Weyl quantization relation (D.3) be preserved by Σ̂ and using the
abbreviation µ̂ = 1

2(η̂ + ω̂), one arrives at

AΣ̂ = 1
2
(
µ̂− Σ̂−T µ̂ Σ̂−1

)
mod 2 . (D.12)

In contrast, CΣ̂ cannot be constrained by the quantization condition. However, the effect of
CΣ̂ is equivalent to the one of a translation ĥi in the Narain lattice, given in eq. (D.9). These
translations generate the traditional flavor symmetry, which is unbroken independently of
the moduli. Therefore, the traditional flavor symmetry allows for a free choice of the vector
CΣ̂. We choose CK̂T

= (1, 1, 0, 0)T, CM̂ = (1, 1, 1, 1)T, and CΣ̂ = 0 for Σ̂ /∈ {K̂T, M̂} such
that the transformations (D.10) generate only the finite modular group with a minimal
amount of traditional flavor transformations. Thus, we are led to the phases

ϕK̂S
(N̂) = eπi (m1n1+m2n2) , ϕK̂T

(N̂) = eπi (n1n2+n1+n2) , (D.13a)

ϕĈS
(N̂) = 1 , ϕĈT

(N̂) = 1 , (D.13b)

ϕM̂ (N̂) = eπi (m1n1+n1+n2+m1+m2) , (D.13c)

where N̂ = (n,m)T = (n1, n2,m1,m2)T. We do not determine the phase corresponding to
the CP-like generator Σ̂∗ by the previous procedure because the result would be trivial.
Instead, we fix its value by demanding that the transformations of the untwisted vertex
operators V N̂0 be compatible with the transformation φn

Σ̂∗7−−→ φ̄n of twisted states in the
operator product expansions (OPEs) of twisted fields discussed in section D.2. We then find

ϕΣ̂∗(N̂) := eπi (m1n1+m2n2) . (D.14)

Noticing that the Z2 phases (D.13) and (D.14) coincide for N̂ and −N̂ , we find that the
orbifold invariant vertex operators V (N̂)orb. transform just as

V (N̂)orb. Σ̂7−−→ ϕΣ̂(N̂) V (Σ̂−1N̂)orb. . (D.15)

Therefore, a rotational outer automorphism Σ̂ acts as

V N̂0 Σ̂7−−→ ϕΣ̂(N̂0)V Σ̂−1N̂0
. (D.16)

Since Σ̂−1N̂0 does not always take the form (n0′ ,m0′)T with n0′ ,m0′ ∈ {(0, 0)T, (0, 1)T,

(1, 0)T, (1, 1)T}, expressing V Σ̂−1N̂0 in terms of the vertex operator classes (D.5) through
eq. (D.6) introduces an extra Z2 phase in the transformation (D.16).

D.2 Operator product expansions of twisted vertex operators

Even though vertex operators of twisted string states are more involved than untwisted
vertex operators, OPEs of two twisted states in two-dimensional orbifolds are known. Let
us consider the twisted vertex operators φna and φnb of twisted strings localized at orbifold
fixed points given by the winding numbers na, nb ∈ {(0, 0)T, (0, 1)T, (1, 0)T, (1, 1)T}. Up
to a constant overall factor, they satisfy the OPE [55]

φ̄na φnb =
∑
m0

C(na, nb ;n0,m0)V N̂0
, where n0 =

(
nb − na

)
mod 2 . (D.17)
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V N̂0 with N̂0 = (n0,m0)T are the untwisted vertex operator classes (D.5), the bar on φna
denotes conjugation, and C(na, nb ;n0,m0) ∈ C are known as coupling constants. For the
T2/Z2 orbifold, they read

C(na, nb ;n0,m0) = eπi (nb)T
m0 eπi/2 (n0)T

m0
. (D.18)

By inverting eq. (D.17), we can express the classes of untwisted string states V N̂0 in
terms of combinations of different OPEs of twisted states φ̄naφnb . Explicitly, one finds

V (0,0,0,0)T = φ̄(0,0)φ(0,0) + φ̄(1,0)φ(1,0) + φ̄(0,1)φ(0,1) + φ̄(1,1)φ(1,1) , (D.19a)

V (0,0,1,0)T = φ̄(0,0)φ(0,0) − φ̄(1,0)φ(1,0) + φ̄(0,1)φ(0,1) − φ̄(1,1)φ(1,1) , (D.19b)

V (0,0,0,1)T = φ̄(0,0)φ(0,0) + φ̄(1,0)φ(1,0) − φ̄(0,1)φ(0,1) − φ̄(1,1)φ(1,1) , (D.19c)

V (0,0,1,1)T = φ̄(0,0)φ(0,0) − φ̄(1,0)φ(1,0) − φ̄(0,1)φ(0,1) + φ̄(1,1)φ(1,1) , (D.19d)

V (1,0,0,0)T = φ̄(0,0)φ(1,0) + φ̄(1,0)φ(0,0) + φ̄(0,1)φ(1,1) + φ̄(1,1)φ(0,1) , (D.19e)

V (1,0,1,0)T = i φ̄(0,0)φ(1,0) − i φ̄(1,0)φ(0,0) + i φ̄(0,1)φ(1,1) − i φ̄(1,1)φ(0,1) , (D.19f)

V (1,0,0,1)T = φ̄(0,0)φ(1,0) + φ̄(1,0)φ(0,0) − φ̄(0,1)φ(1,1) − φ̄(1,1)φ(0,1) , (D.19g)

V (1,0,1,1)T = i φ̄(0,0)φ(1,0) − i φ̄(1,0)φ(0,0) − i φ̄(0,1)φ(1,1) + i φ̄(1,1)φ(0,1) , (D.19h)

V (0,1,0,0)T = φ̄(0,0)φ(0,1) + φ̄(1,0)φ(1,1) + φ̄(0,1)φ(0,0) + φ̄(1,1)φ(1,0) , (D.19i)

V (0,1,1,0)T = φ̄(0,0)φ(0,1) − φ̄(1,0)φ(1,1) + φ̄(0,1)φ(0,0) − φ̄(1,1)φ(1,0) , (D.19j)

V (0,1,0,1)T = i φ̄(0,0)φ(0,1) + i φ̄(1,0)φ(1,1) − i φ̄(0,1)φ(0,0) − i φ̄(1,1)φ(1,0) , (D.19k)

V (0,1,1,1)T = i φ̄(0,0)φ(0,1) − i φ̄(1,0)φ(1,1) − i φ̄(0,1)φ(0,0) + i φ̄(1,1)φ(1,0) , (D.19l)

V (1,1,0,0)T = φ̄(0,0)φ(1,1) + φ̄(1,0)φ(0,1) + φ̄(0,1)φ(1,0) + φ̄(1,1)φ(0,0) , (D.19m)

V (1,1,1,0)T = i φ̄(0,0)φ(1,1) − i φ̄(1,0)φ(0,1) + i φ̄(0,1)φ(1,0) − i φ̄(1,1)φ(0,0) , (D.19n)

V (1,1,0,1)T = i φ̄(0,0)φ(1,1) + i φ̄(1,0)φ(0,1) − i φ̄(0,1)φ(1,0) − i φ̄(1,1)φ(0,0) , (D.19o)

V (1,1,1,1)T = − φ̄(0,0)φ(1,1) + φ̄(1,0)φ(0,1) + φ̄(0,1)φ(1,0) − φ̄(1,1)φ(0,0) . (D.19p)

These expressions together with the transformation properties of untwisted operators,
eqs. (D.9) and (D.16), can lead to the corresponding transformations of the twisted vertex
operators φn, as we now discuss.

D.3 Transformations of twisted vertex operators

With the help of the explicit relations (D.19) between the OPEs of twisted string states
and the untwisted states, and the transformations (D.9) and (D.16) of the latter, we
can deduce the action of Out(ŜNarain) on φ̄na φnb . One can then infer the action of
those transformations on the single twisted operators, arranged in a twisted multiplet
(φ(0,0), φ(1,0), φ(0,1), φ(1,1))T. Note that, since no oscillator excitation is present in these
twisted string states, this multiplet corresponds to the components of the twisted mat-
ter field Φ(−1/2,−1/2), i.e. with nT = nU = −1/2. However, as shown in ref. [22] in the
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case of the Z3 orbifold, oscillator excitations only affect the modular weights and not
the representation matrices. Hence, the results discussed here equally apply to the mat-
ter fields Φ(−3/2,1/2) and Φ(1/2,−3/2). In these terms, the transformations of twisted states
will be encoded in transformation matrices ρr(Σ̂) or ρr(hi), which denote r-dimensional
representations of the outer automorphisms Σ̂ and ĥi. Our goal here is to present those
transformation matrices.

D.3.1 Traditional flavor group

Let us first inspect the action of the translational outer automorphisms ĥi, defined in
eq. (D.7). Applying the transformations (D.9) on the untwisted operators (D.19) and in-
terpreting for the twisted operators that build Φ(−1/2,−1/2), we find that the twisted multiplet
transforms under a translational outer automorphism as

Φ(−1/2,−1/2)
ĥi7−−→ ρ4(hi) Φ(−1/2,−1/2) , (D.20)

where the representation matrices are given by

ρ4(h1) =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 , ρ4(h2) =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (D.21a)

ρ4(h3) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , ρ4(h4) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 . (D.21b)

They generate the traditional flavor group

(D8 ×D8) /Z2 ∼= [32, 49] . (D.22)

The irreducible representations of this group are: one four-dimensional representation 4
and 16 one-dimensional representations 1αβγδ, such that

r = 1αβγδ defined by ρr(h1) = α , ρr(h2) = β , ρr(h3) = γ , ρr(h4) = δ , (D.23)

where α, β, γ, δ ∈ {−1,+1} and 10 := 1++++ is the trivial singlet.
The traditional flavor group eq. (D.22) contains the Z2 × Z2 × Z2 space and point

group (PG) selection rules [56]. For example, twisted matter strings transform as follows

ZPG
2 : φ(n1,n2)

(h1h3)2
7−−−−−→ − φ(n1,n2) , (D.24a)

Ze12 : φ(n1,n2)
h37−−→ (−1)n1 φ(n1,n2) , (D.24b)

Ze22 : φ(n1,n2)
h47−−→ (−1)n2 φ(n1,n2) , (D.24c)

while the bulk strings Φ(0,0) and Φ(−1,−1) transform as 10. Hence, they are invariant under
the transformations (D.24).
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Since twisted strings transform in the (real) representation 4 of [32, 49], the OPEs
φ̄naφnb can be associated with the tensor product

4 ⊗ 4 =
⊕

α,β,γ,δ ∈ {+,−}
1αβγδ . (D.25)

Hence, eq. (D.19) implies that the 16 classes of untwisted vertex operators V N̂0 build the
16 one-dimensional representations 1αβγδ of the traditional flavor symmetry. Further, the
representation 4 ⊗ 4 is not faithful. Thus, taking only the untwisted vertex operators
V N̂0 into account, the traditional flavor symmetry is only [16, 14] ∼= (Z2)4. This can be
confirmed by the explicit one-dimensional representations (D.23).

Finally, since oscillator excitations are not affected by the transformations associated
with ĥi, all other twisted matter fields Φ(nT ,nU ) (see table 1) must transform in the same
4-dimensional representation defined by eq. (D.21).

D.3.2 Modular flavor group

Let us consider the twisted matter field Φ(−1/2,−1/2), which builds a 4-plet of the traditional
flavor group, as seen in the previous section. Its transformations under rotational auto-
morphisms Σ̂ are governed by eq. (3.1), where the automorphy factors j(nT ,nU )(Σ̂, T, U)
are given by eqs. (3.3) or (3.6), depending on Σ̂. Further, the 4-dimensional matrix repre-
sentation of these transformations acting on the multiplet Φ(−1/2,−1/2) are identified using
the OPEs (D.19), resulting in

ρ41(K̂S) = 1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , ρ41(K̂T) =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , (D.26a)

ρ41(ĈS) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , ρ41(ĈT) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (D.26b)

ρ41(M̂) = 1√
2


0 0 −1 1
0 0 1 1
1 −1 0 0
−1 −1 0 0

 . (D.26c)

They build the representation 41 of the finite modular flavor group (ST3 × SU3 ) o ZM̂4
∼=

[144, 115] without CP (see appendix E.3).
Note that, as in the traditional flavor group, the tensor product 41 ⊗ 41 of twisted

vertex operators does not behave as a faithful representation. Hence, we learn that the
classes of untwisted vertex operators V N̂0 transform only under the subgroup [72, 40] of
the full finite modular symmetry.

The finite modular flavor group can be extended by CP . Since the CP-like transforma-
tion Σ̂∗ interchanges matter fields with their conjugates, the 4-dimensional representation
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of twisted matter strings transforms as Φ(−1/2,−1/2) ↔ Φ̄(−1/2,−1/2). So, the representation of
Σ̂∗ acts on (Φ(−1/2,−1/2), Φ̄(−1/2,−1/2))T. Furthermore, to determine the corresponding auto-
morphy factor we follow the discussion in section 3.1 and consider the associated GSp(4,Z)
element M∗ = diag(−1,−1, 1, 1) [18, eq. (39)]. This implies A = −12, B = 0, C = 0 and
D = 12 in the context of eq. (3.3). It follows that the automorphy factor of CP is trivial.
Hence, we find that Σ̂∗ acts on the twisted multiplet as(

Φ(−1/2,−1/2)
Φ̄(−1/2,−1/2)

)
Σ̂∗7−−−→ ρ41⊕41(Σ̂∗)

(
Φ(−1/2,−1/2)
Φ̄(−1/2,−1/2)

)
=
(

0 14
14 0

)(
Φ(−1/2,−1/2)
Φ̄(−1/2,−1/2)

)
. (D.27)

This enhances the finite modular flavor group to
[
(ST3 × SU3 ) oZM̂4

]
×ZCP2

∼= [288, 880].

E Details on the superpotential

E.1 Representation of modular forms

The four-dimensional multiplet of modular forms Ŷ (2)
43 (T, U) has been given in eq. (4.1). It

transforms under modular transformations with a 43 representation of the finite modular
group (ST3 × SU3 ) oZM̂4

∼= [144, 115]. In detail, for a modular transformation Σ̂ we find

Ŷ
(2)

43 (T, U) Σ̂7−−→ j(2)(Σ̂, T, U) ρ43(Σ̂) Ŷ (2)
43 (T, U) , (E.1)

where j(2)(Σ̂, T, U) is the automorphy factor, cf. section 3.1, and the representations
ρ43(Σ̂) read

ρ43(K̂S) =


−1

2 −
√

3
2 0 0

−
√

3
2

1
2 0 0

0 0 −1
2 −

√
3

2

0 0 −
√

3
2

1
2

 , ρ43(K̂T) =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 , (E.2a)

ρ43(ĈS) =


−1

2 0 −
√

3
2 0

0 −1
2 0 −

√
3

2

−
√

3
2 0 1

2 0
0 −

√
3

2 0 1
2

 , ρ43(ĈT) =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , (E.2b)

ρ43(M̂) =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (E.2c)

Note however that this is an unfaithful representation, i.e. ρ43(Σ̂) only spans the group
(ST3 × SU3 ) oZ2 ∼= [72, 40].
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E.2 Components of the superpotential

There are 16 terms in the product of four twisted matter fields Φi
(−1/2,−1/2) =

(φi(0,0), φ
i
(1,0), φ

i
(0,1), φ

i
(1,1))T, i ∈ {1, 2, 3, 4}, that are invariant under the traditional flavor

symmetry (D8 ×D8) /Z2 ∼= [32, 49]. They read

I1 = φ1
(0,0)φ

2
(0,0)φ

3
(0,0)φ

4
(0,0) + φ1

(1,0)φ
2
(1,0)φ

3
(1,0)φ

4
(1,0)

+ φ1
(0,1)φ

2
(0,1)φ

3
(0,1)φ

4
(0,1) + φ1

(1,1)φ
2
(1,1)φ

3
(1,1)φ

4
(1,1) , (E.3)

and

I2 = ∆1
(
φ(0,0), φ(1,0), φ(0,1), φ(1,1)

)
, I11 = Ξ

(
φ(0,0), φ(1,0), φ(0,1), φ(1,1)

)
, (E.4a)

I3 = ∆2
(
φ(0,0), φ(1,0), φ(0,1), φ(1,1)

)
, I12 = Ξ

(
φ(0,0), φ(0,1), φ(1,0), φ(1,1)

)
, (E.4b)

I4 = ∆3
(
φ(0,0), φ(1,0), φ(0,1), φ(1,1)

)
, I13 = Ξ

(
φ(0,0), φ(1,0), φ(1,1), φ(0,1)

)
, (E.4c)

I5 = ∆1
(
φ(0,0), φ(0,1), φ(1,0), φ(1,1)

)
, I14 = Ξ

(
φ(0,0), φ(1,1), φ(1,0), φ(0,1)

)
, (E.4d)

I6 = ∆2
(
φ(0,0), φ(0,1), φ(1,0), φ(1,1)

)
, I15 = Ξ

(
φ(0,0), φ(0,1), φ(1,1), φ(1,0)

)
, (E.4e)

I7 = ∆3
(
φ(0,0), φ(0,1), φ(1,0), φ(1,1)

)
, I16 = Ξ

(
φ(0,0), φ(1,1), φ(0,1), φ(1,0)

)
, (E.4f)

I8 = ∆1
(
φ(0,0), φ(1,1), φ(1,0), φ(0,1)

)
, (E.4g)

I9 = ∆2
(
φ(0,0), φ(1,1), φ(1,0), φ(0,1)

)
, (E.4h)

I10 = ∆3
(
φ(0,0), φ(1,1), φ(1,0), φ(0,1)

)
, (E.4i)

where we have used the following abbreviations:

Ξ(A,B,C,D) = A1B2C3D4 +A2B1C4D3 +A3B4C1D2 +A4B3C2D1 , (E.5a)
∆i(A,B,C,D) = ∆̃i(A,B) + ∆̃i(C,D) , (E.5b)

with

∆̃1(A,B) = A1A2B3B4 +A3A4B1B2 , (E.6a)
∆̃2(A,B) = A1A3B2B4 +A2A4B1B3 , (E.6b)
∆̃3(A,B) = A1A4B2B3 +A2A3B1B4 . (E.6c)

As described in eq. (5.8), the vector (I1, . . . , I16)T transforms under the modular sym-
metry [144, 115] with R(Σ̂). These 16× 16 matrices are generated by

R(ĈS) =



1 0 0 0 0 0 0 0
0 0 13 0 0 0 0 0
0 13 0 0 0 0 0 0
0 0 0 13 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 12
0 0 0 0 0 0 12 0


, R(ĈT) =



1 0 0 0 0 0 0 0
0 13 0 0 0 0 0 0
0 0 0 13 0 0 0 0
0 0 13 0 0 0 0 0
0 0 0 0 0 12 0 0
0 0 0 0 12 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0


. (E.7)
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order 1 2 2 2 2 2 3 3 4 4 4 4 6 6 6 6 12 12
size 1 1 6 6 9 9 4 4 6 6 18 18 4 4 12 12 12 12
name C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 −1 −1 1 1 1 1 1 1 −1 −1 1 1 −1 −1 1 1
12 1 1 −1 −1 1 1 1 1 −1 −1 1 1 1 1 −1 −1 −1 −1
13 1 1 1 1 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1
14 1 −1 1 −1 1 −1 1 1 −i i −i i −1 −1 1 −1 −i i
15 1 −1 −1 1 1 −1 1 1 i −i −i i −1 −1 −1 1 i −i
16 1 −1 −1 1 1 −1 1 1 −i i i −i −1 −1 −1 1 −i i
17 1 −1 1 −1 1 −1 1 1 i −i i −i −1 −1 1 −1 i −i
21 2 2 0 0 −2 −2 2 2 0 0 0 0 2 2 0 0 0 0
22 2 −2 0 0 −2 2 2 2 0 0 0 0 −2 −2 0 0 0 0
41 4 −4 2 −2 0 0 1 −2 0 0 0 0 2 −1 −1 1 0 0
42 4 −4 −2 2 0 0 1 −2 0 0 0 0 2 −1 1 −1 0 0
43 4 4 0 0 0 0 −2 1 2 2 0 0 1 −2 0 0 −1 −1
44 4 4 0 0 0 0 −2 1 −2 −2 0 0 1 −2 0 0 1 1
45 4 4 2 2 0 0 1 −2 0 0 0 0 −2 1 −1 −1 0 0
46 4 4 −2 −2 0 0 1 −2 0 0 0 0 −2 1 1 1 0 0
47 4 −4 0 0 0 0 −2 1 2i −2i 0 0 −1 2 0 0 −i i
48 4 −4 0 0 0 0 −2 1 −2i 2i 0 0 −1 2 0 0 i −i

Table 4. Character table of (ST3 × SU3 ) o ZM̂4
∼= [144, 115], where ‘size’ means the number of

elements in a conjugacy class and ‘order’ denotes the order of its elements.

In addition, R(M̂) acts on each four-dimensional subspace defined by
I1
I2
I3
I4

 ,


I5
I8
I11
I13

 ,


I6
I9
I12
I14

 and


I7
I10
I15
I16

 (E.8)

with the 4× 4 matrix

1
2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 . (E.9)

E.3 (ST
3 × SU

3 ) o ZM̂
4 character table

A presentation for the group (ST3 × SU3 ) oZM̂4
∼= [144, 115] is given by

〈
ĈS, ĈT, M̂

∣∣ Ĉ2
S = Ĉ2

T = M̂4 =
(
ĈSĈT

)3
=
(
ĈSM̂2)2

=
(
ĈTM̂2)2

= 1 and (E.10a)

M̂ Ĉi M̂ Ĉj = Ĉj M̂ Ĉi M̂ where i, j ∈ {S,T}
〉
. (E.10b)

Furthermore, we define K̂S = M̂3ĈSM̂ and K̂T = M̂3ĈTM̂, such that the names of the
abstract generators ĈS, ĈT, K̂S, K̂T and M̂ allow for an intuitive association with the modular
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order 1 3 3 2
size 1 4 4 3
name C1 C2 C3 C4

1 1 1 1 1
1′ 1 ω ω2 1
1′′ 1 ω2 ω 1
3 3 0 0 −1

Table 5. Character table of A4. We use the definition ω := exp(2πi/3).

transformations ĈS, ĈT, K̂S, K̂T and M̂ . The group has 18 conjugacy classes

C1 = [1] , C2 = [M̂2] , C3 = [ĈS] , (E.11a)
C4 = [M̂2 ĈS] , C5 = [ĈS K̂S] , C6 = [M̂2 ĈS K̂S] , (E.11b)
C7 = [ĈSĈT] , C8 = [ĈSĈT K̂SK̂T] , C9 = [M̂] , (E.11c)
C10 = [M̂3] , C11 = [M̂ ĈS] , C12 = [M̂3 ĈS] , (E.11d)
C13 = [M̂2 ĈSĈT K̂SK̂T] , C14 = [M̂2 ĈSĈT] , C15 = [ĈSĈT K̂S] , (E.11e)
C16 = [M̂2 ĈSĈT K̂S] , C17 = [M̂ ĈSĈT] , C18 = [M̂3 ĈSĈT] . (E.11f)

The character table is given in table 4. Note that out of the four-dimensional represen-
tations, the 4i-plets with i = 3, . . . , 6 are not faithful representations and span only the
group (ST3 × SU3 ) oZM̂2

∼= [72, 40].

E.4 A4 character table

We denote as a, b and c the abstract A4 generators associated with h1, h2 and (ĈTĈS)2,
respectively, see section 4.3.1. In these terms, A4 is defined by the presentation

A4 =
〈
a, b, c

∣∣ a2 = b2 = c3 = (ab)2 = 1, bca = bacb = c
〉
, (E.12)

and has four conjugacy classes:

C1 = [1] , C2 = [c2] , C3 = [c] , C4 = [a] . (E.13)

The character table of A4 is shown in table 5, where we also present the order and number
(size) of the elements in each conjugacy class.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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