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Abstract. Given a real fan in a real space consisting of real convex polyhedral cones,
we construct a complete real fan which contains the fan, by two completely different methods.
The first one is purely combinatorial and a proof of a related version was sketched earlier by
Ewald. The second one is based on Nagata’s method of imbedding an abstract variety into a
complete variety. For the second method, we introduce the theory of Zariski-Riemann space
of a fan.

Introduction. A fan in a real space is defined as a cell complex consisting of poly-
hedral cones with the apex at the origin. A finite fan Σ is said to be complete if the union
of cones in Σ is the whole space. The theory of toric varieties says that, to each finite fan
consisting of rational polyhedral cones, is associated a toric variety, and the fan is complete
if and only if the toric variety is complete (see, for example, Ewald [E], Fulton [F2], Oda
[O1]). Nagata’s compactification theorem says that any algebraic variety can be embedded
in a complete algebraic variety [N1, Theorem 4.3]. This theorem was generalized for normal
algebraic varieties with algebraic group actions by Sumihiro [S1], i.e., the equivariant com-
pletion theorem. By using Sumihiro’s theorem, we can complete a rational fan Σ as follows
Let X be the toric variety associated to Σ . Since X is a normal variety with torus action, there
exists an equivariant completion X̄. Since X̄ is a complete toric variety, it corresponds to a
complete fan Σ̄ . Then Σ̄ is a completion of Σ .

Since it is a quite simple problem on convex polyhedral sets in a real space, we would
like to avoid this roundabout proof. In this paper, we give two different direct proofs which
are valid for not necessarily rational fans. The first proof given in Section 1 is purely combi-
natorial and was sketched in [E, Theorem 2.8] in the case of a rational fan.

The second one is done by using Nagata’s method applied for fans. In Nagata’s proof, the
Zariski-Riemann space, i.e., the topological space of all valuation rings of the function field
plays an important role. The Zariski-Riemann space was introduced originally by Zariski
[Z1], [Z2] for the theory of local uniformization of algebraic varieties. In Section 2, we
define the Zariski-Riemann spaces for rational fans. We discuss on blowups of not necessarily
rational fans in Section 3. Using the results of these sections, the existence of the completion
is first proved for rational fans in Section 4. In the last section, the definition of the Zariski-
Riemann spaces is generalized for k-fans for any subfield k of R. Theorem 5.4 claims that any
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finite k-fan is embedded in a complete k-fan. The theorem applied for k = R is the second
proof of the completion theorem for real fans.

1. Combinatorial proof.

NOTATION. Given a set E of vectors in Rn we denote by pos E the set of all linear
combinations of elements of E with non-negative coefficients, and call it the positive hull

of E. If E is finite, we say pos E is a (real) polyhedral cone σ . The dimension dim σ of
σ is defined to be the dimension of the linear hull lin σ of σ . If σ has linearly independent
generators, we call it a simplicial cone. If σ has rational generators, we call σ rational. By
a face of σ we mean an intersection σ ∩ H , where H is a (linear) hyperplane such that σ is
totally contained in one of the two closed half-spaces bounded by H . If {0} is a face of σ , we
call it the apex of σ .

A collection Σ of (real) polyhedral cones with apex {0} is said to be a (real) fan if it is
a cell complex, that is, (i) each face of a cone of Σ is also in Σ , (ii) the intersection of two
cones of Σ is a common face of the cones. We call Σ rational if all cones are rational. If Σ

and Σ ′ are fans in Rn and Σ ⊂ Σ ′, we say Σ is a subfan of Σ ′. By the star st(σ,Σ) of a
cone σ ∈ Σ in Σ we mean the set of all cones τ ∈ Σ such that σ ⊂ τ . The support |Σ| of
Σ is the union of the cones in Σ . If Σ is finite and |Σ| equals Rn, we say Σ is complete, and
a completion of any of its subfans. If a finite fan Σ is not complete, we call the collection of
cones of Σ which lie in the (topological) boundary of |Σ| the boundary bd Σ of Σ . Clearly,
bd Σ is again a fan. Given ε > 0, the ε-neighborhood of Σ is defined as the union of all
1-cones pos{a} where a is a unit vector representing a point of distance less than ε from |Σ|.

As a specific type of cones we consider the following. If ρ is a 1-dimensional cone not
contained in the linear hull of a cone σ , we call σ.ρ = pos(σ ∪ρ) a pyramid with apex ρ over
the basis σ . Clearly, dim(σ.ρ) = 1 + dim σ . A pyramid over a pyramid is said to be a twofold

pyramid or a 2-pyramid, and a pyramid over a (k − 1)-pyramid inductively a k-fold pyramid

or a k-pyramid. σ is considered a 0-fold pyramid over itself. k-fold pyramids can be written
as

σ.ρ1. · · · .ρk = σ.τ ,

where τ = ρ1. · · · .ρk is a simplicial cone. If P is a polytope or a polyhedral set and
p1, . . . , pk are vectors (representing points) such that σ = pos P and ρi = pos pi , i =

1, . . . , k, then σ.τ = pos(P.p1. · · · .pk), where P.p1. · · · .pk is an ordinary k-fold pyramid
(unbounded if P is not a polytope).

1.1. Main result. All fans in this section are assumed to be finite.

THEOREM 1.1. Every real fan Σ can be completed.

In [E, Theorem 2.8], we have sketched the proof of this theorem for rational fans. In this
section, we present an explicit proof in the general case. The second proof of this theorem is
given in Section 5 (cf. Theorem 5.4).

PROOF OF THEOREM 1.1. For the purpose of our proof it is useful to show a somewhat
stronger version of Theorem 1.1:
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THEOREM 1.2. Given a fan Σ and an ε > 0, there exists a fan Σ0 and a complete fan

Σ ′ such that the following are satisfied:
(1) Σ ⊂ Σ0 ⊂ Σ ′.

(2) Σ0 \Σ consists of the multifold pyramids joining the cones of Σ to simplicial cones

in bd Σ0, and of the faces of such pyramids.

(3) If σ ∈ Σ ′ intersects the cells of Σ only in 0, then σ is a simplicial cone.

(4) |Σ| \ {0} lies in the interior of |Σ0|.

(5) |Σ0| is contained in the ε-neighborhood of Σ .

We apply induction on n. For n = 1, either Σ = {{0}} or Σ = {{0}, pos{1}} or Σ =

{{0}, pos{−1}} or Σ = {{0}, pos{1}, pos{−1}}, the last fan being the completion of all the
others. If n = 2, let S be the unit circle. We may assume {0} not to be the only cone of Σ , any
complete fan being a completion of Σ in this case. So Σ splits S into finitely many (closed)
circular arcs. Let C be one of these arcs and p, q its end points. We choose points p′, q ′ in the
relative interior of C so that the distances between p,p′ and q, q ′, respectively, are less than
ε/2, and that the cones pos{p,p′}, pos{q, q ′} intersect only in {0}. We extend Σ by adding
pos{p,p′}, pos{p′}, pos{q, q ′}, pos{q ′}. Doing this for all arcs (and assuming ε small enough
to begin with), we obtain a fan Σ0. Now S \ |Σ0| consists of finitely many arcs. If one of
the arcs has length π or more, we split it into two arcs of length less than π . We add to Σ

the closed angular regions determined by the arcs and their boundary 1-cones and obtain a
complete fan Σ ′. It is readily verified that Σ , Σ0 and Σ ′ satisfy (1) through (5).

Let n > 2. Again we may assume that {0} is not the only cone of Σ . So let ρ be a 1-cone
of Σ for which st(ρ,Σ) is not complete (if none of such exists, Σ is already complete). Let
H be the (affine) tangent hyperplane of the unit sphere S at a = ρ ∩ S. Then H intersects the
cones of Σ either not at all or in convex polytopes (if bounded) or so-called polyhedral sets
(if unbounded). In Figure 1 we illustrate the case n = 3 (heavy lines and hatched regions).
Let d be the smallest distance that a has from the cones of Σ \ st(ρ,Σ). Clearly d > 0. We
consider the (n − 2)-sphere Sa of radius at most d/2 and center a in H . For the moment we
regard a as the origin of the (n − 1)-space H . By posa let us denote the positive hull with
respect to this origin.

Σa := {posa(H ∩ σ) ; σ ∈ st(ρ,Σ)}

is then a fan in H . It represents the quotient fan Σ/ρ (up to a translation; compare Ewald [E,
p. 81, Definition 3.3]).

Now we apply the inductive assumption to Σa and obtain for any εa > 0 fans Σa,0, Σ ′
a

satisfying (1)–(5) (with terms indexed by a, and d/2 considered as unit length). We wish to
construct an extension of Σ by using Σa,0, Σ ′

a . Since the latter fans collide, in general, with
cones of Σ \ st(ρ,Σ), we first construct a map which assigns to each cone of Σ ′

a a polytope
or polyhedral set contained in the cone:

I. Let σa ∈ Σa , hence σa = posa(H ∩ σ) for some σ ∈ st(ρ,Σ). Then we assign

σa �→ φa(σa) = H ∩ σ .
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FIGURE 1.

II. Let σa ∈ Σa,0 \ Σa be a multifold pyramid σa,o.ρa,1. · · · .ρa,k, where σa,o ∈ Σa ,
σa,o = posa(H ∩ σo), and ρa,i = posa{pa,i}, pa,i ∈ Sa , i = 1, . . . , k. We assign

σa �→ φa(σa) = clconv((H ∩ σo) ∪ {pa,1} ∪ · · · ∪ {pa,k}) ,

where “cl” means the “topological closure” (needed if H ∩ σo is unbounded).
III. Let σa ∈ Σa,0 \ Σa and σa ∩ |Σa| = {a} or σa ∈ Σ ′

a \ Σa,0. Then σa =

posa{p
1, . . . , pr }, where p1, . . . , pr are in Sa and linearly independent (with respect to H as

a linear space). We set

σa �→ φa(σa) = conv{a, p1, . . . , pr } (an (r + 1)-simplex) .

In Figure 1 the dotted regions illustrate the φa(σa) of type II or III.
IV. φa({a}) = {a}.

LEMMA 1.3. φa as defined by I–IV maps Σ ′
a onto a cell complex A consisting of

polytopes and polyhedral sets in H . It has the following properties:
(a) φa is bijective and preserves inclusions.

(b) posa φa(σa) = σa for all σa ∈ Σ ′
a .

(c) εa > 0 can be chosen so that for any τ ∈ Σ \ st(ρ,Σ) we have: τ ∩ |A| is empty

or contained in φa(σa) for some σa ∈ Σa .

PROOF. (a) and (b) readily follow from the definitions I–IV. In order to show (c) we
recall an elementary fact from convex polytope theory: (*) If F,G are (closed) polytopes or



COMPLETION OF REAL FANS AND ZARISKI-RIEMANN SPACES 193

polyhedral sets in Rn such that F ∩ G is empty, then F and G have positive distance, that is,
there exists a d > 0 such that each point of F has at least distance d from G. Suppose (c)
is false. Then there exists a τ ∈ Σ \ st(ρ,Σ) and an x in τ ∩ |A| but not in φa(σa) for any
σa ∈ Σa . Since the φa(σa) of type III are contained in the ball Ba , x cannot lie in one of such.
So x lies in a k-fold pyramid φa(σa,0.p

1. · · · .pk) over φa(σa,0), where σa,0 ∈ Σa but x does
not lie in the basis φa(σa,0) of the pyramid.

Let F be the smallest face of τ ∩ H which contains x (in its relative interior). If F ∩

φa(σa,0) = ∅, then F has, by (*), positive distance from φa(σa,0), and we choose εa to be
at most half this distance. Then x cannot lie in the above pyramid. So let F ∩ φa(σa,0) be
nonempty. Since F and φa(σa,0) are intersections of cones of Σ and H , F ∩ φa(σa,0) is a
common face G of F and φa(σa,0). Let dim G = m. Then G, a, and x span an (m + 2)-
dimensional affine space in which the hyperplanes spanned by G, a and G, x, respectively,
have an angle α > 0 (see the illustration in Figure 1). Since x lies in the k-fold pyramid
φa(σa,0).p

1. · · · .pk over φa(σa,0), the angle α could be made arbitrarily small by choosing
εa small enough, a contradiction to α > 0 being given. So let εa be chosen appropriately.
Since our arguments apply to finitely many faces, we may select the smallest εa among those
which occur as a common bound. This proves Lemma 1.3. ✷

Now we define the following map ψa on A:
I′. If σ ∈ Σ and H ∩ σ ∈ A, we assign

H ∩ σ �→ ψa(H ∩ σ) = σ .

II′. If φa(σa) = clconv((H ∩ σo) ∪ {pa,1} ∪ · · · ∪ {pa,k}) according to II, we consider
the point pa,i as vector qi = a + pa,i in Rn and assign for ρi = pos{qi}, i = 1, . . . , k

φa(σa) �→ ψa(φa(σa)) = σo.ρ1. · · · .ρk .

III′. If φa(σa) = conv{a, p1, . . . , pr } according to III, we consider again the points pi

as vectors q i = a + pi in Rn and assign for ρi = pos{q i}, i = 1, . . . , r (and ρ = pos a)

φa(σa) �→ ψa(φa(σa)) = ρ.ρ1. · · · .ρr .

IV′.

{a} �→ ψ({a}) = ρ .

LEMMA 1.4. If we add to Σ all cones ψa(φa(σa)) and their faces for σa ∈ Σ ′
a \ Σa ,

then we obtain a set Σ(1) which is a fan, provided εa is chosen small enough.

PROOF. By construction, ψa clearly is bijective. We must show that for sufficiently
small εa two cones τ, τ ′ of Σ(1) intersect in a common face of τ, τ ′ which belongs to Σ(1).
Since Σ ⊂ Σ(1), this is true if τ, τ ′ both lie in Σ . Let τ ∈ Σ , τ ′ = σo.ρ1. · · · .ρk of type II′.
If σo ∩ H is bounded, we have τ ′ = pos((σo ∩ H) ∪ {q1, . . . , qk}), and by Lemma 1.3, (c)
τ ′ ∩ |Σ| = σo for sufficiently small εa , so τ ∩ τ ′ = τ ∩ σo is a common face of τ and τ ′.

If σo ∩ H is unbounded, we consider an affine hyperplane H ′ which does not contain
0 such that σo ∩ H ′ is nonempty and bounded (H ′ exists since 0 is the apex of σo). For
sufficiently small εa the cones ρ1, . . . , ρk intersect H ′ in points q ′

1, . . . , q
′
k, respectively, so
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that τ ′ = pos((σo ∩ H ′) ∪ {q ′
1, . . . , q

′
k}). We may again apply the arguments of Lemma 1.3,

(c) so as to obtain τ ′ ∩ |Σ| = σo for sufficiently small εa .
For all the other choices of τ, τ ′ analogous arguments apply. Since only finitely many

restrictions are imposed on εa , Lemma 1.4 follows. ✷

Now we apply to Σ(1) the same procedure of extension as we applied to Σ , choosing as
ρ a 1-cone ρ1 of the “old” fan Σ (if there is a ρ1 other than ρ for which Σ/ρ1 is incomplete).
We denote the new fan by Σ(2). Continuing in this way, we find after a finite number i of
steps a fan Σ(i) =: Σ0 such that Σ0/ρj is complete for all 1-cones ρj = ρ1, . . . , ρi . We
assert:

LEMMA 1.5. Given ε > 0, Σ0 can be chosen so that (2), (4) and (5) in Theorem 1.2
are satisfied for Σ0 instead of Σ0.

PROOF. First we show that (2) in Theorem 1.2 holds for Σ(1) instead of Σ0. In fact,
by the definition of φa the points pa,1, . . . , pa,k in II and the points p1, . . . , pr in III lie
on the boundary of |A| (A as in Lemma 1.3). Hence, by the definition of ψa , we see that
ρa,1, . . . , ρa,k (see II′) and ρ1, . . . , ρr (see III′) lie in bd Σ(1). So if σ is an element of Σ(1),
we find σ = σ0 · τ0, where σ0 ∈ Σ and τ0 either equal some ρ1. · · · .ρk (if σ0 is different from
ρ1) or some ρ1. · · · .ρr (if σ0 = ρ1). In both cases τ0 is a simplicial cone in bd Σ(1).

According to the construction of Σ(2) we see, analogously, that for σ ∈ Σ(2) \ Σ(1) we
have σ = σ1.τ1, where σ1 ∈ Σ(1) and τ1 is a simplicial cone in bd Σ(2). Since either σ1 ∈ Σ

or σ1 = σ0.τ0 for σ0 ∈ Σ and τ0 is a simplicial cone in bd Σ(1), we obtain σ = σ0.τ0.τ1.
According to Lemma 1.4 applied to Σ(1), Σ(2) instead of Σ , Σ(1), respectively, the choice
of a sufficiently small εa,1 (instead of εa) guarantees that τ0 ∈ bd Σ(2). Therefore, τ0.τ1 ∈

bd Σ(2) so that (2) holds for Σ,Σ(2) instead of Σ,Σ0, respectively. Continuing in this way
we find that (2) is also satisfied if we replace Σ(2) successively by Σ(3), . . . ,Σ(i) = Σ0. Let
hereby εa,2, . . . , εa,i replace εa,1.

(4) is readily implied by the construction of Σ0. In order to obtain (5) we choose
εa,1, . . . , εa,i all to be smaller than the given ε > 0. Since pa,1, . . . , pa,k in II, p1, . . . , pr in
III, and their analogs in the constructions of Σ(2), . . . ,Σ(i) all lie in the ε-neighborhood of
Σ , the same is true for τ0, τ1 and their analogs in Σ(2), . . . ,Σ(i) = Σ0. This implies (5) for
Σ0. ✷

If |Σ0| is contained in a (linear closed) half-space, we add to Σ0 an n-dimensional
simplicial cone σ and its faces so that σ ∩|Σ0| = {0} and pos(σ ∪|Σ0|) = Rn. The extended
fan we denote again by Σ0.

In order to construct Σ0 and Σ ′ we consider the set P = cl(Rn \ |Σ0|). P and |Σ0|

have a common boundary which carries a subfan Σ00 of Σ0 and is a union F1 ∪ · · · ∪ Fm of
(n − 1)-dimensional cones of Σ00. Let

Hi := lin Fi , i = 1, . . . ,m

be the linear hyperplanes spanned by Fi , and let H+
i , H−

i be the closed half-spaces bounded
by Hi .
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LEMMA 1.6. Σ0 can be mapped isomorphically onto a fan in such a way that |Σ|

remains pointwise fixed, and that all Hi are different. We denote the new fan again by Σ0.

PROOF. Each cone in Σ0 \Σ is either a multifold pyramid with basis in Σ and apex-1-
cones not in Σ or a simplicial cone with generating 1-cones not in Σ . Replacing the 1-cones
by 1-cones in sufficiently small neighborhoods does not change the structure of Σ0 and leaves
Σ unchanged. The new 1-cones may be chosen so that no two of the hyperplanes H1, . . . , Hm

coincide. This proves Lemma 1.6. ✷

H1, . . . , Hm split Rn into a system M of polyhedral n-cones with apex 0, each of which
is an intersection of half-spaces H+

i , H−
i .

LEMMA 1.7. If σ ∈ M , then σ is either totally contained in P or in |Σ0|.

PROOF. Suppose σ contains a point x ∈ int P and a point y ∈ int |Σ0|. Then we
assert: The line segment [x, y] intersects at least one Fi , i = 1, . . . ,m. Indeed, this follows
from a generalized version of the Jordan Curve Theorem; but we can see it directly: [x, y]

intersects finitely many n-cones of Σ0. Among these the one closest to x contains the point
z ∈ [x, y] ∩ |Σ0| closest to x on its boundary. Since the boundary of |Σ0| is covered by
F1, . . . , Fm, z lies on one of the Fi . Then Hi separates x and y, a contradiction. ✷

By Lemma 1.7, P is the union of the cones of a subset M0 ⊂ M . Although Rn is
covered by Σ0 and M0, the union of Σ0, M0 and the faces of the cones of M0 do not, in
general, provide a fan, since the common boundary of |Σ0| and P is covered differently by
cones of Σ0 and faces of cones of M0. However, Lemma 1.6 and Lemma 1.7 imply:

LEMMA 1.8. If a face µ of a cone of M0 is contained in |Σ0|, it is contained in an Fi ,
i ∈ {1, . . . ,m}.

So each Fi is the union of the (n − 1)-faces of cones of M0. This remains true if we
refine M0 as follows.

LEMMA 1.9. The fan Σ(M0) consisting of M0 and the faces of M0 may be turned into

a simplicial fan Σ1 having the same 1-cones as Σ(M0) by splitting the cones of Σ(M0).

PROOF. This follows from a combinatorial theorem (see [E, III, Theorem 2.6]). ✷

Now we adjust Σ0 to Σ as follows. Each cone σ ∈ Σ0 \ Σ which is not contained in
the boundary of |Σ(M0)| is a k-fold pyramid τ.ρ1. · · · .ρk = τ.τ ′, where τ ′ = ρ1. · · · .ρk is a
simplicial cone and the basis τ lies in Σ0. In Σ1, τ ′ is split into simplicial cones τ1, . . . , τs ,
hence σ is split into simplicial cones τ.τ1, . . . , τ.τs . This turns Σ0 into a fan Σ0.

LEMMA 1.10. Lemma 1.5 is true for Σ0 instead of Σ0.

PROOF. This readily follows from |Σ0| = |Σ0| and the construction of Σ0. ✷

The fan Σ0 ∪M0 is complete; we denote it by Σ ′. So Σ0, Σ ′ satisfy all the properties (1)
through (5) and the proof of Theorem 1.2, hence also the proof of Theorem 1.1, is completed.
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2. The Zariski-Riemann space of a rational fan. Let r ≥ 0 be an integer, and N a
free Z-module of rank r . NR := N ⊗Z R is an r-dimensional real space with the lattice N .
We consider cones and fans in NR from this section on. Namely, a subset C ⊂ NR := N ⊗ R

is said to be a convex polyhedral cone if there exists a finite subset {y1, . . . , ys} ⊂ NR with

C = pos{y1, . . . , ys} = R0y1 + · · · + R0ys ,

where R0 is the set of nonnegative real numbers. The cone C is said to be rational if we can
choose y1, . . . , ys in N , and strongly convex if C ∩ (−C) = {0}.

Let M := HomZ(N, Z) and MR := M ⊗ R. There exists a natural perfect pairing
〈 , 〉 : MR × NR → R. A subset C′ ⊂ C is a face and written C′ ≺ C if there exists x ∈ MR

with C ⊂ (x ≥ 0) and C′ = C ∩ (x = 0), where we denote (x ≥ 0) = {y ∈ NR ; 〈x, y〉 ≥ 0}

and (x = 0) = {y ∈ NR ; 〈x, y〉 = 0}.
From this section on, we prefer to use letters X,Y, . . . for fans rather than Greek capitals.

Recall that a nonempty set X of strongly convex rational polyhedral cones is said to be a fan

if
(i) σ ∈ X and η ≺ σ imply η ∈ X, and

(ii) if σ, τ ∈ X, then σ ∩ τ is a common face of σ and τ .
The condition (ii) can be replaced by the following “separability condition” (ii’) (cf. [F2, 1.2,
(12)]).

(ii′) For σ, τ ∈ X, there exists x ∈ MR with σ ⊂ (x ≥ 0), τ ⊂ (x ≤ 0) and
σ ∩ (x = 0) = τ ∩ (x = 0).
The set F(π) of all faces of a strongly convex rational polyhedral cone π is a fan with the
unique maximal element π . Such a fan is called an affine fan.

For each σ ∈ X, the dual cone σ∨ ⊂ MR is defined by

σ∨ := {x ∈ MR ; 〈x, u〉 ≥ 0 for any u ∈ σ } .

This is an r-dimensional polyhedral cone. Since M ∩ σ∨ is a finitely generated additive
semigroup (cf. [O1, Prop.1.1]), the semigroup ring C[M ∩ σ∨] over the complex number
field is an affine ring and the quotient field is equal to that of the group ring C[M]. The
toric variety XC associated to a fan X is defined to be the union of the affine toric varieties
Spec C[M ∩ σ∨] for σ ∈ X. The function field of XC is the quotient field of C[M], and the
algebraic torus TN := Spec C[M] acts on XC. The toric variety XC is of finite type, i.e., it is
an algebraic variety if and only if the fan X is finite.

The topology of a fan X is defined as follows. A subset U ⊂ X is defined to be open if
σ ∈ U and η ≺ σ imply η ∈ U . Namely, U is open if and only if it is empty or a subfan of X.
For each point x ∈ XC, we define φ(x) to be the minimal σ ∈ X with x ∈ Spec C[M ∩ σ∨].
Then the map φ : XC → X is continuous.

A collection of convex polyhedral cones not necessarily rational is called a real fan if
it satisfies (i) and (ii). Usual fans which define toric varieties are sometimes called rational

fans.
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The support |X| of a fan X is defined to be
⋃

σ∈X σ , and X is said to be complete if it is
finite and |X| = NR. For a rational finite fan X, the toric variety XC is complete if and only
if X is complete. If X is a subfan of a complete rational fan X̄, then XC is an open subvariety
of X̄C, i.e., X̄C is a completion of XC.

A subring R of a field K is said to be a valuation ring if it satisfies the condition:

1/x ∈ R for any x ∈ K \ R .

In particular, R = K is a valuation ring.
Let (R,m) and (R′,m′) be not necessarily Noetherian local rings with a common quo-

tient field K . We say R′ dominates R and write R ≤ R′ if R ⊂ R′ and m = m
′ ∩ R.

It is known that, for any local ring (R,m) with the quotient ring K , there exists a val-
uation ring (R′,m′) which dominates (R,m). When (R,m) is a local ring of an algebraic
variety, R′ can be regarded as the limit of a transfinite sequence of blowups of R.

Let X be an algebraic variety over a field k, i.e., a reduced and irreducible separated
scheme of finite type over k, and K the function field. We say a valuation ring R of K

dominates a point x of the scheme X if it dominates the local ring Ox . We denote by ZR(X)

the set of all valuation rings of K which dominates a point of X (cf. [ZS, Chap. VI, §17]).
ZR(X) is called the Zariski-Riemann space of X. We denote by ZR(K) the set of all valuation
rings of K which contains the base field k.

The following theorem is known as the valuative criterion of properness of varieties (cf.
[H, Thm. 4.7]).

THEOREM 2.1. An algebraic variety X with the function field K is complete if and

only if ZR(X) = ZR(K).

For an algebraic variety X, the topology of ZR(X) is defined as follows (cf. [N1, §1]).
For a proper birational morphism X′ → X and a closed subset Y ′ ⊂ X′, let F be the set of all
valuation rings in ZR(X) which dominate points of Y ′. We define the set of all such F as a
basis of the closed sets of ZR(X). This topology is equal to the topology defined by the open
basis consisting of the following E(B)’s. Let B be an integral domain of finite type over k

with the quotient field K , and E(B) the set of all valuation rings in ZR(X) which contain B.
The following theorem was used in Nagata’s compactification theorem.

THEOREM 2.2 ([ZS, Thm. 40], [N1, Prop. 1.1]). The space ZR(X) is quasi-compact

for any algebraic variety X.

We define the Zariski-Riemann space for a rational fan. In this case, we replace the field
K by the dual module M ≃ Zr of N .

A relation ≤ on M is said to be an additive preorder if it satisfies the following condi-
tions:

(1) For any x, y ∈ M , either x ≤ y or y ≤ x is satisfied.
(2) x ≤ y and y ≤ z imply x ≤ z.
(3) If x ≤ y, then x + z ≤ y + z for every z ∈ M .
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Note that we do not assume the anti-symmetry: x ≤ y and y ≤ x imply x = y. It is easy
to see that x ≤ y and x ′ ≤ y ′ imply x + x ′ ≤ y + y ′, and 0 ≤ nx for an integer n > 0 implies
0 ≤ x.

DEFINITION 2.3. We define the Zariski-Riemann space ZR(M) to be the set of all
additive preorders of M .

We are going to define the topology of ZR(M). Each element v of ZR(M) is denoted by
≤v when it is used as a relational operator. We denote x =v y if x ≤v y and y ≤v x, while
x <v y if x ≤v y and not y ≤v x. L(v) := {x ∈ M ; 0 ≤v x} is a substitute for the valuation
ring in our case. We see easily that L(v) is a subsemigroup satisfying −x ∈ L(v) for all
x ∈ M \ L(v). We define L0(v) := {x ∈ M ; x =v 0}, which is equal to the Z-submodule
L(v) ∩ (−L(v)) of M . M/L0(v) is equal to the quotient of M by the equivalence relation
x =v y, and is a free Z-module.

We denote by η(M) the trivial preorder of M , i.e., L0(η(M)) = M .

φM : ZR(M) \ {η(M)} → (NR \ {0})/R+

is defined as follows. For v ∈ ZR(M) \ {η(M)}, let Cv be the convex closure of L(v) in MR.
Then the closure C̄v is a closed half space (cf. Lemma 5.1). Hence there exists x ∈ NR \ {0}

with C̄v = (x ≥ 0). We define φM(v) to be the image of x in (NR \ {0})/R+.
We set SN := (NR \ {0})/R+. Then ZR(M) has a recursive structure as follows. For

each x ∈ NR \ {0}, let x̄ be its image in SN . Let M(x)R be the largest rational subspace of
MR contained in (x = 0), and let M(x) := M(x)R ∩ M . Then φ−1

M (x̄) is identified with

ZR(M(x)) by identifying each v ∈ φ−1
M (x̄) with its restriction to M(x).

Let C be a rational polyhedral cone in NR which is not necessarily strongly convex. Then
there exists a finite subset {x1, . . . , xs} ⊂ M with

C = (x1 ≥ 0) ∩ · · · ∩ (xs ≥ 0)

(cf. [O1, Thm. A.2]). We define a subset ‖C‖ of ZR(M) by

‖C‖ := {v ∈ ZR(M) ; 0 ≤v xi, i = 1, . . . , s}

= {v ∈ ZR(M) ; M ∩ C∨ ⊂ L(v)} .

For any rational polyhedral cones C1, C2, we see easily that M ∩C∨
1 ,M ∩C∨

2 ⊂ L(v) implies
M ∩ (C∨

1 +C∨
2 ) ⊂ L(v). Since C∨

1 +C∨
2 = (C1 ∩C2)

∨, we have ‖C1‖∩‖C2‖ = ‖C1 ∩C2‖.
We take the set of all such ‖C‖’s as the open basis of ZR(M). Since the set of all finite
subsets of M is countable, the topology of ZR(M) defined by this open basis satisfies the
second countability axiom.

Let ZR0(M) be the set of the elements in ZR(M) which have the anti-symmetry property,
i.e., the set of additive orders of M . If we identify M with the set of monomials of a Laurent
polynomial ring, ZR0(M) is equal to the space introduced by Kuroda [K] (see also [S3]).
Kuroda [K] introduced this space in order to prove the infinity of the SAGBI bases of some
invariant rings.

We omit the proof of the following proposition which we do not use in this paper.
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PROPOSITION 2.4. ZR0(M) is closed in ZR(M) and the induced topology of ZR0(M)

is equal to that of Kuroda.

The Zariski-Riemann space ZR(X) of a fan X is defined by

ZR(X) :=
⋃

σ∈∆

‖σ‖ .

THEOREM 2.5. The Zariski-Riemann space ZR(M) is quasi-compact. ZR(X) is quasi-

compact for any finite fan X of MR. Here “quasi-compact” means “compact but not neces-

sarily Hausdorff”.

PROOF. We follow the method of Zariski-Samuel [ZS, Thm. 40]. For every m ∈ M\{0},
we set Ŝ0

m := {−1, 0, 1}. For v ∈ ZR(M) and m ∈ M , we define v(m) ∈ Ŝ0
m to be −1 if

m <v 0, 0 if m =v 0 and 1 if 0 <v m. Since v ∈ ZR(M) is determined by the set of m’s with
0 ≤v m, we regard v as the map from M to {−1, 0, 1}, and we get an embedding

ZR(M) ⊂
∏

m∈M\{0}

Ŝ0
m .

The weak topology of Ŝ0
m is defined by setting {∅, {0}, {0, 1}, {−1, 0, 1}} as the set of open

subsets. Since the set of finite intersections of {v ; v(m) = 0, 1} is an open basis of ZR(M),
the topology of ZR(M) is equal to the relative topology of the product topology of

∏
m∈M Ŝ0

m.

Now we introduce the discrete topology on Ŝ0
m. Then the product space is compact by Ty-

chonoff’s theorem. ZR(M) is a closed subset of the compact product space. Actually, it is
defined by the equalities

v(m) = −1 or v(m′) = −1 or v(m + m′) = 0, 1 ,(1)

v(m) = 0, 1 or v(−m) = 1(2)

and

v(m) = 0, −1 or v(−m) = −1(3)

for all m,m′ ∈ M . Hence ZR(M) is compact in the strong topology, hence so is it in the weak
topology.

In order to show the compactness of ZR(X) for a finite fan X, it suffices to show that of
each ‖σ‖. We can show the compactness of ‖σ‖ by taking a generator {x1, . . . , xs} ⊂ M of
the cone σ∨ and adding the equalities

v(xi) = 0, 1 (i = 1, . . . , s)

to those of (1), (2) and (3). ✷

Let v be an element of ZR(M). We will express v by a sequence of elements in NR.
We set v0 := v and M0(v) := M . If v0 �= η(M0(v)), then let M1(v) be the intersection
M ∩ (x0 = 0) ⊂ MR for x0 := φM(v0), and v1 the restriction of v0 to M1(v). Inductively,
if vi−1 �= η(M i−1(v)), we define M i(v) to be the intersection M i−1(v) ∩ (xi−1 = 0) ⊂

M i−1(v)R for xi−1 := φM i−1(v)(vi−1), and vi the restriction of vi−1 to M i(v). Since the rank
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of M is r , there exists a nonnegative integer s ≤ r with vs = η(Ms(v)). We call s the rank of
v and denote it by rank(v). The rank of η(M) is defined to be 0. This is an analog of the rank
defined for a valuation ring.

Note that the preorder v is recovered from the integer s and the sequence (x0, . . . , xs−1).
Actually, if we take a representative yi ∈ NR of xi for each i, then m ∈ L(v) if and only if
either there exists 0 ≤ j ≤ s − 1 such that 〈m, yk〉 = 0 for 0 ≤ k < j and 〈m, yj 〉 > 0, or

〈m, yk〉 = 0 for all 0 ≤ k ≤ s−1. This is also equivalent to the condition 〈m,
∑s−1

i=0 εiyi〉 ≥ 0
for a sufficiently small positive real number ε. Since we often use this sequence (y0, . . . , ys−1)

of points in NR, we call it a defining sequence of v. By construction, y0, . . . , yj−1 are 0 on
Mj (v)R and yj is not identically 0 on this linear subspace. Since {Mj (v)R} is a shrinking
sequence of vector spaces, {y0, . . . , ys−1} is linearly independent.

When v �= η(M), the first generalization v′ ∈ ZR(M) of v is defined by

x ≤v′ y ⇐⇒ x ≤v y or y − x ∈ M rank(v)−1(v) .

If rank(v) = s and (y0, . . . , ys−1) is a defining sequence of v, then (y0, . . . , ys−2) is a defining
sequence of v′. Hence, we get η(M) by s-times repetition of the first generalization starting
from v. For v,w ∈ ZR(M), w is said to be a generalization of v if L(v) ⊂ L(w). This is
equivalent to the condition that we get w from v by a finite repetition of the first generalization.

If rank(v) = s, then Ms(v) is equal to the Z-submodule L0(v) of M . We say that an
element v of ZR(M) dominates a cone C of NR if M ∩ C∨ ⊂ L(v) and M ∩ C∨ ∩ L0(v) =

M ∩ C⊥, where C⊥ := {x ∈ MR ; 〈x, y〉 = 0 for all y ∈ C}. This situation is described by
the sequence (M0(v), . . . ,Ms(v)) and the defining sequence (y0, . . . , ys−1) of v as follows.
The additive preorder v dominates C if and only if

M i(v) ∩ C∨ ⊂ (yi ≥ 0)

for each i = 0, . . . , s − 1, and

Ms(v) ∩ C∨ = M ∩ C⊥ .

LEMMA 2.6. Let (y0, . . . , ys−1) be a defining sequence of v ∈ ZR(M). For a pos-

itive real number ε, we set zε :=
∑s−1

i=0 εiyi . Then the following conditions on a rational

polyhedral cone C are equivalent.

(1) v dominates C.

(2) There exists ε0 > 0 such that zε ∈ rel. int C for every 0 < ε ≤ ε0.

(3) There exists a sequence {εj } of positive real numbers with limj→∞ εj = 0 and

zεj ∈ rel. int C for every j .

PROOF. We show (1) ⇒ (2). We take m1, . . . ,mt ∈ M ∩ (C∨\C⊥) and mt+1, . . . ,mu ∈

M ∩ C⊥ so that they generate the semigroup M ∩ C∨. Since C⊥ is a rational subspace, it is
generated by {mt+1, . . . ,mu}. For each mi with 1 ≤ i ≤ t , there exists 1 ≤ j ≤ s − 1 such
that

〈mi, y0〉 = · · · = 〈mi , yj−1〉 = 0 , 〈mi , yj 〉 > 0 .



COMPLETION OF REAL FANS AND ZARISKI-RIEMANN SPACES 201

Hence, 〈mi , zε〉 > 0 for a sufficiently small ε > 0 for i = 1, . . . , t . Since 〈mi , zε〉 = 0 for
every t + 1 ≤ i ≤ u, we have C∨ ⊂ (zε ≥ 0) and C∨ ∩ (zε = 0) = C⊥ for such ε. Hence
zε ∈ rel. int C. (2) ⇒ (3) is obvious.

We show (3) ⇒ (1). The condition implies M i(v)R ∩ C∨ ⊂ (zεj ≥ 0) for i = 0, . . . ,

s − 1. Since y0 = · · · = yi−1 = 0 on M i(v)R, the limit of the linear functions ε−i
j zεj of

M i(v)R is equal to yi . Hence M i(v)R ∩ C∨ ⊂ (yi ≥ 0) for every i. This implies M ∩ C∨ ⊂

L(v). Let ε := ε1. Then clearly, zε = 0 on Ms(v)R. Hence

M ∩ C∨ ∩ L0(v) ⊂ M ∩ C∨ ∩ (zε = 0) = M ∩ C⊥ .

On the other hand, C⊥ ⊂ (zεj = 0) for j = 1, . . . , s imply that y0, . . . , ys−1 are zero on C⊥,

and hence M ∩ C⊥ ⊂ L0(v). Hence, v dominates C. ✷

The following proposition is an analog of the valuative criterion of separatedness of an
algebraic prevariety.

PROPOSITION 2.7. For a fan X of NR, an element v ∈ ZR(M) dominates at most one

cone of X. Conversely, if X is a union of affine fans and any v ∈ ZR(M) dominates at most

one cone of X, then X is a fan.

PROOF. If σ and τ are distinct cones of the fan X, then rel. int σ ∩ rel. int τ = ∅. If v

dominates σ , then it does not dominates τ since the condition (2) of Lemma 2.6 is satisfied
for C = σ

Now we prove the second part. It suffices to show that σ ∩ τ is a face of σ for any
σ, τ ∈ X. Any point y in the relative interior of the cone σ ∩ τ is contained in the relative
interior of a face σ1 of σ and in that of a face τ1 of τ . If we take v ∈ ZR(M) with L(v) =

M ∩ (y ≥ 0), then v dominates σ1 and τ1, and hence σ1 = τ1 by assumption. By τ1 ⊂ τ , we
have σ1 ⊂ σ ∩ τ . On the other hand, the defining element x ∈ MR of the face σ1 ⊂ σ defines
a face of σ ∩ τ . This face is equal to σ ∩ τ itself, since it contains y in the relative interior.
We know σ ∩ τ ⊂ σ1, since σ1 = σ ∩ (x = 0). Hence σ ∩ τ = σ1, and σ ∩ τ is a face
of σ . ✷

DEFINITION 2.8. We denote by dom(σ ) the set of elements of ZR(M) which domi-
nate the strongly convex rational polyhedral cone σ .

If we take a point y in a strongly convex rational polyhedral cone σ , then the rank one
element v ∈ ZR(M) with L(v) = M ∩ (y ≥ 0) dominates σ . In particular, dom(σ ) is not
empty.

LEMMA 2.9. Let C be a rational polyhedral cone of NR, and v an element of ZR(M).

Then M ∩ C∨ ⊂ L(v) if and only if v dominates a face of C. In particular, if π is a strongly

convex rational polyhedral cone, then we have the equality

‖π‖ = ZR(F (π)) =
⋃

σ∈F(π)

dom(σ ) .
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PROOF. If v dominates a face C1 of C, then

M ∩ C∨ ⊂ M ∩ C∨
1 ⊂ L(v) .

Conversely, suppose M ∩ C∨ ⊂ L(v). We see easily by induction that C∨ ∩ M i(v)R

is a face of C∨ for i = 0, . . . , rank(v). In particular, C∨ ∩ L0(v)R is a face of C∨. Hence
there exists a face C1 ≺ C with C∨ ∩ L0(v)R = C∨ ∩ C⊥

1 (cf. [O1, Prop. A.6]). Since
C⊥

1 ⊂ L0(v)R and C∨
1 = C∨ + C⊥

1 by [O1, Cor. A.7], we have M ∩ C∨
1 ⊂ L(v) and

M ∩ C∨
1 ∩ L(v) = M ∩ C⊥

1 . Hence v dominates C1.
The equalities are now obvious. ✷

LEMMA 2.10. Let C be a rational polyhedral cone of NR, and v an element of ZR(M)

which dominates C. If w is a generalization of v, then w dominates a face of C. The dimension

of C is at least rank(v).

PROOF. We have L(v) ⊂ L(w) since w is a generalization of v. Since M ∩ C∨ ⊂

L(w), w dominates a face C′ of C by Lemma 2.9. Let rank(v) = s and let (y0, . . . , ys−1)

be a defining sequence of v. By Lemma 2.6, zε :=
∑s−1

i=0 εiyi satisfies zε ∈ rel. int C for
a sufficiently small ε > 0. Since y0, . . . , ys−1 are linearly independent, zε’s for s distinct
ε’s are also linearly independent by Vandermonde’s equality. Hence the dimension of C is at
least s. ✷

REMARK 2.11. C is also a face of itself. Hence w might dominates C in Lemma 2.10.

For a fan X, we define

ZR(X)1 := {v ∈ ZR(X) ; rank(v) = 1} .

PROPOSITION 2.12. For finite fans X,Y , the following conditions are equivalent.

(1) ZR(X) ⊂ ZR(Y ).

(2) ZR(X)1 ⊂ ZR(Y )1.

(3) |X| ⊂ |Y |.

PROOF. (1) ⇒ (2) is obvious.
For (2) ⇒ (3), let x ∈ σ ∈ X. Since |Y | contains 0, we assume x �= 0. Let v be the

preorder of rank one with L(v) = M ∩ (x ≥ 0). Since M ∩ σ∨ ⊂ M ∩ (x ≥ 0), we have
v ∈ ZR(X)1. Since v ∈ ZR(Y )1 by (2), we have M ∩ τ∨ ⊂ L(v) = M ∩ (x ≥ 0) for a
rational cone τ ∈ Y . Then τ∨ ⊂ (x ≥ 0) and x ∈ τ ⊂ |Y |.

We show (3) ⇒ (1). Suppose v ∈ ZR(X) dominates σ ∈ X. Let rank(v) = s and
(y0, . . . , ys−1) a defining sequence of v. Then by Lemma 2.6, zε :=

∑s−1
i=0 εiyi ∈ rel. int σ

for sufficiently small ε > 0. Since zε ∈ |X| ⊂ |Y | and Y is finite, there exist τ ∈ Y and a
convergent sequence {εj } with the limit 0 and zεj ∈ rel. int τ . Hence v ∈ dom τ ⊂ ZR(Y ) by
Lemma 2.6. ✷

Since the proposition is also true even if we exchange X and Y , we have the following
corollary.

COROLLARY 2.13. For finite fans X,Y , the following conditions are equivalent.
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(1) ZR(X) = ZR(Y ).

(2) ZR(X)1 = ZR(Y )1.

(3) |X| = |Y |.

3. Blowups of fans. Fans in this section are not necessarily rational and cones are
finitely generated convex polyhedral cones unless otherwise mentioned.

Let D be a cone of MR. A nonempty convex subset P of MR is said to be D-convex if it
has the D-ideal property, i.e., if

x ∈ P, y ∈ D ⇒ x + y ∈ P .

For a subset S of MR, we set

S∨ := {y ∈ NR ; 〈x, y〉 ≥ 0 for all x ∈ S} .

For the convex hull conv(S) and the convex cone Cone(S) generated by S, we see easily the
equalities

S∨ = conv(S)∨ = Cone(S)∨ .

Here Cone(S) is not necessarily finitely generated if S is not a finite set. For subsets S, T of
MR, clearly we have

(S ∪ T )∨ = S∨ ∩ T ∨ .

For a cone C, a C∨-convex set P generated by a finite set S is called a C∨-convex polyhedron.
When C is rational, P is said to be rational if S consists of finite rational points.

Let C be a cone of NR. For an r-dimensional C∨-convex polyhedron P ,

Fan(P ) := {(P − x)∨ ; x ∈ P }

is a finite real fan with support C. If P is rational, Fan(P ) is also a rational fan. As is well-
known, the relationship between P and Fan(P ) is as follows. A subset Q ⊂ P is called a
face of P if there exist an element u ∈ NR and a real number a with P ⊂ (u ≥ a) and
Q = P ∩ (u = a), where (u ≥ a) = {x ∈ MR ; 〈x, u〉 ≥ a} and (u = a) = {x ∈ MR ;

〈x, u〉 = a}. Each element x of P is contained in the relative interior of a unique face of
P , and the cone (P − x)∨ is determined by the face. By this correspondence, Fan(P ) is in
bijective correspondence with the set of faces of P . If σ ∈ Fan(P ) corresponds to a face Q

of P , then we have the equality dim σ + dim Q = r . If another cone τ ∈ Fan(P ) corresponds
to a face R, then R ⊂ Q if and only if σ ≺ τ . It follows that σ and τ are faces of a common
ρ ∈ Fan(P ) if and only if Q ∩ R �= ∅.

We define Fan(P ) similarly for P of dimension less than r . In this case, Fan(P ) consists
of cones which are not strongly convex. The support of Fan(P ) is also C.

In case C = NR, P is a convex polytope. If dim P = r , then Fan(P ) is a complete
fan. We call Fan(P ) the projective (real) fan defined by P (cf. [OP, p. 383, Remark]). It is
common to call it a polytopal fan, but we adopt this terminology instead for the convenience
to translate Nagata’s proof. If P is rational, then Fan(P ) defines a projective toric variety.
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Let π be a strongly convex rational polyhedral cone. Then M ∩π∨ is a finitely generated
semigroup with the unit 0. If a subset S of m0 + M ∩ π∨ for some m0 ∈ M satisfies the
“semigroup ideal” condition

m ∈ S, m′ ∈ M ∩ π∨ ⇒ m + m′ ∈ S ,(4)

then there exist a finite number elements m1, . . . ,ms ∈ S with

S =

s⋃

i=1

(mi + M ∩ π∨) .(5)

This fact is checked as follows. For an arbitrary field k, we consider the semigroup ring

k[M ∩ π∨] :=
⊕

m∈M∩π∨

ke(m) .

Then the vector subspace I generated by {e(m − m0) ; m ∈ S} is an ideal. Since k[M ∩ π∨]

is Noetherian, we can find a finite set of generators {e(m1 − m0), . . . , e(ms − m0)} of the
ideal. Then m1, . . . ,ms satisfies the condition.

The convex hull of the above S is the π∨-convex set generated by m1, . . . ,ms ∈ S.
3.1. The blowup of a fan at a closed subset. Let π be a strongly convex rational

polyhedral cone. For a closed proper subset Y of the rational affine fan F(π), the blowup
BlMY (F (π)) of F(π) along Y is defined by using the lattice M as follows.

We set S(π) := M ∩ π∨, and S(π; σ) := M ∩ π∨ ∩ σ⊥ for each σ ∈ F(π). The set
P(π, Y ) is defined to be the convex hull of

S = S(π) \
⋃

σ∈Y

S(π; σ) .

S is nonempty, since the zero cone 0 = {0} is not in Y , and P(π, Y ) is a π∨-convex poly-
hedron, since S satisfies (4). Then BlMY (F (π)) := Fan(P (π, Y )) is a finite fan with support
π .

The morphism of toric varieties

BlMY (F (π))C → F(π)C

corresponding to this subdivision is equal to the normalization of the blowup of F(π)C along
the reduced closed subvariety YC.

Let X,Y be rational fans of NR. If each σ ∈ X is contained in some ρ in Y , there exists
a birational morphism XC → YC of the toric varieties. Then we say that the fan X dominates

Y and write as f : X → Y . This f also represents the map which sends each σ ∈ X to the
minimal cone in Y which contains σ .

For a π∨-convex polyhedron P generated by a finite subset of MQ, Fan(P ) is a subdi-
vision of F(π), and the corresponding morphism of toric varieties is the natural morphism
Proj B → Spec C[M ∩ π∨] defined for the graded ring

B :=

∞⊕

n=0

[M ∩ nP ]C ,
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where, for a subset F of M , we denote by FC the vector subspace
⊕

m∈F Ce(m) of C[M]. We
understand 0P = π∨.

3.2. General blowups of fans. Let X be a fan. We consider a set I = {Iσ ; σ ∈ X} of
subsets of MR such that each Iσ is σ∨-convex and the equality Iσ = Iτ + σ∨ holds for any
σ, τ ∈ X with the relation σ ≺ τ . Then

FanX(I) :=
⋃

σ∈X

Fan(Iσ )

is a subdivision of the fan X. If everything is rational, this subdivision corresponds to the
normalization of the blowup of a toric variety along a fractional ideal. Hence we use similar
terminology for fans. Namely, we call I = {Iσ ; σ ∈ X} a polyhedral fractional ideal of
X, and FanX(I) the blowup of X along I . We call I a polyhedral ideal if Iσ ⊂ σ∨ for every
σ ∈ X. For a polyhedral ideal I , we define the support of I by {σ ∈ X ; Iσ �= σ∨}. We say
that I is unitary at σ if Iσ = σ∨. Namely, I is unitary on the open subset X \ Y if Y is the
support of I .

3.3. The composite of blowups.

THEOREM 3.1. Let X be a finite fan and I = {Iσ ; σ ∈ X} a polyhedral fractional

ideal. We set X′ := FanX(I). Let I ′ = {I ′
ρ ; ρ ∈ X′} be a polyhedral fractional ideal of X′.

For a positive real number a, we define an ideal J = {Jσ ; σ ∈ X} of X by

Jσ =
⋂

ρ∈X′

ρ⊂σ

(aIσ + I ′
ρ)

for σ ∈ X. Then, there exists a positive real number a0 such that we have the equality

FanX(J ) = FanX′(I ′) for any a ≥ a0. In particular, the fan FanX(J ) does not depend on the

choice of a ≥ a0. If I and I ′ are polyhedral ideals, then so is J .

First, we prove the following lemma.

LEMMA 3.2. Let C be a polyhedral cone of NR, and P ⊂ MR an r-dimensional C∨-

convex polyhedron. We denote by XP := Fan(P ) the fan defined by P . Let K = (Kσ ) be a

polyhedral fractional ideal of XP . We define a C∨-convex set Q by

Q =
⋂

σ∈XP

(aP + Kσ )

for a positive real number a. Then there exists a positive real number a1 such that the fan

XQ := Fan(Q) is equal to FanXP (K) for any a ≥ a1. In particular, the fan XQ does not

depend on the choice of a ≥ a1.

PROOF. For each σ ∈ XP , we take an element yσ ∈ P with σ = (P − yσ )∨. Since
a(P − yσ ) ⊂ σ∨ and Kσ = Kσ + σ∨, we have

aP + Kσ = ayσ + a(P − yσ ) + Kσ = ayσ + Kσ

for each σ . This implies that the support of the fan Fan(aP +Kσ ) is σ , and the support of the
fan XQ defined by the intersection Q of these convex sets is C, i.e., the support of the fan XP .
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The support of FanXP (K) is also C, since it is a subdivision of XP . Hence, for the equality
XQ = FanXP (K), it suffices to show that every η ∈ FanXP (K) is a member of XQ.

For each η, there exist σ ∈ XP and z ∈ Kσ with η = (Kσ − z)∨. Let τ be an arbitrary
element of XP . Then the cones σ and τ are separated by yτ −yσ . Actually, σ ⊂ (yτ −yσ ≥ 0),
since yτ − yσ ∈ P − yσ , while τ ⊂ (yτ − yσ ≤ 0), since yσ − yτ ∈ P − yτ . We also have
the equality σ ∩ (yτ − yσ = 0) = τ ∩ (yτ − yσ = 0), since the restrictions of (P − yσ )∨

and (P − yτ )
∨ to (yτ − yσ = 0) are equal. Hence R0(yτ − yσ ) + Kτ = Kρ for ρ = τ ∩ σ .

Since Kσ ⊂ Kρ , the convex set a(yτ − yσ ) + Kτ contains a neighborhood U of z in Kσ for
sufficiently large a. Then ayσ + z is an element of ayτ + Kτ , and

((ayτ + Kτ ) − (ayσ + z))∨ ⊂ (U − z)∨ = (Kσ − z)∨ = η .(6)

If we take the real number a sufficiently large for all τ ∈ XP , then ayσ + z is in Q. Since
(Q − (ayσ + z))∨ is equal to the sum of the first terms of (6) for all τ ∈ XP , it is equal to η

for such a. Hence η is in XQ.
Since FanXP (K) is a finite fan, every η ∈ FanXP (K) is in XQ for sufficiently large

a ≥ 0. ✷

PROOF OF THEOREM 3.1. FanX(J ) and FanX′(I ′) are subdivisions of X by defini-
tions. We apply Lemma 3.2 to P = Iσ and K , which is defined to be the restriction of J to
{ρ ∈ X′ ; ρ ⊂ σ }. Then we know that FanX(J ) and FanX′(I ′) are equal on the cone σ for
sufficiently large a ≥ 0. Since X is finite, there exists a0 ≥ 0 such that FanX(J ) = FanX′(I ′)

for every a ≥ a0.
The last assertion of the theorem is clear from the first part.
3.4. Sums and intersections of ideals. Let I = {Iσ ; σ ∈ X} and J = {Jσ ; σ ∈ X}

be polyhedral fractional ideals of X. The sum I + J of these ideals is defined to be {Iσ + Jσ ;

σ ∈ X}. This is an analog of the product of fractional ideals of an integral scheme. Since
Iσ ∩ Jσ is a σ∨-convex polyhedron, I ∩ J := {Iσ ∩ Jσ ; σ ∈ X} is also a fractional ideal of
X.

For finite fans X,X′, we define the join by

J (X,X′) := {σ ∩ τ ; σ ∈ X, τ ∈ X′} .

Then J (X,X′) is also a finite fan, and dominates both X and X′. If a fan Y dominates both X

and X′, then the join J (X,X′) is also dominated by Y . The equality

ZR(J (X,X′)) = ZR(X) ∩ ZR(X′)

is checked easily.

PROPOSITION 3.3. For polyhedral fractional ideals I, J of X, we have the equality

FanX(I + J ) = J (FanX(I), FanX(J )) .

PROOF. Since both fans are subdivisions of X, it suffices to show that they define the
same subdivision on each σ ∈ X. We set P = Iσ and Q = Jσ . For ρ ∈ FanX(I + J )



COMPLETION OF REAL FANS AND ZARISKI-RIEMANN SPACES 207

contained in σ , there exists z ∈ P + Q with ρ = (P + Q − z)∨. For x ∈ P and y ∈ Q with
z = x + y, we have the equalities

(P + Q − z)∨ = ((P − x) + (Q − y))∨ = (P − x)∨ ∩ (Q − y)∨ .

Hence ρ ∈ J (FanX(I), FanX(J )). By the same equalities, we know that each element of
J (FanX(I), FanX(J )) is a member of FanX(I + J ). ✷

For a polyhedral fractional ideal I , the polyhedral fractional ideal I−1 is defined by

I−1
σ := {x ∈ MR ; Iσ + x ⊂ σ∨} .

Then I + I−1 is a polyhedral ideal of X, since Iσ + I−1
σ ⊂ σ∨ for every σ . The fan

FanX(I + I−1) is a subdivision of FanX(I) by Proposition 3.3.
3.5. The maximal extension of an ideal. Let X be a fan, and U a subfan of X. For a

polyhedral ideal I of U , there exists the largest polyhedral ideal I ′ of X with I ′|U = I . It is
obtained by setting

I ′
σ := σ∨ ∩

⋂

η∈F(σ)∩U

Iη

for each σ ∈ X.
3.6. The primary decomposition. Let σ be an element of a fan X. A polyhedral ideal

I of the affine fan F(σ) is said to be primary if σ∨ \ Iσ is nonempty and σ⊥-bounded,
where we say that a subset S ⊂ MR is σ⊥-bounded if S = S + σ⊥ and if the image of S

in MR/σ⊥ is bounded. In this case, the equality Iη = η∨ holds for any η ∈ F(σ) \ {σ }.
Conversely, I is primary if it satisfies this condition. The ideal I is primary if and only if,
for any m ∈ M ∩ (σ∨ \ σ⊥), there exists a positive integer c with cm ∈ Iσ . The maximal
extension of a primary polyhedral ideal I to X is called the primary polyhedral ideal of X at
σ . If we denote also by I the the extended ideal, Iρ is unitary unless σ ≺ ρ. Namely, the
support of the primary ideal is contained in the closure of {σ } in X.

PROPOSITION 3.4. Let I be a polyhedral ideal of X with support Y . Then there exists

a set {Iσ ; σ ∈ X} of polyhedral ideals of X, such that each Iσ is unitary on X or primary at

σ and

I =
⋂

σ∈X

Iσ =
⋂

σ∈Y

Iσ .(7)

Here the right-hand side is essentially a finite intersection for each ρ ∈ X even if X is not

finite.

PROOF. Proposition 3.4 is equivalent to the assertion that there exists {Pσ ; σ ∈ X}

such that σ∨ \ Pσ is σ⊥-bounded for every σ and

Iρ =
⋂

σ∈F(ρ)

Pσ
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for every ρ ∈ X. The construction of Pσ is done inductively from low dimensional cones. We
set Pσ = σ∨ for σ outside Y . Assume that Pη is determined for every η in F(σ) \ {σ }. Then

Iσ \
⋂

η∈F(σ)\{σ }

Pη

is σ⊥-bounded. Let Q1, . . . ,Qs be the σ⊥-bounded faces of codimension one of Iσ . We take
y1, . . . , ys ∈ NR and c1, . . . , cs ∈ R with

Iσ ⊂ (yi ≥ ci) , Qi = Iσ ∩ (yi = ci) , i = 1, . . . , s .

Then we have y1, . . . , ys ∈ rel. int σ . Hence

Pσ := σ∨ ∩

s⋂

i=1

(yi ≥ ci)

satisfies the condition. Since Iσ is trivial for σ ∈ X \ Y , we get the last equality of (7).
The last assertion follows from the fact that Iσ

ρ = ρ∨ for σ �∈ F(ρ), ✷

3.7. Local blowups. Let I be a polyhedral ideal of a fan X, and U an open subset of
X. For the support Y of I , we have a primary decomposition

I =
⋂

σ∈Y

Iσ ,

by Proposition 3.4. If we set

I ′ =
⋂

σ∈Y∩U

Iσ ,

then I ′ and I are equal on U . On the other hand, if ρ ∈ X is not contained in the closure
of Y ∩ U , then I ′

ρ = ρ∨. Hence the blowup FanX(I ′) is equal to FanX(I) on U and to X

on X \ Y ∩ U . This localization of the blowup is not possible in general for a polyhedral
fractional ideal.

3.8. Some lemmas. Let Q ⊂ MR be a rational convex polytope, i.e., a convex closure
of a finite set of rational points. Then, for any polyhedral cone σ , I (Q)σ := Q + σ∨ is a
σ∨-convex subset.

Let X be a fan. Then I (Q,X) := {I (Q)σ ; σ ∈ X} is a polyhedral fractional ideal.
Hence FanX(I (Q,X)) is a subdivision of X. If Q is r-dimensional, then Fan(Q) is projective
and FanX(I (Q,X)) is the join J (Fan(Q),X) of Fan(Q) and X. In particular, FanX(I (Q,X))

dominates the projective fan Fan(Q).
For the polyhedral ideal I (Q,X)+I (Q,X)−1 of X, the fan FanX(I (Q,X)+I (Q,X)−1)

is a subdivision of FanX(I (Q,X)). In particular, it dominates both X and Fan(Q). Since
(I (Q,X) + I (Q,X)−1)γ = γ ∨ for γ with dim γ ≤ 1, the support of this ideal consists of
cones of dimension at least two. If σ is contained in both X and Fan(P ), then the polyhedral
ideals I (Q,X) and I (Q,X)−1 are unitary at σ . Hence the blowup

FanX(I (Q,X) + I (Q,X)−1) → X(8)

does not subdivide the cone σ . Since this is a blowup along a polyhedral ideal, local blowups
are possible for any subfan of X.
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LEMMA 3.5. Suppose that v ∈ ZR(M) dominates τ and the first generalization w of

v dominates σ . We define

P := conv{m ∈ M ∩ τ∨ ; m0 ≤v m}

for an element m0 ∈ M ∩ (τ∨ ∩ σ⊥). Then P defines a primary polyhedral ideal of F(τ).

PROOF. Clearly, P is a τ∨-convex subset of τ∨. It suffices to show that, for any element
m ∈ M ∩ (τ∨ \ τ⊥), cm is in P for a sufficiently large integer c.

If m ∈ M ∩ (τ∨ \ σ⊥), then m0 <w m, since m0 ∈ M ∩ σ⊥. Hence m0 ≤v m and
m ∈ P .

Suppose m ∈ M ∩ τ∨ ∩ (σ⊥ \ τ⊥). Since v dominates τ , M ∩ τ∨ \ τ⊥ is a subset of
L(v) \ L0(v). Hence 0 <v m. Let s be the rank of v, and (y0, . . . , ys−1) a defining sequence
of it. Then linear functions y0, . . . , ys−2 are zero on M ∩ σ⊥, and

x1 ≤v x2 ⇔ 〈x1, ys−1〉 ≤ 〈x2, ys−1〉

for x1, x2 ∈ M ∩ σ⊥. We have 〈m, ys−1〉 > 0, since m ∈ M ∩ σ⊥ and 0 <v m. Hence we
have 〈m0, ys−1〉 ≤ 〈cm, ys−1〉 for sufficiently large c. Then m0 ≤v cm and cm ∈ P . ✷

LEMMA 3.6. Let X be a fan and U an open subset of it. Let Y1, Y2 be closed subsets

of U with Y1 ∩ Y2 = ∅. For a polyhedral ideal I of X with the support Y := Ȳ1 ∩ Ȳ2, let X′

be the blowup of X at I . Then, if we regard U an open subset of X′, then the closures of Y1

and Y2 in X′ are disjoint.

PROOF. Since Y does not intersect U , this blowup leaves U unchanged. It suffices to
show that σ ∈ Y1 and τ ∈ Y2 cannot be faces of a common element of X′. Since X is covered
by affine fans, we may assume that X = F(π) and that σ and τ are faces of π . Since σ and
τ are outside Y , Iπ ∩ σ⊥ and Iπ ∩ τ⊥ are nonempty. Let ρ ∈ F(π) be the minimal face
of π which contains σ and τ . Then Iπ does not intersect π∨ ∩ ρ⊥, since ρ ∈ Y . Since the
intersection of π∨ ∩ σ⊥ and π∨ ∩ τ⊥ is π∨ ∩ ρ⊥, we have

(Iπ ∩ σ⊥) ∩ (Iπ ∩ τ⊥) = ∅ .

Hence there is no cone in X′ = Fan(Iπ ) which contains both σ and τ . ✷

4. Completions of fans. In this section, we assume that fans are rational, and we
prove the following theorem. A similar theorem for not necessarily rational fans will be
proved in the next section as the second proof of Theorem 1.1.

THEOREM 4.1. Let X be a finite (rational) fan. Then there exists a complete fan X′

such that X is a subfan of X′.

Any affine fan has a completion by the following lemma.

LEMMA 4.2. For a rational polyhedral cone σ , there exists a projective fan X which

contains σ as an element.
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PROOF. First, we consider the case σ = 0. Let {m1, . . . ,mr } and {n1, . . . , nr } be
mutually dual basis of M and N . We set n0 := −(n1 + · · · + nr ). The fan Πr is defined to
be the set of cones generated by proper subsets of {n0, n1, . . . , nr }. This is equal to the fan
Fan(P ) for the convex closure P of {0,m1, . . . ,mr }. This is a complete fan and of course
contains 0. The associated toric variety of this fan is the r-dimensional projective space (cf.
[O1, p. 96]).

In case dim σ = r , we take n ∈ N ∩ int σ and set

Y := F(σ) ∪ {η + R0(−n) ; η ∈ F(σ) \ {σ }} .

Then Y is equal to the projective fan Fan(P ) for the r-dimensional convex polytope P = {x ∈

σ∨ ; 〈x, n〉 ≤ 1}, and σ ∈ Y .
In the general case, let s = dim σ . We take a decomposition N = N ′ ⊕ N ′′ such that σ

is a maximal dimensional cone in N ′
R. Then the product fan of a complete fan of N ′

R which
contains σ and Πr−s of N ′′

R for a basis satisfies the condition. ✷

THEOREM 4.3. The following conditions on a fan X are equivalent.

(1) X is complete, i.e., X is finite and |X| = NR.

(2) The equality ZR(X) = ZR(M) holds.

(3) The equality
⋃

σ∈X dom σ = ZR(M) holds.

PROOF. (2) and (3) are equivalent since ZR(X) =
⋃

σ∈X dom σ by Lemma 2.9.
Suppose (2) holds. Since {‖σ‖ ; σ ∈ X} is an open covering of ZR(M), there exists

a finite subfan X′ ⊂ X with
⋃

σ∈X′ ‖σ‖ = ZR(M) by Theorem 2.5. Since dom(σ )’s are
nonempty and disjoint for σ ∈ X, we have X′ = X. Hence X is finite. Take an arbitrary
element y ∈ NR and consider v ∈ ZR(M)1 with L(v) = M ∩ (y ≥ 0). By assumption and
Lemma 2.9, there exists a cone σ ∈ X with M ∩ σ∨ ⊂ L(v) ⊂ (y ≥ 0). Then y ∈ σ ⊂ |X|.
Hence |X| = NR and X is complete.

Suppose (1) holds and take an arbitrary element v ∈ ZR(M). Let s be the rank of v and
(y0, . . . , ys−1) a defining sequence of v. Since |X| = NR, zε :=

∑s−1
i=0 εiyi is contained in

the relative interior of a cone of X for every ε > 0. Since X is a finite fan, there exist τ ∈ X

and a sequence {εj } of positive real numbers with the limit 0 such that all zεj ’s are contained
in rel. int τ . Then v ∈ dom τ by Lemma 2.6. This implies (3). ✷

For finite fans X,X′, we denote by X ∩ X′ the set of cones contained in both X and X′.
Clearly, X ∩ X′ is a subfan of both X and X′. We set

DX,X′ := {σ ∈ X ; there exists τ ∈ X′ such that σ ⊂ τ } .

This is the maximal subfan of X which dominates X′. Clearly, we have

DX,X′ ∩ DX′,X = X ∩ X′ .

The fan

J (X,X′) := {σ ∩ τ ; σ ∈ X, τ ∈ X′}

defined in Section 3 is finite and dominates X and X′.
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We say X′ to be quasi-dominant over X if J (X,X′) is a subfan of X′. Then J (X,X′) =

DX′,X. If ZR(X) ⊂ ZR(X′) and X′ is quasi-dominant over X, then J (X,X′) is a subfan of
X′ and is a subdivision of X. In particular, if a complete fan X∗ is quasi-dominant over X,
then a subfan of X∗ is a subdivision of X.

More generally, we define the join J (X1, . . . , Xs) for a finite number of finite fans
X1, . . . , Xs (s ≥ 1). Namely, we inductively define J (X1) := X1 and

J (X1, . . . , Xi) = J (J (X1, . . . , Xi−1),Xi)

for i = 2, . . . , s. It is easy to see that J (X1, . . . , Xs) is independent of the order of X1, . . . , Xs .
As we mentioned in Section 3, J (X, Y ) is equal to Fan(P + Q) if X = Fan(P ) and

Y = Fan(Q) for convex polyhedra P and Q.
The following theorem is “Chow’s lemma” for a fan.

THEOREM 4.4. For a finite fan X, there exists a projective fan X∗ such that a subfan

X′ of X∗ is a subdivision of X, i.e., X∗ is quasi-dominant over X.

PROOF. Let {σ1, . . . , σs} be the set of maximal elements of X. By Lemma 4.2, there ex-
ists a projective fan Xi which contains σi as an element for each i. Then X∗ := J (X1, . . . , Xs)

is a projective fan. Clearly, each σi is a union of cones in X∗. Hence the set X′ ⊂ X∗ of cones
contained in one of σi ’s is a subdivision of X. ✷

THEOREM 4.5. Let X1,X2 be finite fans and v an element of ZR(X1) ∩ ZR(X2).

Then there exists a fan Xv with the following properties: (1) Xv is the blowup at a poly-

hedral ideal I of X1. (2) The ideal I of (1) is unitary at DX1,X2 and hence DX1,X2 ⊂ Xv . (3)
If v dominates τv ∈ Xv and τ2 ∈ X2, then τv ⊂ τ2.

PROOF. We prove the theorem by induction on the rank of v. If v = η(M), then v

dominates 0 and Xv := X1 satisfies the condition.
Assume that the rank is at least one. Let τ1 ∈ X1 and τ2 ∈ X2 be the cones dominated

by v. If τ1 ⊂ τ2, then Xv := X1 is enough. Hence we assume that τ1 is not contained in τ2.
In particular, τ1 �∈ DX1,X2 .

Let w be the first generalization of v. By Lemma 2.10, w dominates a face σ1 of τ1 and
a face σ2 of τ2. Since rank(w) = rank(v) − 1, we can apply the induction assumption for w.
Hence, by replacing X1 by Xw , we may assume σ1 ⊂ σ2. Here, recall that the composite of
blowups is a blowup by Theorem 3.1. Assume that the semigroup M ∩ τ∨

2 is generated by
m1, . . . ,ms . Since σ1 ⊂ σ2 ⊂ τ2, we have

M ∩ τ∨
2 ⊂ M ∩ σ∨

2 ⊂ M ∩ σ∨
1 .

Hence, there exists m0 ∈ M ∩ rel. int(τ∨
1 ∩ σ⊥

1 ) with

m1, . . . ,ms ∈ −m0 + M ∩ τ∨
1

[O1, Prop. 1.3].
Let s be the rank of v and (y0, . . . , ys−1) a defining sequence of v. Then P := conv{m ∈

M ∩ τ∨
1 ; m0 ≤v m} defines a primary polyhedral ideal of F(τ1) by Lemma 3.5. Let I (P ) be
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the resulting primary polyhedral ideal of X1, and Xv the blowup of X1 at I (P ). Since I (P ) is
unitary at cones which do not contain τ1, it is unitary on DX1,X2 and DX1,X2 ⊂ Xv is satisfied.
Since m1, . . . ,ms ∈ L(v) and m1 + m0, . . . ,ms + m0 ∈ M ∩ τ∨

1 , we have m1, . . . ,ms ∈

R(P − m0). The cone R(P − m0)
∨ of Xv is contained in the cone τ2, since {m1, . . . ,ms}

generates τ∨
2 . Since M ∩ R(P − m0) ⊂ L(v), v dominates a face τv of R(P − m0)

∨ by
Lemma 2.9. Clearly, τv ∈ Xv and τv ⊂ τ2. ✷

THEOREM 4.6. Let X,X′ be finite fans. Then there exists a fan X∗ with the following

properties: (1) X∗ is a blowup of X along a polyhedral ideal I . (2) I is unitary on DX,X′ and

DX,X′ ⊂ X∗. (3) X∗ is quasi-dominant over X′.

PROOF. For each element v ∈ ZR(J (X,X′)), Theorem 4.5 says that there exists a
blowup Xv of X at a polyhedral ideal which is unitary on DX,X′ and the cone σv ∈ Xv

dominated by v is contained in some τ ∈ X′. Since ‖σv‖ is an open neighborhood of v, there
exist v1, . . . , vs ∈ ZR(J (X,X′)) with

ZR(J (X,X′)) =

s⋃

i=1

‖σvi ‖

by the compactness of ZR(J (X,X′)). We set X∗ := J (Xv1, . . . , Xvs ). Then X∗ is a blowup
of X at a polyhedral ideal which is unitary on DX,X′ by Theorems 3.1 and 4.5. If v ∈

ZR(J (X,X′)) dominates σ ∈ X∗, then σ is contained in some σvi and hence in some τ ∈ X′.
Hence X∗ is quasi-dominant over X′. ✷

THEOREM 4.7. Let X be a finite fan and v an element of ZR(M). Then there exists

a finite fan X′ which contains X and satisfies v ∈ ZR(X′). Furthermore, we can take X′ so

that X′ \ X is contained in a projective fan.

PROOF. We prove the first assertion of the theorem by induction on the rank of v.
If v ∈ ZR(X), then X′ := X is enough. Hence we assume v �∈ ZR(X). In particular, the

rank is at least one. Let w be the first generalization of v. By the induction assumption, there
exists a finite fan X′′ which contains X and contains w in its Zariski-Riemann space. Hence
by replacing X by X′′, we may assume w ∈ ZR(X). Then w dominates a cone σ ∈ X.

Let X∗ be a projective fan which contains σ . By using Theorem 4.6, we replace X∗ by
its blowup so that X∗ is quasi-dominant over X. Since X∗ is complete, a subfan X1 ⊂ X∗ is
a subdivision of X. Let Z∗ := X1 \ (X ∩ X∗), and let Z∗ be its closure in X∗. Since X∗ is
complete, v dominates a cone ρ of X∗.

(1) First, we consider the case ρ �∈ Z∗. In this case, it suffices to show that X′ :=

X ∪ (X∗ \ Z∗) is a fan. Since X∗ \ Z∗ is a fan, it suffices to show that it satisfies the last
condition of Proposition 2.7. Assume that u ∈ ZR(M) dominates τ ∈ X and η ∈ X∗ \ Z∗.
Then, η ∈ X1 since u ∈ ZR(X) = ZR(X1). Since η �∈ Z∗ ⊂ Z∗, we have η ∈ X ∩ X∗. Since
X is a fan, η is equal to τ .

(2) Now, assume ρ ∈ Z∗. ρ ∈ X∗ \ X1 by the assumption v �∈ ZR(X). Since the
generalization w of v dominates σ , we know that σ is a face of ρ. We take an element
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m0 ∈ M ∩ rel. int(ρ∨ ∩ σ⊥), and set

P := conv{m ∈ M ∩ ρ∨ ; m0 ≤v m} .

Then P defines a polyhedral ideal of X∗ primary at ρ. Let X∗∗ be the blowup of X∗ along this
ideal. Note that this blowup does not change any cones which do not contain ρ. In particular,
X is invariant by the blowup. Since M ∩ R(P − m0) ⊂ L(v) and R(P − m0)

∨ is an element
of X∗∗, v dominates a face τ of R(P − m0)

∨. For the closure Z∗∗ of Z∗∗ := Z∗ in X∗∗,
we will show τ �∈ Z∗∗. Suppose that a face η of τ was contained in Z∗. Since η ⊂ ρ and
η, ρ ∈ X∗, η is a face of ρ. Since η ∈ Z∗ and σ ∈ X ∩ X∗, η is not a face of σ . Hence m0

is not in ρ∨ ∩ η⊥ by [O1, Prop. A.6]. Since η corresponds to the face P ∩ η⊥ of P and since
m0 is not in P ∩ η⊥ ⊂ ρ∨ ∩ η⊥, η is not a face of R(P − m0)

∨. Hence η is not a face of
τ contrary to the assumption. Since X ∩ X∗ = X ∩ X∗∗, we are reduced to the case (1) by
replacing X∗ by X∗∗.

For the last assertion, we take τ ∈ X′ which is dominated by v. If we replace X′ by
X ∪ F(τ), then X′ \ X is contained in a projective fan which contains τ (cf. Lemma 4.2). ✷

THEOREM 4.8. Let X1,X2 be finite fans, and let X := X1 ∩ X2. If X1 \ X is a

subset of a projective fan X∗, then there exists a finite fan X3 which contains X and satisfies

ZR(X3) = ZR(X1) ∪ ZR(X2).

PROOF. We show later that we can replace X1,X2,X
∗ by their subdivisions without

shrinking X = X1 ∩ X2 so that they satisfy the following conditions:
(1) X1 is quasi-dominant over X2, i.e., U1 = J (X1,X2) is an open subset of X1.
(2) U1 is a subdivision of an open subset U2 ⊂ X2.
(3) Let W1 := U1 \ X and Y := X \ (X ∩ X∗), and let W2 be the image of W1 in U2.

Then the closures W2 and Y2 := Ȳ in X2 are disjoint.
(4) X∗ is quasi-dominant over X2.
By the property (4), U∗ := J (X2,X

∗) is an open subset of X∗, and the natural map
ψ : U∗ → X2 is a subdivision. (1) and (3) imply U2 = X ∪ W2 and Y is closed in U2.

Since X∗ is projective, there exists a blowup of X2 of type (8) in Section 3.8. Namely,
there exists a polyhedral ideal I of X2 such that I is unitary on X ∩ X∗ and the blowup of
X2 along I is a subdivision of U∗. Let I ′ be the maximal extension of the restriction of the
ideal I to the open subset X2 \ (Y2 ∪ W2) of X2. I ′ is unitary on the open set U2, since
U2 ⊂ (X ∩ X∗) ∪ Y2 ∪ W2. Let U∗

2 be the blowup of X2 along I ′, and φ : U∗
2 → X2

the subdivision map. Consider the two subdivision maps U∗
2 \ φ−1(Y2) → X2 \ Y2 and

U∗ \ ψ−1(Y2) → X2 \ Y2. Then we see that the former is a subdivision of the latter on
X2 \ (Y2 ∪W2) and, on the contrary, the latter is a subdivision of the former on U2 \Y . Hence
the restriction of the join J (U∗

2 , U∗) to the open set X2 \Y2 can be patched with the restriction

of U∗
2 to the open set X2 \ W2, and they form a subdivision V2 of X2. Since U1 \ Y ⊂ X∗, we

see that U∗ and hence V2 is equal to U1 \Y over U2 \Y . On the other hand, since X ⊂ X2 \W2

and I ′ is unitary on X ⊂ U2, X is contained in V2. Hence the fan V2 over X2 is equal to U1
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over U2 = (U2 \ Y ) ∪ X, and we can patch it with X1. The resulting fan X3 satisfies the
conditions of the theorem.

Now we prove that we can subdivide X1 and X2 so that the conditions (1) and (2) are
satisfied. By Theorem 4.6, there exists a blowup X′

2 of X2 which is quasi-dominant over X1

and contains DX2,X1 . Then

U2 := {σ ∈ X′
2 ; there exists τ ∈ X1 such that σ ⊂ τ }

is an open subset of X′
2 and is equal to J (X1,X

′
2). Again by Theorem 4.6, there exists a

blowup X′
1 of X1 quasi-dominant over X′

2 and DX1,X
′
2

⊂ X′
1. We set

U1 := {τ ∈ X′
1 ; there exists ρ ∈ X′

2 such that τ ⊂ ρ} .

Since ZR(U1) = ZR(X1) ∩ ZR(X′
2) = ZR(U2), U1 is a subdivision of U2. We replace X1 by

X′
1 and X2 by X′

2. Then the new X = X1 ∩ X2 contains the original X. Since X′
1 is a blowup

of the original X1 along a polyhedral ideal I which is unitary on X, we retain the relation
X1 \ X ⊂ X∗ if we replace X∗ by its blowup at the maximal extension of I |(X1 ∩ X∗).

Next, we make them satisfy (3) keeping (1) and (2). Since W1 ⊂ X1 \X ⊂ X1 ∩X∗, W1

and Y are disjoint closed subsets of U1. If V := W2 ∩ Y2 is not empty, then this is a closed
subset of X2 contained in X2 \ U2. By Lemma 3.6, the closures of W1 and Y are disjoint in
the blowup X′

2 of X2 at V . (3) is satisfied if we replace X2 by X′
2. Since the center of the

blowup is outside U2, X1 is still quasi-dominant over X2.
Finally, we make (4) satisfied. By Theorem 4.6, we can make X∗ quasi-dominant over

X2 by a blowup. Here we can take the center of the blowup outside X1∩X∗, since v ∈ ZR(M)

dominates no cones in X2 if it dominates a point σ in an open subset X1 ∩ X∗ of X∗ and
if σ ∈X1 \ U1. Hence, there is no change in the relation X1 \ X ⊂ X∗. The conditions (1)
and (2) are independent of X∗. (3) is also satisfied, since the new Y is contained in the original
Y . ✷

PROOF OF THEOREM 4.1. Let X be a finite fan. For any v ∈ ZR(M), there exists a fan
Xv such that X ⊂ Xv , v ∈ ZR(Xv) and Xv\X is contained in a projective fan by Theorem 4.7.
Since ZR(M) is compact by Theorem 2.5, there exist finite elements v1, . . . , vs ∈ ZR(M)

with

ZR(M) = ZR(Xv1) ∪ · · · ∪ ZR(Xvs ) .

By applying Theorem 4.8, we construct inductively a sequence of finite fans X1 =

Xv1,X2, . . . , Xs with

ZR(Xi) = ZR(Xv1) ∪ · · · ∪ ZR(Xvi )

and Xi−1 ∩ Xvi ⊂ Xi for i = 2, . . . , s. Then X′ := Xs is complete by Theorem 4.3 and
contains X.

5. Compactifications of real fans. In this section, we will prove the compactification
theorem for real fans. Indeed, we prove it for k-fans for an arbitrary subfield k of R. In the
case of rational fans, we used the lattice M for blowups. However, we cannot use it in the
general case.



COMPLETION OF REAL FANS AND ZARISKI-RIEMANN SPACES 215

Let M and N be free Z-modules of rank r ≥ 0 as in the previous sections. We fix a
subfield k of R. Let Nk := N ⊗ k and Mk := M ⊗ k. A cone σ in NR is said to be a k-cone if
it is generated by a finite subset of Nk. A real fan X is said to be a k-fan if every σ ∈ X is a
k-cone. In particular, R-fans are real fans and Q-fans are usual fans. Although our theory does
not depend on the field k, it is an interesting problem to find the properties of k-fans which
depend on the field k.

We set k0 := {a ∈ k ; a ≥ 0}. Let C ⊂ MR be the cone generated by a finite subset
{x1, . . . , xs} of Mk. Then Mk ∩ C = k0x1 + · · · + k0xs as easily shown by Carathéodory’s
theorem.

A preorder ≤ on Mk is said to be k-additive if the following conditions are satisfied.
(1) For any x, y ∈ Mk, either x ≤ y or y ≤ x is satisfied.
(2) x ≤ y and y ≤ z imply x ≤ z.
(3) If x ≤ y, then x + z ≤ y + z for every z.
(4) If x ≤ y, then ax ≤ ay for every a ∈ k0.
We define the Zariski-Riemann space ZR(Mk) as the set of all k-additive preorders of

Mk. We define the weakest topology on ZR(Mk) such that {v ∈ ZR(Mk) ; 0 ≤v x} is open
for every x ∈ Mk.

We define Lk(v) := {x ∈ Mk ; 0 ≤v x} and L0
k(v) := {x ∈ Mk ; 0 =v x} for

v ∈ ZR(Mk), where we write x =v y if x ≤v y and y ≤v x. If a cone C ⊂ MR is generated
by {x1, . . . , xs} ⊂ L0

k(v), then it is easy to see from the above conditions that Mk ∩ C is

contained in L0
k(v). We set ‖σ‖k := {v ∈ ZR(Mk) ; Mk ∩ σ∨ ⊂ Lk(v)} for a convex

polyhedral k-cone σ . Then the set of all subsets ‖σ‖k forms an open basis of the topology
of ZR(Mk). For a k-fan X, ZR(X) is defined as the the union of ‖σ‖k for σ ∈ X. The
compactness of ZR(X) for a finite k-fan X is proved similarly to Theorem 2.5.

We denote by η the trivial preorder in ZR(Mk) with Lk(η) = Mk.

LEMMA 5.1. Let v be an element of ZR(Mk)\{η}. Then the closure of conv(Lk(v)) in

MR is equal to that of Lk(v), and is a closed half space, i.e., (x0 ≥ 0) for an element x0 ∈ NR .

PROOF. It suffices to show the convexity of the closure Lk(v) ⊂ MR for the first part.
Let x, y be elements of Lk(v). Then there exist sequences {xi}, {yi} in Lk(v) converging to x

and y, respectively. We know txi + (1 − t)yi ∈ Lk(v) for t ∈ k with 0 ≤ t ≤ 1 for all i. This
implies that all the segments xiyi are in Lk(v), and the limit segment xy is also in the closed
set. Hence Lk(v) is convex and equal to the closure of conv(Lk(v)).

We have Mk ∩ (conv(Lk(v))) = Lk(v) by Carathéodory’s theorem. Since v �= η, we
know conv(Lk(v)) �= MR by this equality. Since Lk(v) is the closure of this convex set by the
first part, it is not equal to MR. Since Lk(v)∪ (−Lk(v)) = Mk, we have Lk(v)∪ (−Lk(v)) =

MR. Hence the closed convex cone Lk(v) is a closed half space. ✷

By this lemma, the ranks and the defining sequences are defined for elements in
ZR(Mk) as in Section 2. We say that an element v ∈ ZR(Mk) dominates a k-cone σ if
Mk ∩ σ∨ ⊂ Lk(v) and Mk ∩ σ∨ ∩ L0

k(v) = Mk ∩ σ⊥.
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Theorem 4.5 modified for k-fans is proved similarly. However, we need a modification
for the part in which we used the lattice M . It suffices to show the following lemma.

LEMMA 5.2. Assume that v ∈ ZR(Mk) dominates k-cones τ1, τ2, and the first gener-

alization w of v dominates a face σ1 of τ1 and a face σ2 of τ2. Furthermore, we assume that

σ1 is contained in σ2. Then there exists a polyhedral ideal I of F(τ1) primary at τ1 with the

following property. Let X′ be the blowup of F(τ1) along I . Then the cone τv ∈ X′ dominated

by v is contained in τ2.

PROOF. Let {x1, . . . , xt } ⊂ Mk be a set of generators of τ∨
2 . We may assume that

x1, . . . , xl are contained in τ∨
2 \ τ⊥

2 and xl+1, . . . , xt are in τ⊥
2 . Let s be the rank of v, and

(y0, . . . , ys−1) a defining sequence of v. Then we have

L0
k(v) = {x ∈ Mk ; 〈x, yi〉 = 0 for i = 0, . . . , s − 1} .

Since v dominates τ1, τ2, the linear spaces τ⊥
1 and τ⊥

2 are contained in L0
k(v)R. Hence L0

k(v)⊥R
is contained in N(τ1)R := τ1 + (−τ1) and N(τ2)R := τ2 + (−τ2). We take x0 ∈ Mk ∩

rel. int(τ∨
1 ∩ σ⊥

1 ) so that x0 + xi ∈ τ∨
1 for every 1 ≤ i ≤ t . This is possible by the relation

τ∨
2 ⊂ σ∨

2 ⊂ σ∨
1 = τ∨

1 + (− rel. int(τ∨
1 ∩ σ⊥

1 )) .

If we take ε > 0 sufficiently small, then z = zε :=
∑s−1

j=0 εjyj is contained in rel. int τ1 ∩

rel. int τ2 and 〈xi, z〉 > 0 for all 1 ≤ i ≤ l. Now we take elements a, b of k such that
0 < a < b, 〈x0, z〉 < a and 〈x0 + xi, z〉 > b for i = 1, . . . , l. Since z ∈ rel. int τ1, we see that
τ∨

1 ∩ (z ≤ b) is τ⊥
1 -bounded, where (z ≤ b) = {x ∈ MR ; 〈x, z〉 ≤ b}. We take a point z0

in Nk ∩ L0
k(v)⊥R sufficiently near to z ∈ L0

k(v)⊥R . Then z0 is contained in rel. int τ1 ∩ rel. int τ2

and satisfies 〈x0, z0〉 < a and

τ∨
1 ∩ (z ≥ b) ⊂ τ∨

1 ∩ (z0 ≥ (a + b)/2) ⊂ τ∨
1 ∩ (z > a) .

Let P be the convex hull of the union of

τ∨
1 ∩ (z0 ≥ (a + b)/2) and τ∨

1 ∩ ({x0} + L0
k(v)R) .

Note that x0 + xi is contained in the set on the left hand side for i = 1, . . . , l and in the set on
the right hand side for i = l + 1, . . . , t . Then P is a τ⊥

1 -convex subset contained in τ1, and
τ∨

1 \ P is τ1-bounded, since it is contained in τ∨
1 ∩ (z ≤ b). Hence P defines a polyhedral

ideal I (P ) primary at τ1.
The fan X′ obtained by the blowup of F(τ1) along this ideal contains ρ := (P − x0)

∨

as an element. Then τv ⊂ τ2 since P \ {x0} contains {x0 + x1, . . . , x0 + xt }, and hence
Mk ∩ ρ∨ ⊂ Lk(v). Hence v dominates a face τv of ρ. ✷

In order to prove the theorem analogous to Theorem 4.7 for k-fans, it suffices to show
the following lemma.

LEMMA 5.3. Assume that v ∈ ZR(Mk) dominates a cone τ , and the first generaliza-

tion w of v dominates a face σ of τ . Then there exists a polyhedral ideal I of F(τ) primary

at τ with the following properties. For the blowup X of F(τ) along I , the cone τv ∈ X

dominated by v satisfies τv \ rel. int τ ⊂ σ .
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PROOF. Let (y0, . . . , ys−1) be a defining sequence of v. We take ε > 0 sufficiently
small so that z = zε is in rel. int τ . We take an arbitrary x0 ∈ Mk ∩ rel. int(τ∨ ∩ σ⊥), a ∈ k

greater than 〈x0, z〉 and b ∈ k greater than a. As in the proof of Lemma 5.2, we take z0 of
Nk ∩ L0

k(v)⊥R sufficiently near z so that

τ∨ ∩ (z ≥ b) ⊂ τ∨ ∩ (z0 ≥ (a + b)/2) ⊂ τ∨ ∩ (z > a) .

We consider the primary polyhedral ideal I (P ) defined by the convex closure P of the union
of τ∨ ∩ (z0 ≥ (a + b)/2) and τ∨ ∩ ({x0} + τ⊥). We will show (P − x0)

∨ \ rel. int τ ⊂ σ .
Let u be a point of (P − x0)

∨ and ρ the minimal face of τ which contains u. If u �∈ rel. int τ ,
then ρ �= τ and P ∩ ρ⊥ is nonempty. Let y be an element in it. Then since 〈y, u〉 = 0,
〈y − x0, u〉 ≥ 0 and 〈x0, u〉 ≥ 0, we have 〈x0, u〉 = 0. Hence x0 ∈ ρ⊥ and hence ρ is a
face of σ . Since Mk ∩ (P − x0) ⊂ Lk(v) by the construction of P , v dominates a face τv of
(P − x0)

∨. Then the conditions of the lemma is satisfied for τv . ✷

Now the following theorem is proved similarly to Theorem 4.1.

THEOREM 5.4. For an arbitrary finite k-fan X, there exists a complete finite k-fan X′

with X ⊂ X′.

If we set k := R, then we get the second proof of Theorem 1.1.

REFERENCES

[E] G. EWALD, Combinatorial convexity and algebraic geometry, Grand. Texts in Math. 168, Springer-Verlag,

New York, 1996.

[F1] K. FUJIWARA, Rigid geometry, Lefschetz-Verdier trace formula and Deligne’s conjecture, Invent. Math. 127

(1997), 489–533.

[F2] W. FULTON, Introduction to toric varieties, Ann. of Math. Stud. 131, Princeton University Press, Princeton,

N.J., 1993.

[H] R. HARTSHORNE, Algebraic Geometry, Grad. Texts in Math. 52, Springer-Verlag, New York-Heidelberg,

1977.

[K] S. KURODA, The infiniteness of the SAGBI bases for certain invariant rings, Osaka J. Math. 39 (2002), 665–

680.

[N1] M. NAGATA, Imbedding of an abstract variety in a complete variety, J. Math. Kyoto Univ. 2 (1962), 1–10.

[N2] M. NAGATA, A generalization of the imbedding problem of an abstract variety in a complete variety, J. Math.

Kyoto Univ. 3 (1963), 89–102.

[O1] T. ODA, Convex Bodies and Algebraic Geometry, An Introduction to the Theory of Toric Varieties, Ergebnisse

der Math. (3), 15, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1988.

[OP] T. ODA AND H. S. PARK, Linear Gale transforms and Gelfand-Kapranov-Zelevinskij decompositions,

Tohoku Math. J. (2) 43 (1991), 375–399.

[S3] B. STURMFELS, Göbner bases and convex polytopes, Univ. Lecture Ser., 8, American Mathematical Society,

Provedence, R.I., 1996.

[S1] H. SUMIHIRO, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1–28.

[S2] H. SUMIHIRO, Equivariant completion II, J. Math. Kyoto Univ. 15 (1975), 573–605.

[Z1] O. ZARISKI, Local uniformization of algebraic varieties, Ann. of Math. (2) 41 (1940), 852–896.

[Z2] O. ZARISKI, The compactness of the Riemann manifold of an abstract field of algebraic functions, Bull.

Amer. Math. Soc. 50 (1944), 683–691.



218 G. EWALD AND M. ISHIDA

[ZS] O. ZARISKI AND P. SAMUEL, Commutative Algebra II, Grad. Texts in Math. 29, Springer-Verlag, New

York-Heidelberg, 1975.

FAKULTÄT UND INSTITUT FÜR MATHEMATIK

RUHR-UNIVERSITÄT BOCHUM

UNIVERSITÄTSSTRASSE 150
D-44780 BOCHUM

GERMANY

E-mail address: ewaldfamily@t-online.de

MATHEMATICAL INSTITUTE

TOHOKU UNIVERSITY

SENDAI 980–8578
JAPAN

E-mail address: ishida@math.tohoku.ac.jp


