Completion Time and Next Activity Prediction
of Processes Using Sequential Pattern Mining

Michelangelo Ceci, Pasqua Fabiana Lanotte, Fabio Fumarola,
Dario Pietro Cavallo, and Donato Malerba

Dipartimento di Informatica, University of Bari “Aldo Moro”, Bari, Italy
{michelangelo.ceci,pasquafabiana.lanotte,fabio.fumarola,
donato.malerba}@uniba.it, dario.pt.cavallo@gmail.com

Abstract. Process mining is a research discipline that aims to discover,
monitor and improve real processing using event logs. In this paper we
describe a novel approach that (i) identifies partial process models by
exploiting sequential pattern mining and (ii) uses the additional infor-
mation about the activities matching a partial process model to train
nested prediction models from event logs. Models can be used to pre-
dict the next activity and completion time of a new (running) process
instance. We compare our approach with a model based on Transition
Systems implemented in the ProM5 Suite and show that the attributes
in the event log can improve the accuracy of the model without decreas-
ing performances. The experimental results show how our algorithm im-
proves of a large margin ProM5 in predicting the completion time of a
process, while it presents competitive results for next activity prediction.

1 Introduction

Today, many organizations store event data from their enterprise information
system in structured forms such as event logs. Examples of such logs are audit
trails of workflow management systems, transaction logs from enterprise resource
planning systems, electronic patient records, etc.. Here, the goal is not to just
collect as much data as possible, but to extract valuable knowledge that can
be used to compete with other organizations in terms of efficiency, speed and
services. These issues are taken into account in Process Mining, whose goal is
to discover, monitor and improve processes by providing techniques and tools to
extract knowledge from event logs. In typical application scenarios, it is assumed
that events are available and each event: (i) refers to an activity (i.e., a well-
defined step in some process), (ii) is related to a case (i.e., a process instance),
(iii) can have a performer (the actor executing or initiating the activity), and
(iv) is executed at a given timestamp. Moreover, an event can carry additional
process-specific attributes (e.g. the cost associated to the event, the place where
the event is performed).

Event logs such as the one shown in Table 1 are used as the starting point for
mining. As described in [12], we distinguish four different analyses: (1) Discovery,
(2) Conformance, (3) Enhancement and (4) Operational Support. In Discovery,

S. Dzeroski et al. (Eds.): DS 2014, LNAI 8777, pp. 49-61, 2014.
© Springer International Publishing Switzerland 2014

50 M. Ceci et al.

a process model is discovered based on event logs [7,14]. For example, the a-
algorithm [14] mines a process model represented as a Petri-Net [4,2] from event
logs. In Conformance analysis, an existing process model is compared with event
logs to check and analyze discrepancies between the model and the log. Viceversa,
the idea behind Enhancement is to extend or improve an existing process model
using information about the actual process recorded in some event logs. Types of
enhancement can be extension, i.e., adding new perspectives to a process model
by cross-correlating it with a log, or repair, i.e., modify an discovered model to
better reflect reality. It is noteworthy that in all the analysis considered above, it
is assumed that process mining is done offiine. Processes are analyzed thereafter
to evaluate how they can be improved or extended. On the contrary, Operational
Support techniques are used in online settings. Given a process model built over
some event logs and a partial trace, operational support techniques can be used
for detecting deviation at runtime (Detect), predicting the remaining processing
time (Predict) and recommending the next activity (Recommend).

At the best of our knowledge, classical algorithms presented in the literature
for operational support, (1) build a process model in form of Transition Sys-
tems [11] or Petri-Nets [4,2], (2) re-analyze the log to extend the model with
temporal information and aggregated statistics [13], and finally, (3) learn a re-
gression or a classification model to support prediction and recommendation
activities. However, as noted in [5], these operational support methods natu-
rally fit cases where processes are very well-structured (i.e. perfectly matching
some predefined schema), for real-life logs they suffer of problems related to “in-
completeness” (i.e. the model represents only a small fraction of the possible
behavior due to the large number of alternatives), “noise” (i.e., logs containing
exceptional /infrequent activities that should not be incorporated in the model),
“overfitting” and “under-fitting”, thereby resulting in a spaghetti-like model,
which is rather useless in practice. Other approaches, such as computational
intelligence systems [7], which overcome these problems, tend to be inefficient
and, thus, have problems to scale in case of a huge amount of activities which
are correlated each other (by means of precedence/causality dependencies).

In this paper we present a novel approach for operational support which deals
with the problems presented before, that is, “incompleteness”, “robustness to
noise” and “overfitting”. The solution we propose aims at identifying partial
process models to be used for training predictive models. In our approach, two
types of predictive models are inferred: for the prediction of the next activity and
for the estimation of the completion time. In details, we identify frequent partial
processes in form of frequent activity sequences. These sequences are extracted
by adapting an efficient frequent pattern mining algorithm and are represented in
form of sequence trees. Afterwards, we associate at each node of the tree a specific
prediction model that takes into account, in addition to classical attributes (such
as the performer of each activity), also additional attributes such as the cost
associated to the event or the place where the event is performed. We call this
last prediction model “nested”. While the sequence mining algorithm allows us
to deal with incompleteness, robustness to noise and overfitting by removing

Malerba
Testo inserito
In any case, existing solutions do not take into account additional process-specific attribute values which change in running processes.

Completion Time and Next Activity Prediction of Processes 51

Table 1. An example of event log

CID Act Time Perf X Y [[CID Act Time Perf X Y
1 A 0 pl x1ylff 4 C 22 pl - -
1 B 6 pl - -||4 D 28 p1 - -
1 c 12 pl - - 5 A 18 pl x1ly2
1 D 18 pl - - 5 C 22 p2 - -
2 A 10 p2 xlyl|l 5 B 26 pl - -
2 C 14 p2 - -||5 D 32 p2 - -
2 B 26 p2 - - 6 A 19 pl x2y2
2 D 36 p2 - - 6 E 28 p3 - -
3 A 12 p3 x2y2|| 6 D 59 p2 - -
3 E 22 p3 - - 7 A 20 pl x2yl
3 D 5 p3 - - 7 C 25 p3 - -
4 A 15 pl xlylf| 7 B 36 p3 - -
4 B 19 pl - - 7 D 44 p2 - -

unfrequent behaviors, the nested models guarantee some flexibility. In fact, it
is possible to i) plug-in any classification/regression learning algorithm and i)
enable a different representation of the data, one for each node of the trees. Our
solution has its inspiration in works which face with the associative classification
task [3], where descriptive data mining techniques are exploited for predictive
purposes using a hybrid data mining approach.

The paper is organized as follows: in the next section we describe the proposed
approach. Section 3 is devoted to present the empirical evaluation of the proposed
solution. Finally, Section 4 concludes the paper and draws some future work.

2 Methodology

This section describes our two-stepped online operational support approach.

First Phase: Process Discovery
In this phase, we look at a (partial) process as a sequence of activities and
we apply a sequential pattern mining algorithm in order to generate a partial
process model. This model allows us to represent both complete and partial
traces which are found frequent by the algorithm. The algorithm we adopt in
this phase is FAST [9] which guarantees low computational costs and allows us
to represent frequent sequences in a compact way by means of sequence trees.
FAST, by focusing only on frequent sequences, leads to predictive models (see
Section 16) which are robust to noise and do not suffer from overfitting problems.
Moreover, since FAST is able to extract frequent non-contiguous (and partial)
sequences of activities, we are also able to deal with incompleteness problems.
In this work we extend FAST by allowing it to also extract: 1) only contigu-
ous (partial) sequences and 2) only contiguous (partial) sequences that repre-
sent only processes since their beginning. Obviously, these extensions generate
smaller sequence trees, improve robustness to noise, reduce overfitting, but in-
crease problems related to incompleteness. All these aspects are due to a smaller
number of sequence patterns and, thus, to less specialized models. It is notewor-
thy that the idea of reducing the size of the process model is not new and in [13]

52 M. Ceci et al.

the authors convert sequences into sets and multi-sets. However, such approach
results in loosing the exact order of events and the number of the occurrences.
In our approach, an event log is represented as a sequence database (SDB),
that is, a set of tuples (CID,S), where CID is a case id and S is a sequence
of ordered set of events (i.e. set of activities). Figure la shows the sequence
database extracted from the event log reported in Table 1. For instance, in this
figure, the cases 1 and 4 are composed by the sequence of activities A, B, C, D.
To formally describe the task solved in this phase, we give some definitions.

Definition 1 (Sub/Super-Sequence). A sequence o = {ay,as,...,a;) is
called a sub-sequence of another sequence 8 = (b1, ba,...,bnm), denoted as o C 3,
if there exist integers 1 < j1 < jo < ... < ji < m such that a1 = bj a2 =
bjyy-..,ak =bj, . For example, if « = (A, B) and § = (A, C, B), where A,C and
B are events, then « is sub-sequence of 8 and § is a super-sequence of .

Definition 2 (Frequent sequences). Let a = (a1, as,...,ar) be a sequence
of activities, SDB be a sequence database and minsup a user-defined threshold.
a is frequent if its support o(a, SDB) (i.e. the number of sequences in SDB
which are super-sequences of a) is greater than minsup.

Definition 3 (Contiguous frequent sequences). Let « = (ai,as,...,ax)
be a frequent sequence in a sequence database SDB, according to a user-
defined threshold minsup. We define the contiguous support of a (denoted as
ocs(a, SDB)) as the number of sequences in SDB containing « such that, for
each i = 1...k — 1, the activity a;+1 is observed immediately after the activity
a;. If ocs(a, SDB) > minsup, then « is a contiguous sequence.

Definition 4 (Opening frequent sequence). Let & = (a1, az,...,a;) be a
contiguous frequent sequence in a sequence database SDB and minsup a user-
defined threshold. We define the opening support of a (denoted oos(ce, SDB))
as the number of sequences in SDB containing o, and having ay in the first
position. If o,5(ct, SDB) > minsup, then « is an opening sequence.

Ezxample 1. Given the sequence database SDB in Figure 1a and minsup = 1, we
analyze the sequence a = (A, B). « is frequent because it is present in the tuples
with CID = {1,2,4,5,7}. Now we check if « can be marked as contiguous
frequent sequence. The activities A, B appear contiguously only in the tuples
with CID = {1,4} (i.e. ocs(a, SDB) = 2). Since o.5(«, SDB) > minsup, « is
marked as contiguous frequent sequence. Finally, we check if a can be marked
as opening frequent sequence. In this case, we have to count how many times the
first activity of v (i.e. A) is observed in first position in the SDB and its next
activity is B. Since this happens for CID = {1,4} (i.e. 0,5(c, SDB) = 2), « is
an opening frequent sequence.

The above definitions allow us to push constraints in the patterns used to build
partial process models. Methodologically, we face the following task: given a se-
quence database SDB, where each sequence represents a sequence of events and
given a user-specified minimum support threshold minsup, the task of process

Completion Time and Next Activity Prediction of Processes 53

CID Sequence
1 <A,B,C,D> [2]
2 <AC,B,D> [3]
3 <AE,D> NULL
4 <A,B,C,D> [2]
5 <A,C,B,D> [3]
6 <A,E,D> NULL
7 <A,C,B,D> [3]
(a) (b)

Fig. 1. (a) Sequence Database extracted from Table 1 and (b) VIL for (A, B)

discovery is to find either: i) the frequent sequences in SDB, #i) the contiguous
frequent sequences in SDB or iii) the opening sequences in SDB. In all the cases,
sequences are expressed in the form of sequence trees. The original version of
FAST can generate a sequence tree of activities in two phases. In the first phase
all frequent activities are selected then, in the second phase, these activities are
used to populate the first level of the sequence tree and to generate sequences
with size greater than one. The mined sequence tree is characterized by the fol-
lowing properties: 1) each node in the tree corresponds to a sequence and the
root corresponds to the null sequence (<>); 2) if a node corresponds to a se-
quence s, its children are generated by adding to s the last activity of its siblings.
Only frequent children are stored in the tree. Figure 2 shows the sequence tree
extracted by FAST from the database in Table la (minsup = 1).

To represent in optimized way the sequence dataset and to perform efficient
support counting of activities and sequences, FAST uses a data structure called
vertical id-list (VIL). In the following we give a brief definition of a VIL.

Definition 5 (Vertical Id-list). Let SDB be a sequence database of size n
(i.e. |SDB| = n), S; € SDB its j-th sequence (j € {1,2,...,n}), and & a
sequence associated to a mode of the tree, its vertical id-list, denoted as VIL,,

is a vector of size n, such that for each j =1,...,n
VIL.[j] = [posActy,1,posActa 2, ..., posActe m] if S contains «
ol null otherwise

where posAct,,; is the end position of the i-th occurrence (i <m) of a in S;.

Ezample 2. Figure 1b shows the VIL of the sequence o = (A, B). Values in
VIL, represent the end position of the occurrences of the sequence « in the
sequences of Figure la. In particular, the first element (list with only value 2)
represents the position of the first occurrence of activity B, after the activity A
(i.e. B is the last activity in «), in the first sequence S;. The second element is
(list with only value 3) the position of the first occurrence of B (after A) in the
sequence So. The third element is null since « is not present in S3. The other
values are respectively list with only value 2 (for sequence Sy), list with only
value 3 (for Ss), null (for Sg) and list with only value 3 (for S7).

54 M. Ceci et al.

<AB>

|

<A,B,D>

<A,B,C> <A,C,B> <A,C,D> <A,E,D> <B,C,D> <C,B,D>

<AB,C,D> <A,C,B,D>

Fig. 2. Sequence tree learned with FAST

Given the sequence « and its sibling 5 FAST builds a new node v and its VIL,
using VIL, and VILg. In particular, for each j = 1,...,n, given: oVIL,[j] =
[posActa1,...,posActa,m.,],

e an index ¢ (initialized to 1) on VIL,[j],

o VILg[j] = [posActg1,...,posActg m,],

e an index z (initialized to 1) on VILg[j].

FAST checks whether posAct,,; < posActg .. That is, the last activity of the
first occurrence of « precedes the last activity of the first occurrence of 3. If the
condition is not satisfied, FAST increments z. This process is applied until either
posActa; < posActg, , is satisfied or the null value is found. In the first case
FAST sets VIL,[j] = [posActg..,...,posActgm,], otherwise VIL,[j] = null.
The support of 7 is then computed as: o (v, SDB) = |{j | VILy[j] # null}|.

In our extension of FAST, we employ the VILs not only in the extraction of fre-
quent sequences, but also in the extraction of contiguous and opening frequent se-
quences. In particular, the VIL structure is used to generate three different types
of trees, representing frequent sequences (see Figure 2), contiguous frequent se-
quences (see Figure 3a) and opening sequences (see Figure 3b), respectively. It is
interesting to note that this last type of sequence tree corresponds to a transition
system model [12] obtained from the same event log, after removing unfrequent
activities. These three different types of sequence trees are hereafter denoted as
(proper) sequence tree, contiguous tree and opening tree. The contiguous tree is
obtained by substituting, in the original implementation of FAST, the common
definition of support with o.5(n, SDB) = |{j|vil = contiguous(n,T) A vil[j] #
NULL}|. In this formula, contiguous(n,T) is the VIL returned by the applica-
tion of the function described in Algorithm 1. This algorithm iteratively looks
for possible holes in the sequences by bottom-up climbing the sequence tree. A
hole is found when the condition at line 10 is not satisfied. Similarly, the open-
ing tree is obtained by substituting, in FAST, the common definition of support
with 0,5(n, SDB) = |{j|vil = contiguous(n,T) A vil[j][1] = 1}|.

Senceond, Phase: Nested-Model Learning
Once the partial process model is learned, it is used to build a nested model

for operational support. In particular, for each node « of the partial process
model, the description of the processes, which contribute to the support of the

Malerba
Barra

Malerba
Testo sostitutivo
Second

Completion Time and Next Activity Prediction of Processes 55

<AB> | <AC> | | <AE> |
<ABC> || <acB> | | <AED> <B,C,D> <C,B,D> ' f
| <AB,C> <ACB> | | <AE,D> |
<AB,C,D> <A,C,B,D>
<A,B,C,D> <A,C,B,D>
(a) (b)

Fig. 3. (a) Contiguous and (b) Opening trees associated to the tree in Figure 2

CID,, Perfu, Xa Ya Completion, — Next,,

- 3 pl x1 yl 18 B

2 p2 x1 yl 26 C

3 p3 X2 y2 44 E

4 pl x1 yl 13 B

5 pl x1 y2 14 v

6 pl X2 y2 40 E

74 pl x2 yl 24 C
CID. 4 Perf g, Completion.,g, Next.g. Perf.,. Xens Yo

1 pl 12 c p1 x1 yi
4 P1 9 c p2 x1 yi

Fig. 4. Datasets associated with nodes (A) and (A, B)

pattern expressed at that node, is used as a training set for a predictive learning
algorithm. Learned prediction models are then used to predict the completion
time and the next activity of a running process.

In the generation of the training set associated with each node «, all the in-
formative attributes associated with each event in «, and available in an event
log, can be used. Uninformative attributes, such as the CID, are removed, while
two additional attributes, that is, Completion time and Next Activity can be
created and populated for predictive purposes. Figure 4 shows the datasets asso-
ciated with the nodes representing (A) and (A, B) of the opening tree reported
in Figure 3b. Obviously, the attribute Completion time is only available when
training a regression model for Completion time, while the attribute Next Activ-
ity is only available when training a classification model for Next Activity. In the
construction of the nested prediction models, any traditional machine learning
algorithm for regression/classification can be used.

In the prediction phase, the algorithm traverses the (proper, contiguous or
opening) frequent sequence tree in order to identify the regression/classification
model to be used. The search starts from the root and proceeds towards the leaves
of the sequence tree. For each new activity of a running process, the algorithm
moves to the corresponding next level of the tree. If there is no corresponding

56 M. Ceci et al.

Algorithm 1. contiguous(T,n)

input : T: a sequence tree; n: node of T
output: vil: the VIL of the sequence at node n such that the contiguous
condition is satisfied.

1 vil =getVIL(n); parent =getParent(n);

2 while parent != root(T) do

3 parentVil = getVIL(parent);

4 foreach j =1...length(vil);

5 do

6 i = 0; contiguous = FALSE;

7 while + + i < len(vil[j]) and not contiguous do
8 z=0;

9 while 4+ + z <¢ and not contiguous do
10 if vil[j][é] = parentVillj][z] + 1 then
11 vil[j] = parentVillj][z..(len(parentVil[j]) — 1)];
12 L contiguous = TRUFE ;
13 if not contiguous then
14 | willj] = NULL;
15 n = parent; parent =getParent(n);

16 return vil;

node, that is, the complete sequence was not found frequent during the partial
process model construction, the algorithm does not move to the next level and
remains in the current node until a new activity of the running process allows us
to move to the next level. At each point of the running process, the prediction
model associated to the current node is used for predictive purposes.

Ezample 3. Let p = (A, B, E,C) be the running process for which we intend to
predict either the next activity or the completion time. Let the sequence tree in
Figure 3b be the learned partial model. Starting from the root of the tree, when
the first activity of the process p arrives, the algorithm moves first in the node
associated with the sequence (A), then, when the second activity of the process
p arrives, it moves in the child node associated with (A4, B). Since no child node
of (A, B) associated with the sequence (A4, B, F) exists, when the third activity
of the process p arrives, the algorithm remains in the current node. When the
next activity C' of p arrives, the algorithm moves in the node associated with
the pattern (A, B, C) and uses the nested models in this node for prediction.

3 Experiments

In this section we present the empirical evaluation of the proposed algorithm. For
evaluation purposes, we used a 10-fold cross-validation schema and, we collected
the average classification rate (C-RATE, i.e. the number of processes for which

Completion Time and Next Activity Prediction of Processes 57

Table 2. Number of sequences extracted during the sequential pattern mining phase
for ProM and THINK3

minsup 40% 30% 25%
tree type 1 2 3 1 2 3 1 2 3
Prom 607 31 6 735 53 11 4671 66 13
Think3 104 26 7 208 40 9 855 68 21

we were able to obtain predictions), the average predictive accuracy of the next
activity and the error in the completion time estimation. As for this last error, we
use the symmetric mean absolute percentage error (SMAPE) defined in Equation
(1), since it is more robust to effect of zero or near-zero values than traditional
error measures [6] and the classical root relative mean squared error (RRMSE)
defined in Equation (2) [10]. In both equations y; is the actual completion time,
7; is the estimated completion time and ¥; is the average completion time.

SMAPE = <Z\y} fyi|>/<2(y1 +yi)> (1)
i=1

i=1

RRMSE = \J (Z(yz - yyz)Q)/(Z(ﬂi - yi)2> (2
i=1 i=1

In our implementation, we use as nested learning algorithms C4.5 [8] (to
predict the next activity) and M5’ [15] (to estimate the completion time). Results
are collected by varying the minimum support threshold and the type of the
sequence tree. We denote proper sequence trees with “tree type 17, contiguous
trees with “tree type 2” and opening trees with “tree type 3”. Completion time
results obtained with our approach are compared with results obtained from the
transition systems implemented in ProM5 Suite, where the prediction is made
based on the average time to completion for process instances in a similar state
[13]. Unfortunately, the ProM5 Suite does not include tools for next activity
prediction. Since Tree type 3 is, as stated before, the model more similar to a
transition system, we consider this setting as baseline for our comparisons.

The evaluation is performed on two real datasets that is, ProM and THINKS3.
ProM concerns repairing telephones of a communication company. The event
log contains 11,855 activities and 1,104 cases, while the number of distinct per-
formers is 29. Activities are classified as complete (1,343), schedule (6,673), re-
sume (178), start (809), suspend (166) and unknown (remaining). Additionally,
ProM stores several properties like name, timestamp, resources (in term of roles).
The second dataset, THINK3 [1] is an event log presenting 353,490 cases in a
company, for a total of 1,035,119 events executed by 103 performers. Activi-
ties are classified as administrator tools (131), workflow (919,052), namemaker
(106,839), delete (2,767), deleteEnt (2,354), prpDelete (471), prpSmartDelete
(53), prpModify (34) and cast (1,430).

Results on ProM are extracted by using three minimum support thresholds:
0.4, 0.3 and 0.25. Table 3 shows results for both the considered predictive tasks.
As it is possible to see, even if we consider a partial process model, we are

58 M. Ceci et al.

Table 3. Averaged cross-validation results for ProM with different tree type (tree
type). Column “gain” indicates the RRMSE gain over the ProM5 Suite for completion
time prediction.

tree type minsup Completion time prediction Next activity prediction C-RATE
RRMSE SMAPE gain(%) ACCURACY ‘
40% 0.71 0.19 29% 0.72 1.00
1 30% 0.70 0.20 30% 0.74 1.00
25% 0.69 0.19 31% 0.78 1.00
40% 0.83 0.24 17% 0.60 1.00
2 30% 0.69 0.19 31% 0.64 1.00
25% 0.69 0.20 31% 0.68 1.00
40% 0.83 0.24 17% 0.60 1.00
3 30% 0.69 0.19 31% 0.64 1.00
25% 0.69 0.20 31% 0.68 1.00

Table 4. Average running times for ProM (sec.)

tree type minsup seq. pattern datasets construction total
discovery generation nested model

40% 0.448 7.783 2.898 11.129

1 30% 0.498 8.514 2.965 11.977
25% 0.863 162.313 2.892 166.068

40% 0.448 5.478 3.155 9.081

2 30% 0.498 5.892 3.707 10.097
25% 0.863 6.666 3.434 10.963

40% 0.448 6.008 3.245 9.701

3 30% 0.498 5.853 3.497 9.848
25% 0.863 6.352 3.452 10.667

able to provide a prediction for (almost) all the sequences (C-RATE). Moreover,
we can observe that trees of type 2 and 3 are more robust to noise and to
incompleteness with respect to trees of type 3. For the next activity prediction
task, by reducing minsup, predictive accuracy increases. Moreover, the partial
model based on propers sequence trees (tree type 1) leads to the best results.
By comparing these results with those reported in Table 2, we can see that best
results are obtained with the most complete trees. This means that minsup=0.25
is still enough to do not suffer from overfitting problems. As for completion time
prediction, we show that results do not change significantly varying the tree
type. Best results are obtained with proper sequence trees (i.e tree type 1) and
minsup=0.25; contiguous trees (i.e. tree type 2) and minsup=0.3; opening trees
(i.e. tree type 3) and minsup=0.3. This means that, in this case, the abstraction
introduced in trees of type 2 and 3 is beneficial. Moreover, the comparison with
the ProM5 Suite shows that our approach leads to reduce the error of a great
margin (between 17% and 31% of the RRMSE). By analyzing results reported in
Table 4, we see that the generation of trees of types 2 and 3 is significantly more
efficient than that of trees of type 1. This means that, while for next activity
prediction, high running times of tree type 1 are justified by effectiveness, this
is not true for completion time prediction, where tree types 2 and 3 are the best
solutions in terms of efficiency and effectiveness.

Completion Time and Next Activity Prediction of Processes 59

Table 5. Averaged cross-validation results for THINK3 with different configurations
(conf.). Column “gain” indicates the RRMSE gain over the ProM5 Suite for completion
time prediction.

tree type minsup Completion time prediction Next activity prediction C-RATE
RRMSE SMAPE gain(%) ACCURACY ‘
15% 0.91 0.49 9% 0.51 1.00
1 10% 0.91 0.49 9% 0.54 1.00
5% 0.97 0.73 3% 0.62 1.00
15% 0.94 0.41 6% 0.49 1.00
2 10% 0.89 0.39 11% 0.49 1.00
5% 0.92 0.47 8% 0.54 1.00
15% 0.95 0.49 5% 0.49 0.99
3 10% 0.94 0.44 6% 0.49 0.99
5% 0.94 0.41 6% 0.54 1.00

Table 6. Average running times for THINK3 (sec.)

tree type minsup seq. pattern datasets construction total
discovery generation nested model
15% 0.848 413.355 67.067 481.270
1 10% 2.081 443.652 69.628 515.361
5% 3.573 572.952 69.970 646.495
15% 0.848 343.444 74.323 418.615
2 10% 2.081 351.362 72.796 426.239
5% 3.573 369.396 74.447 447.416
15% 0.848 393.726 73.169 467.743
3 10% 2.081 461.615 92.444 556.140
5% 3.573 567.422 127.741 698.736

Results on THINK3 are obtained with three minimum support thresholds:
0.05, 0.1 and 0.15. In Table 5, we show results obtained for both the considered
predictive tasks. Also in this case our approach is able to provide a prediction
for (almost) all the sequences (C-RATE). Similarly to what observed for the
ProM dataset, best results for the next activity prediction are obtained with
proper sequence trees (i.e. tree type 1). As for the prediction of the completion
time, the best results are obtained with the contiguous trees (i.e. tree type 2,
minsup=0.1). This setting is also one of the best settings in terms of running
times (see Table 6). Moreover, the comparison with the ProM5 Suite shows that
our approach leads, as in the case of ProM data, to reduce the RRMSE in all
cases (up to 11%). This is an interesting result if we consider that the THINK3
dataset has less attributes than the ProM dataset.

4 Conclusions and Future Works

This paper faces the problem of operational support in process mining and,
in particular, the prediction of the next activity and of the completion time.
The proposed approach is two-stepped and combines descriptive data mining
for partial model mining and predictive data mining for mining nested clas-
sification/regression models. This solution provides incompleteness-robust and

60 M. Ceci et al.

non-overfitted prediction models thanks to the first phase, where a tailored se-
quential pattern mining algorithm is adopted. Moreover, with this method, we
can apply any traditional classification/regression techniques thanks to the con-
struction of the nested model. As can be seen, using this approach, completion
time predictions can be significantly improved over state-of-the-art applications
(approximately 30% with ProM Data and 11% with THINK3 Data).

For future work, we intend to extend the experiments with additional (noisy)
cases, to check the effectiveness of the proposed approach to noise, and to exploit
“closed” sequential pattern mining instead of frequent sequential pattern min-
ing to further reduce the number of nested models to learn. Moreover, we intend
to consider the use of other algorithms for sequential pattern mining with con-
straints, in addition to FAST as well as give more importance to recent activities
in the model construction, as typically done in data stream mining.

Acknowledgements. This work fulfils the research objectives of the UE FP7
project MAESTRA (Grant number ICT-2013-612944). This work is also par-
tially supported by the Italian Ministry of Economic Development (MISE)
through the project LOGIN.

References

1. Appice, A., Ceci, M., Turi, A., Malerba, D.: A parallel, distributed algorithm
for relational frequent pattern discovery from very large data sets. Intell. Data
Anal. 15(1), 69-88 (2011)

2. Carmona, J., Cortadella, J., Kishinevsky, M.: A Region-Based Algorithm for Dis-
covering Petri Nets from Event Logs. In: Dumas, M., Reichert, M., Shan, M.-C.
(eds.) BPM 2008. LNCS, vol. 5240, pp. 358-373. Springer, Heidelberg (2008)

3. Ceci, M., Appice, A.: Spatial associative classification: propositional vs structural
approach. J. Intell. Inf. Syst. 27(3), 191-213 (2006)

4. Dongen, B., Busi, N., Pinna, G., Aalst, W.: An Iterative Algorithm for Applying
the Theory of Regions in Process Mining. In: Proceedings of the Workshop on
Formal Approaches to Business Processes and Web Services, pp. 36-55 (2007)

5. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in busi-
ness processes: Outlier-aware discovery and run-time prediction. Data Knowl.
Eng. 70(12), 1005-1029 (2011)

6. Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy.
International Journal of Forecasting, 679688 (2006)

7. Medeiros, A.K., Weijters, A.J., Aalst, W.M.: Genetic process mining: An experi-
mental evaluation. Data Min. Knowl. Discov. 14(2), 245-304 (2007)

8. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers Inc., San Francisco (1993)

9. Salvemini, E., Fumarola, F., Malerba, D., Han, J.: FAST sequence mining based on
sparse id-lists. In: Kryszkiewicz, M., Rybinski, H., Skowron, A., Ra$, Z.W. (eds.)
ISMIS 2011. LNCS, vol. 6804, pp. 316-325. Springer, Heidelberg (2011)

10. Stojanova, D., Ceci, M., Appice, A., Malerba, D., Dzeroski, S.: Global and local
spatial autocorrelation in predictive clustering trees. In: Elomaa, T., Hollmén, J.,
Mannila, H. (eds.) DS 2011. LNCS, vol. 6926, pp. 307-322. Springer, Heidelberg
(2011)

11.

12.

13.

14.

15.

Completion Time and Next Activity Prediction of Processes 61

van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes, 1st edn. Springer Publishing Company, Incorporated (2011)
van der Aalst, W.M.P., Pesic, M., Song, M.: Beyond process mining: From the
past to present and future. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp.
38-52. Springer, Heidelberg (2010)

van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450-475 (2011)

van der Aalst, W.M.P., Weijter, A., Maruster, L.: Workflow mining: Discovering
process models from event logs. IEEE Transactions on Knowledge and Data Engi-
neering 16, 2004 (2003)

Wang, Y., Witten, I.H.: Induction of model trees for predicting continuous classes
(1996)

	Completion Time and Next Activity Prediction of Processes Using Sequential Pattern Mining
	Introduction
	Methodology
	Experiments
	Conclusions and Future Works

