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Complex-analytic properties of certain 
Zariski open sets on algebraic varieties 

By PHILLIP A. GRIFFITHS 
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1. Introduction and statements of main results 

One of the deepest and more mysterious procedures in complex analysis 
occurs by passing to the universal covering space U of a complex manifold 
U. Of course, U is again a complex manifold, but the global complex analytic 
properties of U are generally quite difficult to fathom, especially when the 
fundamental group of U is infinite and non-abelian. For example, the classical 
uniformization theorem for Riemann surfaces does not seem to have ever been 
rigorously proved using only techniques from function theory; in fact, even 
the case of compact Riemann surfaces seems to require some discussion of 
potential theory. Another example of this is the theorem of Grauert-Oka that 
the universal covering of a domain of holomorphy is a Stein manifold (cf. [10, 
page 283]), whose proof relies on the construction of holomorphic functions 
from the data of a pseudo-convex exhaustion of the manifold in question. The 
answers to other easily stated questions involving universal coverings seem to 
be unknown (cf. ? 8 (b) below). 

In this paper we are primarily interested in the function-theoretic prop- 
erties of the universal covering space U of a smooth, quasi-projective alge- 
braic variety U.'() There are two central points we wish to make: 

(0) By definition, U is a Zariski open subset of a projective algebraic variety U. 
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(1) These covering spaces U are perhaps more interesting function- 
theoretically than they might seem at first glance. In particular, we are able 
to prove a sort of local, in the Zariski topology, uniformization theorem for 
arbitrary algebraic varieties. 

(2) If we have a relatively simple complex manifold U, such as a bound- 
ed domain in Cn, which has acting on it a properly discontinuous group F 
of holomorphic automorphisms whose quotient U = U/F is a quasi-projective 
variety, then U should have very strong function-theoretic properties (cf. 
?8 (d)). 

We now state precisely our main results. Let Vbe an irreducible, smooth, 
quasi-projective algebraic variety over the complex numbers. Thus Vis a com- 
plex manifold. Recall that a Zariski open subset U of V is an open set of the 
form U = V - Z where Z is an algebraic subvariety of V. A basic principle in 
the study of the topological properties of algebraic varieties is the following: 

Given a point x e V, there is a Zariski neighborhood U of x in V such 
that the universal covering manifold U of U is topologically a cell.('" 

It is always possible to choose U to be an affine algebraic variety, in which 
case both U and U are Stein manifolds(2". Thus U is again a Stein manifold 
which is homeomorphic to the unit ball in Cn (n = dim V). We are interested 
in the function-theoretic properties of such a U, and our main results are: 

THEOREM I. Given a point x e V, we may choose a Zariski neighborhood 
U of x such that the universal covering manifold U of U is topologically a cell 
and is biholomorphically equivalent to a bounded domain of holomorphy in 
C~n (3) 

THEOREM II. Given a point x e V, we may choose a Zariski neighborhood 
U1 of x such that there is a complete Kdhlerian metric ds21 on U1 with the prop- 
erties that (i) the holomorphic sectional curvatures are all ?-1, and (ii) 
U1 has finite volume. Furthermore, we may take U1 to be the open neighbor- 
hood U of Theorem I, if we so desire. 

There are several drawbacks to Theorems I and II. The most serious is 
that we are unable to say that the universal covering U belongs to a reason- 

(1) Cf. Lefschetz [12, page 32] and M. Artin [3]. This statement will be verified in the 
course of proving Theorem I below. 

(2) It is a theorem of K. Stein [15] that the universal covering of a Stein manifold is 
again a Stein manifold. This result will be discussed in ? 8 (b) below. 

(3) This theorem is true if we do not assume that V is smooth, but only that x is a 
simple point on V. The qualitative character of the embedding U -* Cn is given by the ex- 
ample (6.3) at the end of ? 6 below. Roughly speaking, the mapping functions are construc- 
ted as integrals of suitable differential equations on U. 
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able a priori given class of bounded domains in Cn.I4I Secondly, we are unable 
to prove that the Bergman metric on U, which is in some ways the most in- 
teresting intrinsic metric, has the strong differential-geometric properties 
given in Theorem II. These and other related matters will be discussed in 
section 8 (a), (d) below. 

We now give a few easily stated corollaries of Theorems I and II. 

COROLLARY A (LOCAL PICARD THEOREM). Suppose that V is complete and 
let U1 be the Zariski neighborhood given by Theorem II. Suppose furthermore 
that A is an analytic space and B is an analytic subspace. Then any holomor- 
phic mapping f: A - B > U1 extends to a meromorphic mapping J: A V."' 

COROLLARY B (LOCAL UNIFORMIZATION THEOREM). In Theorem I suppose 
that V is projectively embedded in PN and that U has been realized as a bound- 
ed domain in Cn with linear coordinates z1, ..., zn. Then the projection 
1: UC > U c PN is given by N meromorphic functions f1(z), * * *, f4(z) which 
(i) are invariant under the group of covering transformations of U -> U, and 
(ii) satisfy the property that none of the fa(z) can be analytically continued 
across any boundary point of U.(6) 

The proofs of Corollaries A and B will be given in sections 6 and 7 below. 
Section 8 contains a few more applications of Theorems I and II. 

In order to illustrate Theorem I, let me give the 

Example. Suppose that Vn is the smooth, projective surface given as a 
hypersurface in P3 by an equation 

?+ + n + $n + 23 = 0 

Then Vn is simply connected. We let Un be the Zariski open set on Vn obtained 
by removing the intersection of Vn with the planes 

','o - 'I (Es = e~in _t = O. n-1 
Then, for n ? 2, the universal covering U, may be realized as a bounded 

domain in C2. 

In concluding this introduction, it is my pleasure to acknowledge many 

(4) This is, of course, related to the complete breakdown of the theory of conformal 
mapping in more than one variable. There is some heuristic evidence that, in the problem 
at hand, we should be able to "rigidify" U by posing a suitable extremal problem and using 
the existence of a "large" discontinuous group acting on U. 

(5) We may take as definition of a meromorphic mapping a holomorphic mapping f as 
above such that, for any rational function S on V, the composed function f*(so) extends 
across B to give a meromorphic function on all of A. 

(6) This will prove that U is meromorphically convex, and is therefore a domain of holo- 
morphy. 
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valuable suggestions which were made by the referee. He pointed out several 
incomplete arguments in the original version of the paper and contributed in 
an essential way to our presentation of the material on quasi-Fuchsian groups. 
Also, I have had several helpful conversations with J. Carlson, and the dis- 
cussion of differential equations on algebraic curves given in ? 3 owes a great 
deal to a set of notes which he made on the subject. Finally, it was G. Wash- 
nitzer who first made me aware of trying to "do uniformization in the alge- 
braic category" by locating suitable algebraic differential equations on alge- 
braic varieties. 

2. Algebro-geometric preliminaries 

Let V be the quasi-projective variety appearing in the statements of 
Theorems I and II. We shall prove our results under the assumption that V 
is complete. This will be sufficient because (i) by resolution of singularities, 
any smooth, quasi-projective variety is a Zariski open set on a smooth, com- 
plete variety V; and (ii) our proof will show that the desired Zarisk)i neigh- 
borhood U of x in V may be chosen to lie in V. 

The proof of Theorems I and II will be done by induction on the dimension 
n of V. The result for n = 1 is the classical uniformization theorem [2, chap- 
ter XVII, and we shall use this result in the strong form given by Bers [4] 
(cf. ? 5 below) to make the induction step from n - 1 to n. For this, the 
following lemma is the essential algebro-geometric step: 

LEMMA 2.1. Let x be a point on the smooth, projective variety V, and let 
Z be a given algebraic subvariety of V - x (Z may be empty). Then there 
exists a Zariski neighborhood U' of x in V with the following properties: (i) 
U' is contained in V1- Z, and (ii) there is a smooth, quasi-projeltive variety 
S' of dimension n - 1 and a rational, holomorphic mapping 

7: Ut ySt 

which, when considered as a map of C-manifolds, is differentially a locally 
trivial fibration. (' 

Proof. We first consider a projective embedding V - PN given by a 
complete linear system I D' of divisors on V. Without loss of generality we 
may assume that one of these divisors, say D', contains the given subvariety 
Z. Now by replacing I D' by the linear series I mD' of divisors linearly equiv- 
alent to maD', for m sufficiently large, we will obtain a complete linear 

(7) Thus the fibres Ce = 7r'-'(s') are all smooth algebraic curves of fixed genus g and 
constant topological Euler characteristic 2 - 2g - M. The proof will show that we may as- 
sume that the Ce are irreducible, so that M is the number of "points at infinity" in Cso. 
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series IDI with the following properties: (i) D I gives a projective embed- 
ding Vc PN; and (ii) if we take n - 1 generic divisors D1, - - *, D"', from ID I, 
then the intersection D1 -.. Dn,1 is a smooth, irreducible curve which meets 
the divisor m-D' = D,. in M distinct points. Letting D,. be the hyperplane 
at infinity, we may then choose affine coordinates (xl, *--, xn1; Yy, .., YN) 

for CN C PN such that the hyper-planes x, = 0 (a = 1, **, n - 1) are all 
generic in the above sense. 

Now the affine part of V, say Va, will be a Zariski neighborhood of one 
given point which is contained in V - Z and which is given in CN by poly- 
nomial equations 

P (x, y) = O (It 1, p) 

The projection CN Cn-' given by (x, y) x induces a rational, holomorphic 
mapping Wa: Va C'o' such that, for generic x e C'-', the fibre rw'(x) is a 
smooth, irreducible, affine curve having exactly M points at infinity. Now 
we let S' c Cn-' be the Zariski open set of all x such that wra'(x) has these prop- 
erties. Setting U' = wr-'(S'), we have the situation w': U' S' required in 
the lemma. Q.E.D. 

From the proof of this lemma and the induction assumption in Theorem I, 
we have 

LEMMA 2.2. Let x be a point of V and Z a proper subvariety of V - x. 
Then there exists a Zariski neighborhood U of x in V with the following prop- 
erties: (i) U is contained in V - Z, (ii) there is a smooth, quasi-projective 
variety S of dimension n - 1 and a rational, holomorphic mapping 

r: U )S 

which is a Co locally trivialfibration; (iii) the fibres C. = i1-'(s) of iS are smooth 
curves of genus g having exactly M points at infinity and with 3g - 3 + M > 
0; and (iv) the universal covering S of S is topologically a cell and is biholo- 
morphically equivalent to a bounded domain of holomorphy in Cn'. 

For the proof of Theorem II, we will use the 

LEMMA 2.3. Let x be a point on V and Z an algebraic subvariety of V - x. 

Then there exists a Zariski neighborhood U1 of x which has a closed, rational, 
smooth embedding 

Ul C Sl X ..* X SN 

where each Sj is a Zariski open subset of P1 of the form P1 -{z1, *z , ZNj) 

(Nj > 3). 
Proof. Referring to the proof of Lemma 2.1, we arrive at the situation 
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X E Va C CN. 

Now we may remove from Va hyperplane sections of the form xj = cj, yam ca 
to arrive at our lemma. Q.E.D. 

3. Differential equations on algebraic curves 

In this section we shall summarize some of the discussion in [2] pertain- 
ing to the use of certain algebraic differential equations to generate holomor- 
phic mappings on the universal coverings of algebraic curves. 

(a) Let C be a non-singular algebraic curve, which as always we may 
uniquely represent in the form 

C = C-{Z,, ZM} 

where C is a smooth, complete curve and the punctures z1, *.. , Z, are distinct 
points on 0.(8) In order to explicitly represent the differential equations on 
C, we choose a holomorphic mapping h: C - P2 with the following properties: 
(i) h is a birational immersion whose image curve h(C) has only ordinary dou- 
ble points as singularities, and none of these is a puncture za,; (ii) upon identi- 
fying C with the image h(C), we may choose a projection Co P1 such that 
all branch points are simple,(9' and such that none of the punctures or double 
points on C coincides with a branch point. We may then choose affine coordi- 
nates (x, y) on P2 so that C is given by an irreducible polynomial equation of 
degree n 

(3.1) p(x, y) = 0, 
and such that the projection Coo P1 is induced by (x, y) x. We may fur- 
thermore assume that none of the points over x = o is a double point, a branch 
point, or a puncture. Thus the punctures will all be finite points 

Za = (X., Ya), 

none of which will be a branch point or double point. Under all of these cir- 
cumstances, we will say that the curve C given by the equation (3.1) is in 
general position. 

Before discussing differential equations, we want to briefly discuss the 
concept of an analytic family of algebraic curves. For this we assume given 
a situation w: U-p S where U, S are complex manifolds and w is a smooth 
mapping such that the fibres C8 = r-'(s) are of dimension one. We shall as- 
sume further that we may locally complete the fibres C. to have closed Rie- 

(8) These punctures were referred to as the points at infinity on C in ? 2 above. 
(9) A simple branch point is one which is locally of the form s = e/t. 
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mann surfaces C. in the following sense: Given s0 e S, there exists a neighbor- 
hood N of s0 and a diagram 

UN C UN 

17 F. (UN = wr-'(N)) 

N =N 

where UN is a complex manifold, Tr: UN O N is a proper, smooth mapping, 
and where UN is a Zariski open set in UN such that 

UN- UN=ZlU *-- U ZV 

is a disjoint union of smooth subvarieties Za which meet the fibres C8 = Fr-'(s) 
transversely in a point za(s). Thus we have that 

C. = C8 - {z1(s) * , Zp(S)} . 

The following lemma is easy (cf. Lemma 2.1): 

LEMMA 3.2. Let U, S be smooth algebraic varieties and w: U-p S a smooth 
rational, holomorphic mapping such that thefibres 7r-'(s) = C8 are all Riemann 
surfaces of genus g and having M punctures. Then r: Up S gives an analytic 
family of algebraic curves according to the above definition. 

LEMMA 3.3. Let r: U-p S be an analytic family of algebraic curves. 
Then, given s. e S we may find a neighborhood N of sO such that the curves 
C8 (s e N) are given by an affine equation 

(3.3) p(x, y; s) = 0 

where p(x, y; s) is a polynomial in x, y whose coefficients are holomorphic func- 
tions of s e N, and where the equation (3.3) is in general position for all s. 

We return to the consideration of our fixed curve C with affine equation 
(3.1). On C we wish to consider 2nd order linear differential equations of the 
form 

(E) d7 _e+ R(x, y)p = 0 

and which have the following properties: (i) the equation (E) is everywhere 
holomorphic on C, (ii) at a puncture Za e C - C, the D. E. has a regular singular 

(10) To say that (E) has a regular singular point at za means that, upon using tcr = x - xc, 
as a local uniformizing parameter around za = (xa, ya), the equation (E) has the form 

(E)c, d2u + H(tar) (E~~~~~~~a~ dt2 + t2 =? 

where H(ta) is holomorphic for I ta I < s. The roots of the indicial polynomial will be equal 
if H(O) = 1/4. 
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point; and (iii) at the regular singular point Za, the roots of the indicial poly- 
nomial are equal."')? We shall call such equations admissible. For an admissi- 
ble equation, we may choose local solutions 1ui, p2 to the equation (E) in a 
punctured neighborhood A* of Za such that the ratio 

(3.4) - 1 (log (x - Xa))I 
27//A 2WV 1 

where we have used x - xa as a local coordinate around Za = (Xa, Ya) 

It is easy to verify that the equation (E) satisfies the first two conditions 
just above if, and only if, the coefficient R(x, y) is a rational function of total 
degree 2n - 4 having a double pole at the punctures Za, and which vanishes 
at the double points of C (adjoint conditions). From this it follows that all 
admissible equations (E) are obtained from a fixed one 

(E0) dd + R0(x, y)p = 0 

by adding to R0(x, y) a rational function Q(x, y) of degree 2n - 4 and which 
has a simple pole at the punctures Za. This leads to the 

PROPOSITION 3.5. The space E(C) of admissible D.E.'s on C is an 
affine space whose associated vector spare is the space of rational quadratic 
differentials 

w = Q(x, y) _f 

which are everywhere holomorphiz on C and have only simple poles at the 
punctures z,. In particular, dimc {E(C)} = 3g - 3 -+- M where g is the genus 
of C. 

For a complete curve C, this proposition appears in [9] under a slightly 
different guise. From (3.5) and our earlier discussion we have the 

COROLLARY 3.6. Let 2r: U-+ S be an analytic family of algebraic curves. 
Then there is a homomorphic affine bundle E - S whose fibre E. is in one-to- 
one correspondence with the space E(C8) of admissible D.E.'s on C8, and whose 
associated vector bundle V(E) is the bundle of quadratic differentials along 
the fibres of wr: U > S. 

(b) All of the preceding discussion is purely algebro-geometric. We shall 
now leave the "algebraic category" by utilizing analytic continuation to in- 
troduce the monodromy group 1(E) and corresponding etale mapping"" 

(11) In this paper, etale means unramified. 
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(3.7) [E: C- P1 

which is canonically associated to an admissible D.E. For this we choose a 
base point z0 e C and consider a basis , p,2 for the solutions to E which may 
be assumed to exist in a neighborhood of z,. By the principle of analytic con- 
tinuation, we may extend the domains of definition for e, and ",2 to obtain 
single-valued functions -ir, his on the universal covering C of C. Furthermore, 
if we let w1(S) operate as a group of covering transformations on C, then we 
will find a transformation rule { fi1(Z) = arfpi(i) + brj2(z) 

fi2(7YZ) = crfl() + drMf2(z), 

for y e w1(S) and all z e C, and where the transformation matrix 

Mr= K ) e SL(2, C) 
\r dr 

because the D.E. (E) has no term involving dpa/dx in it. In other words, let- 
ting f1E = [1/f22 what has been generated by the D.E. (E) is the monodromy 
representation 

(3.8) 3E: wl(C) - SL(2, C) 
and corresponding stale mapping (3.7) which satisfies 

(3.9) PE(7y) = aE()E() (eC) (12) 

Moreover, if A* = {x: < I x - Xa I < e} is a neighborhood of the puncture za, 
and if we localize over A* to have a diagram 

I I 
Aa C 

A*- >C 

then, after suitable conjugation within SL(2, C) the restriction of PE to a* 

will be given by 

(3.10) IIE(X) {log (x - Xa)} 

as is evident from (3.4). 
Conversely, suppose we are given an etale map (3.7) having the properties 

(3.9) and (3.10). We may think of aE as being a meromorphic function on C, 
and we then consider the Schwarzian derivative [1, page 1251, 

(12) The reason that PE is 'tale is that locally PE = (p>2- * 0 because the 
Wronskian W(pfl, p2) = t - plp2 is nowhere vanishing. 
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pfftt 3 ( ,&, 2 

{fEY XI} 
P - P fE 

the derivatives being taken with respect to x on the dense open subset of C 
where x is a local holomorphic coordinate. Since 

{CafE + d {AES } 

it follows from (3.9) that the Schwarzian derivative {IN, X} R(x, y) is a 
single-valued function on C. From (3.10) we then deduce that the D.E. 

dX2 + R(x, y),= 0 

is an admissible D.E. whose associated etale map is exactly the one with 
which we began. 

Let us agree to call admissible an etale mapping (3.7) with the proper- 
ties (3.9) and (3.10). Then our conclusion is the 

PROPOSITION 3.11. There is a one-to-one correspondence between admissi- 
ble differential equations (E) and admissible maps EtE. 

To close this section we shall briefly discuss the following rigidity theorem 
from [2]: 

PROPOSITION 3.12. The monodromy group 17(E) uniquely determines the 
admissible D.E. (E)."')3 

If we recall that w1T(S) has generators 

{7 *** 7g; 619 ... 9 0; E19 .. , EM} 

with the defining relation 

(3.13) 2 (Q7 177') lM & = 1 

then we see that 1(E) is represented by a point on the affine algebraic variety 

R(g, M) c SL(2, C) x ... x SL(2, C) 
2g+M 

defined by the equations (cf. (3.13) and (3.4)) 

(3.14) {HY=i (A:2 B 7) JI C = I 
Trace CQ, = 2 . 

From (3.14) it follows that 

dimc [R(g, M)] = 6g + 2M - 3 

(13) More precisely, if 17(E) is conjugate to F(E') in SL(2, C), then we may choose bases 
for the solutions of the respective differential equations such that fE fIE'. 
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so that, speaking roughly, the space of conjugacy classes R(g, M)/SL(2, C) 
has the dimension 

(3.15) dimc [R(g, M)/SL(2, C)] = 2(3g - 3 + M) 

For a fixed curve C, we see from Propositions (3.5) and (3.12) that the 
monodromy group 1(E) depends on 3g - 3 + M parameters. On the other 
hand, it is well-known that the curve C has the same number 3g - 3 + M 
of moduli. Adding these up we may confirm the formula (3.15). The reason 
for the somewhat mysterious twofold appearance of the number 3g - 3 + M 
was finally explained by Bers [4], whose theorem we shall discuss in ? 5 below. 

4. Kleinian, quasi-Fuchsian, and Fuchsian groups 

We shall discuss some important discrete subgroups of SL(2, C); the ref- 
erences for this section are [2] and [5]. 

Let F be a discrete subgroup of SL(2, C), which is the group of uni- 
modular 2 x 2 matrices acting in the usual manner as linear fractional trans- 
formations on P1. A point w = [w0, w1] E P, is a limit point for F if there 
exists a sequence {y/n} of distinct elements of F and a point w' e P1 such that 

lim yn(w') - W 

We denote by A(F) the set of all such limit points and R(F) = P1 - A(F) the 
complement. If R(F) is non-empty, it is open and dense on P1 and is called 
the region of discontinuity of F. When this happens, F is said to be a Klein- 
ian group. We shall be exclusively interested in cases where F is finitely 
generated and contains no elliptic elements. Then it is a theorem of Ahlfors 
that 

R(r)/r = Si U ... U SM 

is a union of finitely many smooth algebraic curves."')4 
A Kleinian group r is said to be quasi-Fuchsian with fixed curve EL if EL 

is an oriented Jordan curve on P, which is transformed into itself by r. In 
this case we have the inclusion 

A() c( EL, 

and we shall say that r is of the first kind if A(J) EL. For such groups the 
region of discontinuity is the disjoint union R(r) D+ U D_ of two simply- 
connected regions. The transformations y in 1 are elliptic, parabolic, or hyper- 
bolic according to whether y has one fixed point in D+, one fixed point on EL, 

(14) It is also the case that the Sj are smooth even when F contains elliptic elements. 
However, this is accidental to dimension one and should be regarded as being misleading. 
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or two distinct fixed points on I1. The quasi-Fuchsian groups we shall be in- 
terested in will be of the first kind and will consist entirely of parabolic and 
hyperbolic elements. In this case the quotients 

tD+Ir = c+ 

are smooth algebraic curves. The group F will have generators Al, *.., Ag, 
B1, ... Bg, C1, *.., CM with a single defining relation (3.14). 

A Fuchsian group is a quasi-Fuchsian group F whose fixed curve II is a 
circle on P1. In this case, by conjugation within SL(2, C), we may assume 
that F is a discrete subgroup of SL(2, R) and that 11 is the positively oriented 
real axis. If F is of the first kind, then D+ and Do are respectively the upper 
and lower half planes given by 

IH H= { - + -1 C > 0} 
L={I= +AW/-1l); < <}. 

If F is a quasi-Fuchsian group, then by the Riemann mapping theorem there 
exists a holomorphic homeomorphism v: D+ - H which transforms 1 into a 
Fuchsian group. Moreover, v extends continuously to map H onto the real 
axis, and may then be extended to some homeomorphism v: P - Pi. It is a 
very subtle matter to see just how nearly conformal we may make v. 

The Kleinian and Fuchsian groups are classical in origin; for instance, 
the terminology seems to have originated in the memoirs of Poincare on the 
uniformization of algebraic curves [13]. The quasi-Fuchsian groups are of 
more recent origin and have come into importance through Bers' theorem on 
simultaneous uniformization [4]. We note that if F is a quasi-Fuchsian group 
which is not Fuchsian, then the fixed curve will nowhere have a tangent at 
any point of the fixed set A(r) c H. 

Let S be a connected complex manifold and {Fs}seS a family of discrete 
subgroups of SL(2, C) parametrized by S. We will say that {JslseS is a holo- 
morphic family of discrete groups if there is an abstract group G and a 
mapping 

3:S x G - SL(2, C) 
with the properties: (i) for fixed g e G, a(s, g) is holomorphic in s E S; and (ii) 
for fixed s E S, 6(s, g): G SL(2, C) is an injective homomorphism with image 
Fs. If we suppose that G is generated by elements 

{719 . . . 
7g; 619 

. . . 
g; Sig 

, , 
SaMI 

with the defining relation (3.13), then in all cases we shall consider {F8}86s 
will be given by matrices 
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(4.1) {A1(s), * * , Ag(s); B1(s), * * *, Bg(s); Cl(s), *..., CM(S)) 

which vary holomorphically with s e S and which satisfy (3.14). Thus {Fr},eS 
is given by a holomorphic mapping 3: S - R(g, M) where the latter space is 
defined in ? 3. 

In case the Fis are quasi-Fuchsian groups, we shall make the additional 
assumption that the boundary curve HI(s) is given parametrically by 

(0,s) - (Os) (O < a? 2r, s e S) 

where wr(O, s) is continuous in both 0 and s and is holomorphic in s. 

LEMMA 4.2. A holomorphic family of Fuchsian groups is constant, up to 
conjugation within SL(2, C). 

Proof. This follows from the fact that the boundary circles H(s) may be 
holomorphically transformed to the real axis, so that we may assume the F, 
give a holomorphically varying family of discrete subgroups of SL(2, R). 
Such a family is obviously constant. Q.E.D. 

Now we suppose that {Fslse s is a holomorphically varying family of quasi- 
Fuchsian groups given by 2 x 2 matrices (4.1) which satisfy (3.14). Define 
Wc S x Pi to be the set of points (s, w) e S x Pi such that w e D?(s).'(5 The 
group G acts as holomorphic automorphisms of W by 

g.(s, w) = (s, a(s, g)w), 
and this action is properly discontinuous and without fixed points. 

LEMMA 4.3. The quotient space U = WIG is a holomorphic family of al- 
gebraic curves in the sense of ? 3. 

Proof. This follows from standard methods involving fundamental do- 
mains of Fuchsian groups together with the observation that the "cusps" of F8, 
i.e. the fixed points of the parabolic transformations C1(s), * * *, CM(s) will vary 
holomorphically with s. 

From this Lemma together with (3.11) we conclude 

PROPOSITION 4.4. Let {F8}.e be a holomorphic family of quasi-Fuchsian 
groups. Then, given so e S there is a neighborhood N of so in S such that: (i) 
for s e N, the algebraic curve C. = D?(s)/F. is given by a polynomial equation 
(3.3) which is in general position; (ii) there is an admissible D.E. 

(E,) d 2f 
dx2 + R(x, y; s)p = 

(15) D+(s) is the region "to the left" of the oriented Jordan curve H1(s). 
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such that (E8) has monodromy group F8 and such that the etale map 

fE3:C8 -> D+(s) 
is a conformal homeomorphism. 

5. Bers theory of simultaneous uniformization 

Let IF be a Fuchsian group which is of the first kind and which contains 
no elliptic elements. Then the quotient L/FO = CO of the lower-half-plane L 
by IF, is a smooth algebraic curve CO, which is also canonically a Zariski open 
set on a smooth, complete curve C0. We may assume that CO has a polynomial 
equation p,(x, y) = 0, which is in general position as explained in ? 3. There 
will be a unique admissible D.E. 

(Eo) d2~i + R0(x, y)f = 0 

on CO such that the associated etale mapping 

fEo0 CO - P1 

gives the identification C0 = L. The monodromy group r(Eo) is Fo, and for 
the coefficient RO(x, y) we have the formula RO(x, y) = {4, x} where C = $ + 
V-16 is the coordinate on L. 

The Poincare metric ds2 = I d; 12/(2 on L is invariant under FO and induces 
a metric ds20 on CO with constant Gaussian curvature -4. If z, e C0 - Co is a 
puncture, then there is a parabolic transformation Al e FO which, under the 
isomorphism wr(CO) -ro, corresponds to a path surrounding za,. By conjuga- 
tion within SL(2, R), we may assume that Ala is given by the standard trans- 
lation y() = 4 + 1. When this is done, we may take 

ta = e-2,,- 

as a local holomorphic coordinate on Co around the puncture za,. Using this 
coordinate system, the Poincare metric is given by 

(5.1) ds = 

dto 
(I t 12(log I tt 1)2 

Suppose that we now consider algebraic D.E.'s on CO of the form 

(EQ) dX2 + [RO(x, y) + Q(x, y)]p = 0 dx2 

which are everywhere holomorphic on CO but which for the moment are not 
necessarily admissible. These D.E.'s are parametrized by rational, holomor- 
phic quadratic differentials 
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d \2 

Q = Q(X, Y)KPo 
ay/ 

on C0. Using the Poincare metric we may define the sup norm 

11 Q 11 = max I Q(zO) I, (ZO e CO) 
which may of course be infinite. 

LEMMA 5.2. The differential equation (EQ) is admissible if, and only if, 
the sup norm I1 Q1 I is finite. 

Proof. Around a puncture za, we write 

Q = H(t.)(dtJ)2 _ 
IV 

where H(ta) is holomorphic and H(O) # 0. From (5.1) it follows that the norm 
of Q is bounded near Za if, and only if, the order of the pole N is <2. 

Q.E.D. 

We let E(FO) denote the vector space of quadratic differentials on C0 such 
that IIQII < ao. 

Note that, by the Riemann-Roch theorem, 

dimc {E(Fo)} = 3g -3 + M. 

LEMMA 5.3. (Nehari): For the differential equation (EQ) we let eQ: L P1 
be the associated etale map. Then, if pQ is schlicht, 

ffQf1 < 3/2. 

Proof. By the usual Nehari theorem given in [1, page 126], we have the 
estimate 

l{QC1< 326f < 2 

Our lemma follows from this together with the definition of the Poincare 
metric on L and the relations (cf. [1, page 125]): 

{JQj X} = {JQ, CI}(X)2 + {I, X} 
{JQ, X} = Q(x, y) + RO(x, y) 
I{, X} = RO(x, y) 

Definition (Bers). The Teichmilller space T(Fo) is the set of all Q e E(FO) 
such that: (i) the differential equation (EQ) is quasi-Fuchsian, and (ii) the re- 
sulting etale mapping 
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can be extended to a quasi-conformal homeomorphism of P1 to itself. 
A central result concerning T(ro) is the 

THEOREM 5.4. T(ro) is a domain of holomorphy in B(rFo) which is topologi- 
cally a cell. Furthermore, if B(3) = {Q e E(J'o): II Q II < 3} is the ball of radius 
3 in E(ro), we have the strict inClusions 

B(1/2) c- T(rPo) (- B(3/2) .(160 
Let Q be a point of T(ro) and fAQ: L - P1 the associated etale mapping. 

This map is not unique, but following Bers [5], it may be normalized by re- 
quiring /IQ to have the series expansion 

(5.5) fAQ () = 1 + al( + i) + 

around C =-i. 

LEMMA 5.6. Let Q e T(ro) and /iQ be normalized by (5.5). Then, for a 
suitable constant ro, the image tAQ(L) contains the disc 

1C1 > ro 
on the Riemann sphere P1. 

Proof. This is just a reformulation of Koebe's 1/4-theorem given in [11, 
page 350]. Q.E.D. 

For Q e T(r0), we normalize /IQ by (5.5) and let rQ be the transform of rF 
by fiQ. Thus rQ is the monodromy group of the algebraic differential equation 
(EQ); by assumption it is a quasi-Fuchsian group. The family 

(5.7) {I e T(ro) 

gives a holomorphic family of quasi-Fuchsian groups according to the defini- 
tion in ? 4. If we write for the region of discontinuity 

R(rQ) = D+(Q) U D_(Q) 
where D_(Q) is the transform of the lower half-plane L by f4Q, then from 
Proposition 4.4 and Lemma 5.6 we have 

PROPOSITION 5.8. The curves CQ = D+(Q)/rQ form a holomorphic family 
U(ro) - T(J'o) of algebraic curves as defined in ? 3. On each curve CQ we have 
a distinguished admissible differential equation 

d+v + R(x, y; Q)v = 0 

such that the corresponding etate map 

10 Cf. [5] and the references given there. 
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VQ: CQ - D+(Q) 

gives an isomorphism of the universal covering CQ with a simply-connected 
domain D,(Q) contained in the disc IC < r, in the C-plane. 

To conclude this section I shall relate the above definition of the Teich- 
mUller space with the usual one as given, e.g., in [1]. The equivalence of de- 
finitions is essentially Bers' theorem on simultaneous uniformization as pre- 
sented in [4]. 

Let C* = H/r, be the conjugate algebraic curve to C., and consider all 
pairs (C, h) where h: C* C is a quasi-conformal homeomorphism from C* to 
an algebraic curve C. Introduce the equivalence relation 

(C1, hi) - (C2, h2) 

whenever h2 , h7' is homotopic to a conformal mapping of C1 onto C2. We de- 
note by TI(rT) the set of all such equivalence classes of pairs (C, h), and this 
TI(rF) is the usual definition of the Teichmliller space. To get a map 

(5.9) M: Tpro) > TV(ro) , 
we let Q e T(ro) and choose a quasi-conformal extension UQ of the schlicht 
mapping pQ. Then UQ maps the upper half-plane H quasi-conformally onto 
D,(Q) in a manner such that the mapping diagram 

H D+(Q) 

1hQ1 
C= H/ro Q D+(Q)/rQ = CQ 

is commutative and yields a point (CQ, hQ) in TI(ro). The map (5.9) is then 
given by 

M(Q) = (CQ, hQ) 
and it is a theorem [41 that this p is an isomorphism of sets. 

6. Proof of Theorem I 

Let wS: Us S be an analytic family of algebraic curves as defined in ? 3. 
If T is a complex manifold and g: T V S a holomorphic mapping, then there 
is an induced analytic family of algebraic curves WrT: UT T where UT is the 
fibre product U x8 T.('"7 Thus 

t Cgt 

and there is a commutative diagram of holomorphic mappings 

(17) Recall that U x s T c U x T is the set of all pairs (z, t) satisfying 7rs (z) = g(t). 
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UT- U 

T AS. 

In particular, the universal covering map w: S > S yields an analytic 
family of curves Us S with C- C)(j, for all W e S. 

The main step in the proof of Theorem I is 

LEMMA 6.1. Choose a base point so S. Then there is a quasi-Fuchsian 
group IF and a holomorphic mapping Q: S T(J',) such that the induced family 
U(rF)s of algebraic curves is U>. 18( 

Proof. We will define a mapping P: 3 T1(rF), and then Q will be the 
composition of P with the mapping p given under (5.9). Fixing W., we choose 
a Fuchsian group I'. such that 

Co _- H/I'o (uniformization theorem) 

For each point W e S, there is a homeomorphism h8: C- - C- and the homotopy 
class of hs is well-defined. Furthermore, as is evident from the definition of 
an analytic family of algebraic curves, we may choose hA to be quasi-confor- 
mal. The map P is then defined by: 

P(W) - (C-, h) e T'(To) 

It is almost evident that Q = o P is continuous, and we must prove that it 
is holomorphic. 

This is a local question and consequently may be reduced to the following: 
Let A c Cm be a polycylinder with coordinates t = (t1, * * *, tm). Suppose that 
we are given a situation f: X - A, where X is a complex manifold and f is a 
connected, smooth, proper holomorphic mapping of fibre dimension one. Sup- 
pose furthermore that we are given smooth, disjoint analytic subvarieties 
Z1 , ZM which meet each fibre Ct = f-1(t) transversely in M points 
{z1(t), ..., ZM(t)}. Letting X = X - {Z1 U ... U Z}, we arrive at an analytic 
family of algebraic curves f: X A, and it will suffice to prove the analyticity 
of the mapping Q in this case. 

Suppose first that X = X and choose a Fuchsian group rO such that 

Co H/I o(19) 

Then the same argument as above leads to a mapping 
Q: A - T(FO) . 

(18) Recall from ? 5 that U(Fo) -* T(ro) is the universal family of algebraic curves over the 
Teichmuller space given by Proposition 5.8. 

(19) In this argument, the cases g = 0, 1 must be treated separately. 
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To see that Q is holomorphic, we observe that it follows from (3.3) that the 
(normalized) period matrix of Ct depends holomorphically on t.'20' Because of 
the theorem of Torelli-Rauch [14], these normalized periods of the abelian 
differentials, which depend only on the image point Q(t) e T(170), will essenti- 
ally give local holomorphic coordinates on T(F0). This implies that Q is holo- 
morphic, and our lemma now follows in the case where the curves are complete. 

In the general case, we choose a Fuchsian group ro such that 

CO - H/ro. 
Then an easy argument shows that there is a holomorphic fibration 

T(T') T(WO) whose fibre over a curve C e T(Fo) is the obvious Zariski open 
subset of the M-fold symmetric product of C. Moreover, we have a com- 
mutative diagram of holomorphic mappings 

A ) T(ro) 

A - TWO- 

and it is clear that Q is obtained by composing the holomorphic mapping Q 
with a holomorphic cross-section of T(F0) T(Po) defined over the image Q(A). 
From this we may deduce our lemma. 

LEMMA 6.2. Let wS: U - S be an analytic family of algebraic curves and 
make the two assumptions: (i) for the fibres C. we have 

3g - 3 + M > 0 , 
and (ii) the universal covering S is biholomorphic to a bounded, contractible 
domain of holomorphy in C"'. Then the universal covering U of U is also 
biholomorphic to a bounded, contractible domain of holomorphy in Cn. 

Proof. From the exact homotopy sequence of the fibration wS: U-s S and 
the fact that the higher homotopy groups r(S) 0 0 (i > 2), we have 

{1 i w1(C80) - w1(U) -* w(S) 1 

71 l(Cso > lU) 7ru 1. 

(20) Referring to (3.3), we may choose polynomials qa(x, y; t) (a - 1, *, g), whose coef- 
ficients are holomorphic functions of t, such that the differentials 

(t)O q,,(x, y; t)dx (or = ,** g) ap 
ay 

give a basis for the holomorphic 1-forms on Ct. The entries in the period matrix are then 

integrals | a(t) of these holomorphic differentials over closed paths on Ct, and from this it 

is clear that the period matrix varies holomorphically with t. 
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From this we find a commutative diagram of holomorphic mappings 

U-* US 

which has the property that, upon setting C. = 

A: C-+ C; 

is the universal covering mapping of the algebraic curve C- = ws'(S). Using 
Lemma 6.1, we may replace Us by U(F0)S, so that it will suffice to prove the 
present lemma for the analytic family U(J')j which is induced from the 
Teichmiiller family. 

We may consider S as already being embedded in C"'. In C" we consider 
the domain D of all points (s, C) E C-' x C which satisfy 

4 GD?+(FQ;S)) 

According to Proposition 5.8, D is a bounded, contractible domain in Cn. It 
is essentially obvious that D is the universal covering of U(rF)~, and D is 
therefore biholomorphic to U. 

To see that D is a domain of holomorphy, we recall that there is a con- 
tinuous mapping 

fI: S x S' - C (S= circle) 

given by (W, 6) Hf(W, 6) which has the properties of (i) being holomorphic in 
g for fixed 0, and (ii) mapping onto a simple, oriented Jordan curve fl(g) in C 
for fixed g. Now D consists of all pairs of points (W, C) E C"-' x C such that 

C S and C is interior to the Jordan curve fl(g). If K is a compact subset of 
such a domain D, then an easy application of the maximum principle shows 
that the set 

K-{z E D: I f(z) I < ?l f K for f C(9(D)} 

is compact. Thus D is holomorphically convex and, by a standard result [10], 
a domain of holomorphy. Q.E.D. 

Proof of Theorem I. This now follows from Lemma 2.2, Lemma 3.2, and 
Lemma 6.2. 

Proof of Corollary B. This follows from Lemma 2.2, Lemma 3.2, 
Lemma 6.1, and Theorem 4 in [4]. 

EXAMPLE 6.3. Suppose that the algebraic variety V is a smooth hyper- 
surface in P3. We may choose affine coordinates (x, y, z) such that V has the 
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affine equation 

(6.4) p(X, Y, Z) = 0 

for a polynomial p(x, y, z) of degree n, and such that the axes are in general 
position relative to V. The Zariski open set U will be obtained from the affine 
surface (6.4) by removing the residual intersection with N tangent-planes 

X =Xr( 1, *- N) 

where N is the class of V. We let S C{x} - {x1, ***, XN} so that the plane 
curves p(x, y, z) = 0 (x = constant) are all homeomorphic for x e S. Denote 
by S the universal covering of S and let x be a global coordinate on S. Then 
the embedding 

(6.5) U - C2 

will be given by a pair of holomorphic functions ,c1, fe2 on U which are obtained 
as follows: We can find a pair of differential equations 

(ER) d2v + R(x)v = 0 

dx2 
(ET) d + T(; y, z)w 0 O, 

dy2 

where R(x) is a rational function of x and T(X; y, z) is holomorphic in x and 
rational in y and z, and such that p,1 and [2 are given by 

Pi/ = V/V2 

P2 = Wl/W2 9 

where v1, v2 are solutions to (ER) and w1, w2 are solutions of (ET). Thus, the 
embedding is given by integration of differential equations which are "parti- 
ally algebraic". It is not known whether or not T(X; y, z) is rational in x, as 
this is essentially the question of how the Teichmiiller modular group acts on 
the TeichmUller space T(r,) relative to the embedding T(F0) c E(rF). 

7. Proof of Theorem II 

We first need a few preliminary notions. Let M be a complex manifold 
with an Hermitian metric ds? . Locally we may choose C- (1, 0) forms on M 
so that dS2 = c wjj. The associated 2-form is )M = V-1/2 {j i' A q%}. 
There is an intrinsic Hermitian connection induced by the metric dS2 [8, page 
416], and we shall write Oij = Okl I ijkTwk A pA for the curvature matrix. 
The holomorphic sectional curvatures KM(e)- and Ricci form RicM are given 
respectively by 
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IKM(e) = Zi,j,k,l RijkO~j$,kl 

RicM = - {Et k V kA 7ij}, 2 

From [8, page 425], we have the 

LEMMA 7.1. Let M be a complex manifold with Hermitian metric ds',, 
and let N be a complex submanifold with induced metric ds' . Then the holo- 
morphic sectional curvatures satisfy the inequalities 

KN< KM . 

From this lemma plus standard properties of the Poincare metric on the 
unit disc, we have 

LEMMA 7.2. Let M be a complex manifold whose universal covering is 
the polycylinder in Cm and whose ds' is the Poincare metric. Let N be a com- 
plex submanifold of M with the induced metric ds'. Then ds' is a complete 
Kdhlerian metric whose holomorphic sectional curvatures and Ricci forms 
satisfy the inequalities 

KN? <-1 
RiCN < -O)N. 

Theorem II now follows from this lemma together with Lemma 2.3 and 
the following 

PROPOSITION 7.3. Let N be any smooth algebraic variety having an 
Hermitian metric whose Ricci form satisfies the inequality 

RicN < -ON 

Then the total volume |((W)N) of N is finite. 

Proof. The proof is based on the following two lemmas, the first of which 
is taken from [6], and the second of which is proved by an easy direct calcula- 
tion. To state these, we first define a punctured polycylinder P* to be given 
in Cn by 

(7.4) P* {z = (u1, *... u 
kV, V-*.*,k) 

CC 0 < |Ua < 1, |Vtj < 1} 

We let P*(3) be the "concentric" open subset of P* in (7.4) which is defined 
by I us I < 3v,v I < (3 < 1). On P* we take the Poincare metric ds'* induced 
from its universal covering. 

LEMMA 7.5. Let N be as in the statement of Proposition 7.3 and let 
f: P* O N be a holomorphic mapping of a punctured polycylinder into N. Then 
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f is volume-decreasing in the sense that we have the inequality 

f *((JON)' < ((0oP*) 
' 

LEMMA 7.6. For a < 1, the total volume 

| (3P*) < 
P*(p) 

of the concentric punctured polycylinder is finite. 

To prove Proposition 7.3, we take a smooth completion N of N. Thus 
N is a smooth, complete algebraic variety such that 

N-N= D1 U ... U Dk 

is a union of non-singular divisors intersecting transversely. This implies that 
we may choose finitely many points p1, p*, p e N - N and neighborhoods 
Uj of pj such that: (i) the intersections Us = u3 f N are biholomorphic to 
punctured polycylinders, and (ii) the complement N - [U>=, Ufl is a compact 
subset of N. Proposition 7.3 now follows from this together with Lemmas 
7.5 and 7.6. Q.E.D. 

Proof of Corollary A. This is evident from (2.3) and the usual Picard 
theorem. 

In connection with Corollary A, we should like to pose the following ques- 
tion which is an analogue of Proposition 7.3. 

Question 7.7. Let A be the disc {I z < 1} and A* the punctured disc 
{O < IzI < 1}. Let N be a smooth, quasi-projective algebraic variety which 
has a Kihlerian metric ds' which is complete and has all holomorphic sectional 
curvatures ? - 1. Then is any holomorphic mapping 

f: A* N 

necessarily a meromorphic mapping? 

8. Some applications and open questions 

(a) On rigidifying the universal coverings of Zariski open sets. 

Let D be a complex n-manifold which is topologically a cell and which 
has additionally the following two properties: (i) there is a subgroup 
r c Aut (D) which acts freely and properly discontinuously on D such that 
D/r is a quasi-projective algebraic variety;"" (ii) there is at least one 
embedding 

(8.1) f: D Cn 

(21) Thus DIl is a Zariski open subset of a smooth, projective variety. 
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of D into Cn as a bounded domain of holomorphy. 

Problem A. Let 1F be the class of all embeddings (8.1) of D into Cn as a 
bounded domain. Then are there any distinguished embeddings f E 1F which 
serve to single out the class of bounded domains in Cn which may be universal 
coverings of quasi-projective algebraic varieties? 

Let me elaborate a little on this question. For n = 1 there is the Rie- 
mann mapping theorem, which gives a distinguished f C yf such that f(D) is 
the unit disc in C. For n > 1 there is certainly no Riemann mapping theorem 
and any bounded domain in Cn will, so to speak, depend on an &c of para- 
meters. What I am asking is whether we can single out a class of embed- 
dings f C SF such that the image f(D) would appear as "nice" as possible and 
would depend on only finitely many continuous parameters. This is perhaps 
not unreasonable since the algebraic variety DIV depends on only finitely 
many parameters. 

As a suggestion on how to select such distinguished embeddings f C YF, 
let me recall from the one-variable case the following result [11, chapter 17J: 

(8.2) Let D be a simply connected bounded domain in C and select a point 
z0 e D. Let T0 be the set of all univalent mappings f: D C such that f(z0) = 
0 and f'(z0) 1 I. For each such f C T0, we set 

(8.3) V(f) fD f'(z) 2dxdy (22) 

Then there is a unique f0 e YF, which minimizes V(f), and the image f4(D) is a 
disc {IzI < r} in C. 

In several variables, we may again normalize the embeddings and let T0 
be the set of all embeddings (8.1) such that f(z0) 0 0 and such that the Jacobi- 
an matrix of f at z. is the identity matrix. (23) We may then define various func- 
tionals on Y0 and look for mappings fJ e T0 which are extremal for these func- 
tionals. If we try to carry over to several variables the minimizing of the 
integral (8.2), then there is trouble because the group of all volume-preser- 
ving automorphisms of C" which leave the origin fixed is an infinite dimensional 
group.'24) What might be tried is to minimize the length-area ratio 

(22) V(f) is the Euclidean area of the image f(D) in C. 
(23) Recall that, since D has at least one embedding in Cn as a bounded domain, the auto- 

morphism group of D is a finite dimensional Lie group, and any automorphism of D which 
leaves zo fixed and which acts trivially in the tangent space at zo is necessarily the identity. 

(24) For example, in C2 with coordinates (u, v), if e(u, v) is any entire function with e(O, 0) = 
0, then the transformation (u, v) (u + e(u, v), v) will be a volume-preserving automorphism 
of C2 which leaves the origin fixed. 
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(8.4) R(f) = SC (f(D)) 2nf- 

where JCk(S) is the Hausdorff k-measure of any subset S c C". A first dif- 
ficulty here is that, for the embeddings f: U > Ca constructed in the proof of 
Theorem I, it is probably the case that YC2n14&(f(U))] is infinite. I would 
guess that this is not too serious, and being optimistic, it seems possible 
to me that we might always find an f e Y such that f(D) is an analytic polyhe- 
dron. 

(b) Some general remarks on universal coverings of complex manifolds. 
The questions discussed in this paper may be thought of as special cases 

of the following general 

Problem B. Let D be a complex manifold which is the universal covering 
of a quasi-projective algebraic variety. Then what function-theoretic prop- 
erties does D possess? 

We shall discuss a few examples related to this problem. For this we let 
I? c Aut (D) be a group of covering transformations of D over a smooth com- 
plex-analytic variety D1ll. We do not yet assume that D1I? is algebraic. 

(i) If D - D/r is a finite covering over a quasi-projective variety, then 
D is itself a quasi-projective variety (Riemann existence theorem). 

(ii) If DII? has a complete Kihlerian metric whose sectional curvatures 
are non-positive, then D is a Stein manifold. (This result is due to H. Wu, 
and proof goes as follows: Since D is simply-connected, the exponential map 

exp: Tp,(D) - D 

is a diffeomorphism. Thus we may use the geodesic distance on D to give a 
smooth exhaustion function 

cp(p) = distD (po0 p) p 

A computation then shows that the E. E. Levi form ddc9 is positive definite 
on the holomorphic tangent spaces to the level sets of Ap. By Grauert's 
theorem it follows that D is a Stein manifold.) Wu has asked the following 

Question 8.5. (Wu): If the sectional curvatures of D are negative and 
bounded away from zero, then is D a bounded domain of holomorphy in C"? 

(iii) If D is a bounded domain in C" and if IF is a properly discontinuous 
group of automorphisms of D such that the quotient D/I? is compact, then 
D/I? is quasi-projective and D is a domain of holomorphy (C. L. Siegel). This 
result suggests the following two questions: 
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Question 8.6. If D is a bounded domain of holomorphy in Cn and r c 
Aut (D) is a properly discontinuous group of automorphisms such that the 
quotient D/ll has finite volume with respect to the Bergman metric, then is 
D/r a quasi-projective algebraic variety? 

Question 8.7. If D is a bounded domain in C" and F c Aut (D) is a prop- 
erly discontinuous group of automorphisms such that D/ll is a quasi-projective 
variety, then (i) is D a domain of holomorphy, and (ii) does D/P have finite 
volume with respect to the Bergman metric? 

We remark that perhaps the quickest proof of Siegel's theorem is by show- 
ing that a bounded domain in Cn whose Bergman metric is complete is neces- 
sarily a domain of holomorphy (Bremmerman). The existence of a r such that 
D/r is compact then guarantees the completeness of the Bergman metric. It 
is tempting to ask if the finite volume assumption for D/F also forces the 
Bergman metric of D to be complete? 

(iv) To some extent, the basic question concerning the situation 

D - D/r 

is the following: Under what assumptions on D/F can we construct functions 
on D other than those which come from D/r? It is interesting to note that, 
at least in the nontrivial cases of which I am aware, the construction of func- 
tions on D is not done directly. For example, it is a theorem of K. Stein [15J 
that D is a Stein manifold if D/F is. Let me outline the proof of this result 
in order to illustrate how the necessary functions on D are proved to exist in 
this case. 

The first step is to use the embedding theorem for Stein manifolds [10O 
to realize D/F as a complex submanifold in some CN. It is then easy to find 
an open tubular neighborhood X of D/F such that: (i) X is a domain of holo- 
morphy, and (ii) X topologically retracts onto D/r. Passing to universal 
coverings, we have a situation 

D , 

D/r >X 

so that it will suffice to prove that X is a Stein manifold. 
Now X is a so-called Riemann domain, and the coordinates (z1, , ZN) 

in CN give an etale mapping 
Z: X-, CN. 

Given a point x e X, we define the polycylinder A(x, r) to be the subset of X, 
defined by 
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1 za,, - z,,(aX) I < r (ra = 1, * ,N) 
Then, following Oka, we may define 

a(x) = sup {r I z: A(x, r) - A(z(x), r) is a homeomorphism} 

Similarly, for x e X we may let 

a(x) = sup {r I A(x, r) is contained in X}. 

It is clear that 

On the other hand, it is a theorem of Grauert-Oka [10, page 283], that a 
general Riemann domain is a Stein manifold if, and only if, -log (3 is pluri- 
subharmonic. Since -log [a(x)] is then plurisubharmonic, it follows that 
-log [a(x)] is also plurisubharmonic. Q.E.D. 

It should be noted that, in both this result and the theorem of Wu men- 
tioned in (ii) above, the construction of holomorphic functions is based on 
Grauert's solution of the E. E. Levi problem [10]. 

Question 8.8. Let D be a complex manifold and 1F c Aut (D) a properly 
discontinuous group of automorphisms such that D/P is a quasi-projective alge- 
braic variety. Then do the meromorphic functions separate points on D? Is D 
meromorphically convex? 

(c) On finding the Fuchsian equation. Let C be an algebraic curve 
given by an affine equation (3.1). We consider the admissible differential 
equations (E) as described in ? 3. Each such D. E. generates an etale map- 
ping tIE: C P p1, and the classical uniformization theorem is 

THEOREM 8.9. There exists a unique differential equation Ef(C) (the 
Fuchsian D.E.) such that PE is univalent and the monodromy group 1(E) is 
a Fuchsian group. 

The original proof [131 of this theorem by Poincare is more notable for 
its interesting discussion of the geometry of Fuchsian groups than for its 
mathematical rigor.(25) Subsequent complete proofs were given by Picard, 
Poincare, and Koebe [2]; all of these were based on potential theory. In fact, 
all known complete proofs of (8.9) seem to be potential-theoretic and offer 
very little insight in just how to explicitly locate the Fuchsian D.E. 

Now, rather than trying to locate Ef(C) for a fixed curve C, we might 
do the following: 

Let r: U - S be an analytic family of algebraic curves as defined in ? 3. 

(25) Cf. the criticism in [2, page 427]. 



48 PHILLIP A. GRIFFITHS 

Over S we construct the affine holomorphic vector bundle 

whose fibre E. is the space E(C8) of admissible D.E.'s on the curve C8 (cf. 
Corollary 3.6).(26) Now the Fuchsian equation Ef(D8) gives a cross-section 
(8.10) f: S - E 

of this affine bundle, and f is presumably real-analytic but, in any event it is 
never holomorphic unless of course the family w: U S is trivial (cf. Lem- 
ma 4.2). 

Problem C. Is it possible to characterize the Fuchsian cross-section (8.10)? 
Here is a first guess as to how one might begin to characterize f. Given 

our affine vector bundle E - S, we let V(E) - S be the corresponding ordina- 
ry vector bundle.'27 There is a well-defined operator 

a: C-(E) ) A0 1( V(E)) 
from the C- sections of E into the C-(0, 1) forms with values in V(E). Given 
an hermitian metric h along the fibres V(E) , S, there is also defined a differ- 
ential operator ah: A' 1(V(E)) Al'1(V(E)). Composing these we have a 2nd 
order differential operator 

Ah: C(E) ,Al"l(V(E)) I 
and we will say that a Co section g of E is harmonic if Aheg = 0. 

Question 8.11. Does the Fuchsian cross-section f satisfy a differential 
equation in terms of a and ah, where h is a suitable metric for the vector bun- 
dle V(E) - S of quadratic differentials? For example, is f harmonic? 

In concrete terms, if we locally give our family of curves w: Us S by 
polynomial equations (3.3), then for each s there will be a unique Fuchsian 
D.E. 

Ef(C8) dx- + R(x, y; s)a = 0 . 

Now R(x, y; s) will be rational in x, y but not in s. What I am asking for is 
a differential equation involving &/asj, &/laj which is satisfied by R(x, y; s) as 
a function of s. 

(d) Some differential-geometric properties of Zariski open sets. 
(26) Relative to a suitable covering fWa} of S, E will be obtained from product bundles 

Wa x CN by transition relations Ca = Aap(s)Cp + Bas(s) (se Wa n Wp) taken from the group 
of affine transformations of C9. 

(27) Referring to footnote 26, the transition functions of V(E) are fAap(s)}. 
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Referring to Theorem II, we see that sufficiently small Zariski open sets 
U on smooth quasi-projective algebraic varieties will have a Kihlerian metric 
ds' which is complete and negatively curved."28" However, dse is not intrinsic 
and so, for example, it is not of much use in trying to determine how nice an 
embedding U c( C1 we can have (cf. Problem A above). 

Now the most important intrinsic differential geometric quantities as- 
sociated to U are (i) the distances and measures of Kobayashi-Eisenman [7], 
and (ii) the Bergman metric. We shall discuss the relevant definitions under 
(i). 

Let M be a complex n-manifold. We shall consider holomorphic mappings 
f: A M of the unit disc A into M. Denote by a(z, z') the Poincare distance 
on A. Given m, m' e M, a chain from m to m' will be given a sequence of 
pairs of points (zi, z') e A x A (i = 1, ** , N) and holomorphic mappings 
fA: A M such that: fi(z1) = m, fi(z') = fi+?(zi+?), and fN(z') = m'. We then 
define 

dM(m, m') = inf {E=> 3(zi, Z')} , 

where the inf is taken over all chains. It is clear that dM is a pseudo-distance 
which is intrinsically associated to M, and Kobayashi has defined M to be 
hyperbolic in case dif is a true distance (cf. [7] and the references given there). 

For a subset S of M, we shall now define the hyperbolic k-measure jI..(S) 
of S [7]. To do this we consider holomorphic mappings h: Be - M of the unit 
ball Bn in C" into M. There is an intrinsic metric (the Bergman metric) on 
Bu, and we shall denote by ak(T) the k-dimensional Hausdorff measure of a 
subset T of Be. Given S ci M, a covering of S will be given by subsets { Ti} of 
Bn and holomorphic mappings hi: B, - M such that Sc U hi(T.). We now 
define 

k 
(S) = inf {E=1 aUk(Ti)} 

where inf is taken over all coverings of S. The complex manifold M is said 
to be k-measure hyperbolic if, for every real k-dimensional submanifold N and 
non-empty, relatively compact open subsets S c N, we have 0 <,L"'(S) < .(29) 

PROPOSITION 8.12. Let V, be a smooth quasi-projective algebraic variety. 
Then any point x e V has a Zariski neighborhood U which has the following 
properties: (i) U is complete hyperbolic; (ii) U is k-measure hyperbolic for 

(28) This means that the holomorphic sectional curvatures are all negative and bounded 
away from zero. 

(29) Another intrinsic k-measure v" is obtained by taking Hausdorff k-measure associated 
to dv, the inequality 4k < p" is valid [7, page 55], and the advantage of PkM is that it is 
more often non-trivial. 
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0 ? k ? 2n; and (iii) the total volume fetn( U) of U is finite. 

Proof. This follows from Theorem II plus the methods used to prove 
Proposition (7.3). 

Concerning the Bergman metric, we shall close with the following ques- 
tion whose answer, it seems to me, is very likely affirmative: 

Question 8.13. Let D be a bounded domain in C" which is topologically a 
cell and which has a properly discontinuous group F c Aut (D) such that D/r 
is a quasi-projective algebraic variety. Then (i) is the Bergman metric on D 
complete? And (ii) is the volume of D/F finite with respect to this metric? 

The reason that we were able to prove Proposition 8.12 but are unable 
to answer (ii) in (8.13) is that the Kobayashi-Eisenman measures localize ra- 
ther easily (once we know that they are true distances and measures), but this 
does not seem to be true of the Bergman metric. In this regard, let me mention 
that there are finitely many punctured polycylinders P2* (a = 1, *, N) and 
commutative diagrams of holomorphic mappings 

Pax gD PaI {w 

7ra1 7r 

P-* DIP, 
far 

where P,, is an ordinary polycylinder, Wir and w are universal covering map- 
pings, fa is an injective holomorphic mapping, and such that 

DIF - Uav=ifa(P*) 

is a compact subset of D/F. Now using the facts that (i) fa maps L2-holomor- 
phic n-forms on D into L2-holomorphic n-forms on Pa, and (ii) P* has finite 
volume with respect to the Bergman metric on Pa, it seems possible to me 
that question (8.13) can be localized and then perhaps resolved. 
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