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ABSTRACT: Poly(L-lactide) (PLLA)-based nanoparticles have attracted much attention with respect to applications in drug deliv-

ery and nanomedicine as a result of their biocompatibility and biodegradability. Nevertheless, the ability to prepare PLLA assem-

blies with well-defined shape and dimensions is limited and represents key challenge. Herein we report access to a series of mono-

disperse complex and hierarchical colloidally-stable 2D structures based on PLLA cores using the seeded growth, “living-

crystallization-driven self-assembly” method. Specifically, we describe the formation of diamond-shaped platelet micelles and con-

centric “patchy” block comicelles by using seeds of the charge-terminated homopolymer PLLA24[PPh2Me]I to initiate the sequen-

tial growth of either additional PLLA24[PPh2Me]I or a crystallizable blend of the latter with the block copolymer PLLA42-b-

P2VP240, respectively. The epitaxial nature of the growth processes used for the creation of the 2D block comicelles was confirmed 

by selected area electron diffraction analysis. Crosslinking of the P2VP corona of the peripheral block in the 2D block comicelles 

using Pt nanoparticles followed by dissolution of the interior region in good solvent for PLLA led to the formation of novel, hollow 

diamond-shaped assemblies. We also demonstrate that, in contrast to the aforementioned results, seeded growth of the unsymmet-

rical PLLA BCPs  PLLA42-b-P2VP240 or PLLA20-b-PAGE80 alone from 2D platelets leads to the formation of diamond-fiber hybrid 

structures. 

1. INTRODUCTION 

Two-dimensional (2D) planar structures have received ex-

tensive recent attention due to their unique properties that 

originate from their ultrathin and flat morphology.1 Repre-

sentative examples include graphene,2 transition metal dichal-

cogenide nanosheets,3 boron nitride,4 and clay nanoplatelets,5 

which have found applications in electronics, photonics, 

spintronics, and composite reinforcement. Such materials are 

generally prepared from bulk layered materials through a “top-

down” approach. In contrast, the use of “bottom up” routes to 

discrete 2D nanostructures are much less explored.1c, 6-7 

The self-assembly of block copolymers (BCPs) is, in princi-

ple a potential route to 2D materials. However, although 

amorphous block copolymers have been extensively investi-

gated and yield a wide range of micellar nanostructures in-

cluding spheres, cylindrical or worm-like micelles, and kinet-

ically-trapped morphologies of remarkable complexity, the 

formation of 2D lamellar platelets is relatively rare.8 General-

ly, bilayer structures with flexible cores tend to undergo spon-

taneous closure to form vesicles. Self-assembly of crystalline 

homopolymers and BCPs, on the other hand, has recently 

emerged as a promising route to generate analogous functional 

2D materials due to their relative structural rigidity.9-12 Crys-

talline homopolymers generally form thin lamellae which are 

not colloidally stable due to the absence of solvophilic substit-

uents. However, it has been demonstrated that the use of thiol-

terminated crystalline homopolymers poly(ethylene oxide) 

(PEO) and polycaprolactone (PCL) allows peripheral nanopar-

ticle patterning on 2D platelets.10 Fabrication of alternate rings 

of a homopolymer and BCP has also been reported, and fluo-

rescent  nanosheets have been recently described for -

conjugated homopolymers.11 In addition, colloidally stable 2D 

platelets are commonly formed from crystallizable BCPs with 

short complementary corona-forming block,11,12 whereas 1D 

cylindrical micelles are usually favored for BCPs with long 

corona-forming blocks due to the strong corona-corona repul-

sions which promote curvature of the core-corona interface.13 

Precise control of nanoparticle dimensions and their spatial-

ly-defined chemistry, together with access to uniform samples, 

are highly desirable in order to tailor their material properties. 

The use of crystallization-driven, seeded growth strategies 

provides a recently established route for the preparation of 

near monodisperse fiber-like micelles and segmented 1D as-

semblies of controlled length from BCPs with a crystallizable 

core-forming block. This has been extensively developed for 

polyferrocenylsilane (PFS) BCPs14 over the past decade where 

sonication of polydisperse fiber-like micelles leads to small 

seeds which are active to further growth on addition of dis-

solved BCP (unimer) in a process termed living crystalliza-

tion-driven self-assembly (CDSA).15 Similar approaches have 

been demonstrated for the preparation of analogous 1D mate-
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rials with crystallizable organic cores based on polyeth-

ylene,13a-b -conjugated polymers,16 planar, -stacking mole-

cules,17 and other self-assembling molecular species.18 Fur-

thermore, the utility of the living CDSA strategy has been 

expanded to create uniform 2D structures with well-controlled 

dimensions.12f, 19-20 For example, nanosheets formed by the 

crystallization of precursors containing hyperbranched 

poly(ether amine) capped with a polyhedral oligomeric 

silsesquioxane can be fragmented into seeds by sonication, 

and that these seeds can be used to control the growth of 2D 

platelets on subsequent precursor addition.12f We have demon-

strated that precisely defined 2D lenticular and rectangular 

platelet micelles can be prepared by seeded growth of PFS 

BCPs and homopolymer/BCP blends, respectively.19-21 Very 

recently, we reported a simplified approach to the preparation 

of uniform, colloidally stable 2D platelets using PFS homo-

polymers with charged phosphonium cations as termini (e.g. 

PFS20[PPh2Me]I) in combination with seeded growth.22 In this 

case the presence of the charged termini hinders platelet stack-

ing as a result of electrostatic repulsion and provides colloidal 

stability. 

In this report we focus on the extension of seeded growth, 

living CDSA processes to fabrication of well-controlled and 

unprecedented hierarchical 2D structures based on crystalline 

poly(L-lactide) (PLLA). PLLA is a crystallizable polymer of 

major interest for a variety of applications including in nano-

medicine as a consequence of its non-toxicity, biocompatibil-

ity and biodegradability.23 Early work on the self-assembly of 

PLLA BCPs demonstrated the formation of spheres, cylinders 

and platelets, often as mixed morphologies.11b,24 More recent-

ly, Dove, O’Reilly and coworkers have exploited the core-

crystallization of PLLA BCPs to fabricate a range of well-

defined 1D cylindrical micelles.25 For example, low dispersity 

cylindrical micelles with lengths up to ca. 250 nm were pre-

pared by growth in aqueous media at 65°C, above the glass 

transition temperature of the PLLA block (55-60 C). The 

ability to vary the length of cylindrical micelles based on 

PLLA BCPs was also demonstrated by varying the composi-

tion of the BCPs and solvent.25 These workers also reported 

that a 1:1 mixture of cylindrical micelles separately formed by 

PLLA-b-PAA and PDLA-b-PAA (PDLA = poly(D-lactide), 

PAA =  poly(acrylic acid)) evolve into spherical micelles with 

a stereocomplexed PLLA/PDLA core when heated at 65°C.26 

 In contrast to the substantial recent progress with 1D 

PLLA-based materials, nanoscale 2D platelet structures de-

rived from PLLA BCPs are considerably less explored. Cheng 

and coworkers reported the growth of single crystalline PLLA 

from single crystals of PLLA-PS (PS = polystyrene) BCP.11b 

In recent work, Xie and Wang and coworkers reported the 

formation of 2D platelets of PLLA-PEG (PEG = poly(ethylene 

glycol)) via a morphological transition from spheres.27 In addi-

tion, Dove, O’Reilly and coworkers have further examined the 

factors that influence the formation of 1D and 2D morpholo-

gies by PLLA BCPs and have described the formation of well-

defined platelet micelles and also routes to hierarchical assem-

blies from 1D and 2D components by the use of BCP blends. 28 

As part of our recent report on the formation of 2D materi-

als by the seeded growth of PFS homopolymers with charged 

termini, we also described the extension of this approach to 

charge-terminated PLLA homopolymers PLLAm[PPh2Me]I (m 

= 24 and 34), to  obtain monodisperse colloidally-stable dia-

mond-shaped 2D platelets of controlled area.22 Such a mor-

phology is well-established for PLLA single crystals.11b,12k,28 In 

addition, we reported preliminary details of the formation of 

segmented 2D platelets via the sequential addition of further 

PLLAm[PPh2Me]I together with PLLA homopolymer with a 

terminal fluorescent dye.22 Herein, we report the fabrication of 

well-controlled and unprecedented hierarchical PLLA-based 

structures, including diamond-shaped “patchy” platelet block 

comicelles, hollow platelet micelles and diamond-fiber hybrid 

structures by the use of seeded growth and post-assembly pro-

cessing approaches. The work demonstrates that the use of 

seeded growth, living CDSA methods represents a powerful 

approach to not only PFS-based 2D materials, but also to those 

based on other functional organic polymers. 

2. RESULTS AND DISCUSSION 

Synthesis and Characterization of PLLA BCPs. To per-

form the targeted living CDSA experiments we prepared sev-

eral PLLA-based materials as building blocks. The charge-

terminated PLLA24[PPh2Me]I homopolymer (the subscript 

refers to the number average degree of polymerization, Figure 

1) possessing a phosphonium end group was prepared by ring-

opening polymerization (ROP) of L-lactide monomer initiated 

with a phosphine-substituted alcohol followed by quaterniza-

tion with MeI.22 Two PLLA BCPs, PLLA42-b-P2VP240 (P2VP 

= poly(2-vinylpyridine)) and PLLA20-b-PAGE80 (PAGE = 

poly(allyl glycidyl ether)) were also prepared (Figure 1). Syn-

thesis of PLLA42-b-P2VP240 BCP was carried out by combin-

ing reverse-addition fragmentation chain transfer (RAFT) 

polymerization and Ring-Opening Polymerization (ROP) 

techniques.25 A PLLA macroinitiator suitable for RAFT was 

prepared by ROP and this was then used to polymerize 2VP. 

This two-step synthesis produced PLLA42-b-P2VP240 in a yield 

70 % and PDI of 1.21. The detailed procedure for PLLA42-b-

P2VP240 is summarized in Scheme S1 in the supporting infor-

mation. PLLA20-b-PAGE80, on the other hand, was prepared 

according to a reported procedure,29 by one-step ROP of L-

lactide by PAGE80-OH as macroinitiator also in ca. 70% yield, 

with a low polydispersity index (PDI) of 1.05. Detailed char-

acterization of the BCPs PLLA42-b-P2VP240 and PLLA20-b-

PAGE80 are described in the supporting information and in 

Figure S1-S6. 
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Figure 1. Chemical structures of PLLA24[PPh2Me]I, PLLA42-b-

P2VP240 and PLLA20-b-PAGE80. 

Diamond-Shaped Platelet Micelles and “Patchy” Block 

Comicelles Prepared by Seeded Growth. In addition to the 

self-assembly studies for amorphous blends of BCP and ho-

mopolymer,21 similar experiments have been performed for 

crystallizable analogues in the absence of seeds. For example, 

Eisenberg and van de Ven and coworkers previously reported 

the preparation for non-uniform 2D assemblies based on crys-

talline poly(-caprolactone) (PCL) cores by blending PCL-b-

PEO BCP and PCL homopolymer.30a-b Analogous polydis-

perse platelets have been reported for crystallizable blends of 

PFS BCPs and homopolymer.30c Recently, we have shown that 

the seeded growth of crystallizable  blends of BCP and homo-

polymer, or of a crystallizable charge-terminated homopoly-

mer, allows the formation of uniform 2D platelet micelles and 

block comicelles with controlled dimensions.20,22 In this work 

we explored the use of the latter strategies for the fabrication 

of well-controlled, complex, and hierarchical PLLA-based  

assemblies. 

In our initial experiments we examined the growth of the 

blend of PLLA42-b-P2VP240 and the charge-terminated homo-

polymer PLLA24[PPh2Me]I from quasi-1D seeds of 

PLLA24[PPh2Me]I (Ln = 200 nm, Lw/Ln = 1.09, where Lw is the 

weight-average length and Ln is the number-average length). 

The seeds were prepared by sonication of 2D platelets of 

PLLA24[PPh2Me]I (0.1 mg/mL) in iPrOH/CHCl3 (10:1),  ac-

cording to our previous report.22 Because both the phosphoni-

um moiety and the P2VP block are solvated in polar solvents 

such as iPrOH, in which the PLLA block is insoluble, iPrOH 

was chosen as a suitable selective solvent for the self-

assembly experiments.  

 

Figure 2. (a) Schematic representation for the formation of 2D 

diamond-shaped platelet micelle through seeded growth of 

PLLA42-b-P2VP240/PLLA24[PPh2Me]I (1:1, mass ratio) blend 

unimer from quasi-1D seeds of PLLA24[PPh2Me]I in iPrOH; (b) 

its corresponding TEM image with unimer to seed mass ratio 

(munimer/mseed) of 80, the sample for TEM was not stained; (c) 

Linear dependence of micelle area on the munimer/mseed. Error bars, 

standard deviation of measured areas; (d) AFM image with mu-

nimer/mseed of 80; (e) the height profile of platelet comicelles. 

As shown in Figure 2, addition of a solution of molecularly 

dissolved PLLA42-b-P2VP240/PLLA24[PPh2Me]I blend (1:1, 

mass ratio) unimers in CHCl3 to quasi-1D small seed of 

PLLA24[PPh2Me]I in iPrOH led to uniform diamond-shaped 

platelet micelles, demonstrating the control implicit in this 

approach. The area of the platelets was found to be linearly 

dependent on the unimer-to-seed mass ratio (munimer/mseed) and 

the area dispersity was very low (Aw/An = 1.02, where Aw is the 

weight-average area and An is the number-average area). The 

contour areas for the platelets are summarized in Figure S7 

and Table S1. The heights of the platelet by atomic force mi-

croscopy (AFM) were found to be ca. 15 nm on average, and 

the height of the edge (17 nm) was higher than the center (13 

nm), probably due to the uneven distribution of PLLA homo-

polymer and BCP on the surface of the formed platelet be-

cause of their likely difference in epitaxial growth rate (Figure 

2d-e). 
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Figure 3. (a) Schematic representation of the formation of dia-

mond-shaped “patchy” platelet block comicelles through seeded 

growth. TEM images of (b) diblock and (c) tetra-block platelet 

comicelles.  The samples for TEM were not stained. (d) AFM 

image and (e) the height profile of diblock platelet comicelle.  

 

Encouraged by these results, we attempted to fabricate 

“patchy” diamond-shaped platelet block comicelles. Firstly,  

large diamond platelets (An = 394,770 nm2, Aw/An = 1.04) were 

prepared by seeded growth of PLLA24[PPh2Me]I unimers in 

CHCl3 from quasi-1D small seed of PLLA24[PPh2Me]I in 

iPrOH. Then, addition of the unimeric polymer blend PLLA42-

b-P2VP240/PLLA24[PPh2Me]I in CHCl3 to the diamond shaped 

platelets derived from PLLA24[PPh2Me]I in iPrOH yielded 

segmented block platelet comicelles, as shown Figure 3 and 

S8. Different blend ratios of PLLA42-b-P2VP240/ 

PLLA24[PPh2Me]I (4:1, 1:1 and 1:4, based on mass ratio) were 

all found to form platelet structures (Figure S8). A 1:1 mass 

ratio of BCP and homopolymer was found to give best control 

of the formation of “ patchy ” diamond-shaped platelet, 

which will be used throughout. The peripheral block was 

clearly observed as darker region in TEM image, due to the 

higher electron density of the P2VP corona. AFM images 

showed a clear height difference between the two spatially 

distinct regions, with the second block formed by the PLLA42-

b-P2VP240/PLLA24[PPh2Me]I polymer blend (1:1, mass ratio) 

higher than the first block composed of PLLA24[PPh2Me]I (18 

nm v.s. 9 nm, respectively). The higher peripheral region is a 

consequence of the presence of the long P2VP block. Further 

sequential alternating addition of unimers PLLA24[PPh2Me]I  

and a PLLA42-b-P2VP240/PLLA24[PPh2Me]I blend (1:1, mass 

ratio), resulted in concentric segmented platelet comicelles 

with four distinct regions of excellent contrast were formed 

based on TEM (Figure 3c). These experiments demonstrated 

the formation of 2D platelets by the seeded growth of a crys-

tallizable blend of BCP and homopolymer is not limited to 

PFS-based polymers but also applicable for PLLA-based pol-

ymers. 

In order to confirm that the growth of the platelets was driv-

en by epitaxial growth, selected-area electron diffraction 

(SAED) analysis of platelet micelle and block comicelle was 

carried out. As shown in Figure 4, both the platelet micelle 

precursor (Figure 4a,b) and block comicelle (Figure 4c-e) pos-

sess identical ED patterns with three pairs of diffraction spots, 

confirming that PLLA core in these two cases consists of a 

single crystalline layer and the growth of 2D block comicelle 

is driven by epitaxial crystallization. These SAED patterns are 

assigned to be the [001] zone pattern of the orthorhombic (α) 

form of PLLA. These 2D platelets are bound by four (110) 

planes. ED analysis showed that the observed pattern contains 

four (110) planes with the d-spacing of 0.537 nm and two 

(200) planes having the d-spacing of 0.543 nm, which is con-

sistent to the case of PLLA solution-grown crystals.24g A simi-

lar platelet morphology and SAED pattern were also observed 

for lamellar single crystals of PLLA-b-PS (19.9K-9.2K) by 

Cheng and coworkers.11b 

 

 

Figure 4. TEM images and selected area electron diffraction 

(SAED) patterns for platelet micelles (a,b) and comicelles (c-e). 

The black square in (a) and red square and blue circle in (d) repre-

sent the selected areas for the electron diffraction in (b), (c) and 

(e), in which the surrounding lines are labeled with the same col-

ors. A relatively large area was used in (d) to maximize data 

quality. No diffraction from the surrounding carbon film was 

detected. The samples analysed by TEM were not stained. 

Hollow Diamond-Shaped Platelet Micelles. Crosslinking 

of the core or corona/shell of micelles is a well-established 

method for the generation of micelles with improved stabil-

ity.31 The resulting micelles are resistant to dissolution and 

maintain their structure in good solvents. For instance, the 

P2VP coronas of the branched cylindrical micelles could be 

cross-linked by Karstedt’s catalyst through the formation of 

small Pt nanoparticles with Pt coordination to the pyridyl 

groups on P2VP.32 Although cross-linking has been widely 

used in a wide range of nanomaterials, its application in the 

fabrication of hollow platelet structures is very rare. This is a 

consequence of the limited methods for creating multicom-

partmental platelets. We have recently demonstrated that uni-

form hollow rectangular structures based on PFS systems 

could be prepared by controlling the cross-linking in a spatial-
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ly selective manner, followed by dissolution of uncrosslinked 

regions in a good solvent for the core.20, 31b However, analo-

gous hollow structures derived from organic polymers have 

not been reported. 

 

 

Figure 5. (a) Schematic representation for the formation of cross-

linked platelet block comicelle and hollow micelles, and (b,c) 

their corresponding TEM images. The samples analysed by TEM 

were not stained. 

 

 

Figure 6. (a,b) Dark-field TEM image of cross-linked platelet 

comicelle. The central region is derived from PLLA24[PPh2Me]I 

and the peripheral block is derived from PLLA42-b-P2VP240/ 

PLLA24[PPh2Me]I (1:1, mass ratio). (c) STEM-EDX Pt element 

(red) mapping. 

In order to fabricate hollow diamond-shaped platelets, we 

selected a concentric diamond-shaped platelet block comi-

celles, with the central block derived from PLLA24[PPh2Me]I 

and peripheral block derived from with PLLA42-b-P2VP240/ 

PLLA24[PPh2Me]I blend (1:1, m/m) (Figure 3b and d). We 

found that Karstedt’s catalyst can effectively crosslink the 

peripheral block consisting of PLLA42-b-P2VP240/ 

PLLA24[PPh2Me]I, by the formation of Pt nanoparticles (Figure 

5 and 6, S9). By using scanning transmission electron micros-

copy energy-dispersive X-ray (STEM-EDX) in elemental 

mapping mode, the distribution of elemental Pt was directly 

revealed on the platelets (Figure 6c); their location matched 

well with the nanoparticle area, conforming that nanoparticles 

are mainly composed of Pt (Figure 6). A high-resolution TEM 

image of the Pt nanoparticles showed that they possess a di-

ameter of 9-10 nm and also that they lead to crystalline pat-

terns (Figure S9). The height of the cross-linked regions of the 

platelet was measured to be 5-10 nm higher than that of non-

crosslinked platelet (Figure S10a). By removing the iPrOH 

and dispersing the cross-linked structure in THF, a diamond-

shaped hollow structure was produced (Figure 5c and S10). 

The presence of hollow interior was confirmed by the AFM, 

with the central height near to zero. In contrast to the use of 

Karstedt’s catalyst alone, the combination of Karstedts catalyst 

and 1,1,3,3-tetramethyldisiloxane (TMDS), which leads to 

crosslinking via hydrosilylation,33 was found to lead to severe 

aggregation (Figure S11).  

Diamond-Fiber Hybrid Structures. We have demonstrat-

ed that seeded growth of either PLLA24[PPh2Me]I homopoly-

mer or  a PLLA42-b-P2VP240/PLLA24[PPh2Me]I blend from qua-

si-1D seeds or preformed 2D platelets leads to controlled for-

mation of diamond-shaped platelets. Strikingly, addition of 

solely PLLA42-b-P2VP240 BCP in CHCl3 to the 

PLLA24[PPh2Me]I diamond platelet (An = 394,770 nm2, Aw/An 

= 1.04) in iPrOH led to diamond-fiber hybrid structures (Fig-

ure 7b). The added PLLA42-b-P2VP240 BCP grew as fibers 

from the four edges of all the platelets. Similar hierarchical 

structures (Figure 7e) were also formed by addition of 

PLLA20-b-PAGE80 unimer in THF to the PLLA24[PPh2Me]I 

platelets in iPrOH, indicating that the formation of diamond-

fiber hybrid structures is adaptable to other PLLA BCPs with a 

different corona. However, aggregation between the hybrid 

structures was observed by TEM due to the growth of 

PLLA20-b-PAGE80 fibers which tend to associate through the 

PAGE coronas. In addition, the length of the PLLA20-b-

PAGE80 fibers was found to be linearly dependent on the 

unimer-to-seed mass ratio (munimer/mseed), consistent with a 

living CDSA process (Figure S12).  

Moreover, diamond-fiber (block)-like structures with fibers 

containing spatially segregated coronal chemistries could be 

formed by further addition of different BCPs to the hybrid 

diamond-fiber-like structures (F@D). Thus, addition of 

PLLA20-b-PAGE80 unimer to diamond-fiber-hybrid structure 

F{PLLA42-b-P2VP240}@D, was found to afford the anticipated 

diamond-fiber (block)-like structures F{PLLA20-b-PAGE80}-

b-F{PLLA42-b-P2VP240}@D (Figure 7c). Similarly, addition 

of PLLA42-b-P2VP240 unimer to diamond-fiber-like structure 

F{PLLA20-b-PAGE80}@D, led to the formation of diamond-

fiber (block)-like structures F{PLLA42-b-P2VP240}-b-

F{PLLA20-b-PAGE80}@D (Figure 7f). In the two diamond-

fiber (block)-like structures mentioned above (Figure 7c and 

7f), two blocks of fibers be differentiated by the TEM due to 

their different contrast, and the second BCPs grows epitaxially 

at the end of the first block fibers. It was also noteworthy that 

severe aggregation was observed by TEM for the two dia-

mond-fiber (block)-like structures due to the presence of the 

PAGE corona (Figure S13). In our previous report, scarf-like 

micelles with cylindrical fibers selectively grown from the 

long-axis platelet end were formed by addition of PFS BCPs 

to rectangular platelets derived from PFS polymers.34 The 

selective nature of the epitaxial growth in the PFS system was 

attributed to the preferred direction of crystal growth along the 

long axis (b axis, [010] direction).35 In contrast, the crystal 

growth of the diamond-shaped PLLA platelet is isotropic 

along all four [110] directions, therefore preferring the growth 

of fibers at four edges with similar growth rates. 
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Figure 7. Schematic representation (a, d) and TEM images (b, c, 

e, f) of diamond-fiber hybrid structures F{PLLA42-b-

P2VP240}@D  (b), F{PLLA20-b-PAGE80}@D  (e), and diamond-

fiber(block)-like structures, F{PLLA20-b-PAGE80}-b-F{PLLA42-

b-P2VP240}@D  (c), F{PLLA42-b-P2VP240}-b-F{PLLA20-b-

PAGE80}@D (f). F = fiber, D = diamond. In (c) and (f) severe 

aggregation was also observed due to coronal association of the 

PLLA20-b-PAGE80 fibers (see Figure S13). A single dispersed 

micelle is shown for clarity. The samples for TEM were not 

stained.  

Patterning of diamond-shaped pletelets with SiO2 nano-

particles (NPs): Electrostatic interactions have been used for 

the controlled patterning of negatively SiO2 nanoparticles on 

PFS-derived rectangular platelets with positive surfaces in a 

controlled manner.22 It is expected that a choice of different 

shape of 2D platelet would tune the patterning mode of SiO2 

NPs with different shape, which might be important for tuning 

the property of materials. Here, we selected two different sizes 

of diamond-shaped platelets (An = 394,770 nm2, Aw/An = 1.04; 

An = 1985,400 nm2, Aw/An = 1.03) derived from 

PLLA24[PPh2Me]I as templates to investigate the patterning 

mode of SiO2 NPs. 

A layer-by-layer approach was applied for the SiO2 NPs pat-

terning, similar to our previous reported procedure.22 Platelet 

micelles derived from PLLA24[PPh2Me]I were drop-cast and 

dried on carbon-coated TEM grids in air. These grids were 

then immersed in the ethanol solution of SiO2 NPs (diameter = 

55 nm) for 30 min. Then iPrOH was used to remove the free 

SiO2 NPs on the grids after the incubation. Figure S14 shows 

the pattern of SiO2 NPs loading on the PLLA24[PPh2Me]I 

platelets with two different sizes (S14a: small size platelets; 

S14b: large size platelet). All of the plates were loaded with 

SiO2 NPs, and no free platelets or SiO2 NPs were found on the 

TEM grid, indicating the specific loading due to the mutual 

electrostatic interaction. The SiO2 NP loading density on the 

platelet edge was found to be slightly higher than that in the 

center, perhaps as a consequence of the lower steric encum-

brance at the platelet boundary.  

3. SUMMARY 

Soft matter-based nanoparticles are attractive for a broad 

range of applications. 2D assemblies are of particular current 

interest but the control of dimensions and spatial functionality 

represents a key challenge. In this paper we have successfully 

demonstrated the formation of a range of novel PLLA-based 

hierarchical platelet structures, such as diamond-shaped 

“patchy” platelet block comicelles, hollow platelets and dia-

mond-fiber hybrid structures prepared by seeded growth of 

either PLLA homoplymer and/or BCPs. The key to the prepa-

ration of these structures is the seeded growth living CDSA 

approach that allows precise control of the assembly process. 

Thus, seeded growth of a PLLA42-b-P2VP240/PLLA24[PPh2Me]I 

polymer blend from both small quasi-1D seeds and large 2D 

diamond-shaped platelet micelles derived from 

PLLA24[PPh2Me]I leads to the formation of well-defined dia-

mond-shaped platelets and ‘patchy’ platelet block comicelles, 

respectively. This 2D living process is driven by an epitaxial 

growth mechanism, which was also confirmed by electron 

diffraction. Uniform hollow diamond-shaped structures could 

be produced by selectively cross-linking the peripheral block 

derived from PLLA42-b-P2VP240/ PLLA24[PPh2Me]I of dia-

mond-shaped platelet block comicelles with a central block 

derived from PLLA24[PPh2Me]I, followed by dissolution of 

the central block in a good solvent. On the other hand, addi-

tion solely of a cylinder-forming BCP led to the growth of 

fibers from four edges of the diamond-shaped platelet. Pattern-

ing of SiO2 NPs on the diamond-shaped platelets has also been 

demonstrated.  

Previous work has illustrated the promise of the living 

CDSA approach to 1D and 2D soft matter-based nanoparti-

cles. However, the vast majority of the work to date has fo-

cused on PFS homopolymers and BCPs. In this paper we have 

shown that this approach represents a powerful route to uni-

form, complex and hierarchical assemblies based on PLLA, a 

biodegradable organic polymer of considerable current interest 

for the development of release vehicles for pharmaceutical and 

other applications. Further studies directed towards these end-

uses are currently underway.  For example, we are currently 

studying the introduction of more hydrophilic charged termini 

to PLLA in order to permit self-assembly in aqueous media. 
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