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This paper presents distance measure between two complex Atanassov’s intuitionistic fuzzy sets (CAIFSs). This distance measure
is used to illustrate an application of CAIFSs in solving one of the most core application areas of fuzzy set theory, which is
multiattributes decision-making (MADM) problems, in complex Atanassov’s intuitionistic fuzzy realm. A new structure of relation
between two CAIFSs, called complex Atanassov’s intuitionistic fuzzy relation (CAIFR), is obtained. This relation is formally
generalised from a conventional Atanassov’s intuitionistic fuzzy relation, based on complex Atanassov’s intuitionistic fuzzy sets,
in which the ranges of values of CAIFR are extended to the unit circle in complex plane for both membership and nonmembership
functions instead of [0, 1] as in the conventional Atanassov’s intuitionistic fuzzy functions. Definition and some mathematical
concepts of CAIFS, which serve as a foundation for the creation of complex Atanassov’s intuitionistic fuzzy relation, are recalled.
We also introduce the Cartesian product of CAIFSs and derive two properties of the product space. The concept of projection and
cylindric extension of CAIFRs are also introduced. An example of CAIFR in real-life situation is illustrated in this paper. Finally,
we introduce the concept of composition of CAIFRs.

1. Introduction

The idea of the concept of Atanassov’s intuitionistic fuzzy set
(AIFS) was introduced by Atanassov [1], where he achieved
his concept by adding the nonmembership term to the
definition of fuzzy set (FS) that was given by Zadeh [2],
while the fuzzy set has only one component, a membership
function. It is well known that the range of each membership
and nonmembership functions is limited to [0, 1], where it
belongs to the real numbers. In 2007, Fathi [3] introduced
some operations on AIFSs called 𝑆-norm and 𝑇-norm. The
question presented by Daniel Ramot and other researchers
was that what will be the result if we change the codomain
of the fuzzy sets to complex numbers? In 2002, Ramot et al.
[4] introduced a new innovative concept which they called a
complex fuzzy set (CFS). On the other hand, complex fuzzy
set has been used to solve various problems, in particular
the multiple periodic factor prediction problems [5]. A
neurofuzzy system architecture implementing complex fuzzy
rule was defined by Chen et al. [6], which is the first practical
application of the concept of complex fuzzy logic.

Atanassov’s intuitionistic fuzzy set has several applica-
tions in many areas and has been used to solve multiple
attributes decision making (MADM) problems, see [7–10].
Atanassov’s intuitionistic fuzzy set represents the information
involving two or more answers of type: yes, no, I do not know,
I am not sure, and so forth. Our purpose in this paper is to
give an example of application that represents this type of
information which is happening repeatedly over a period of
time. In our previous conference paper [11], we introduced
the concept of complex Atanassov’s intuitionistic fuzzy set.
ComplexAtanassov’s intuitionistic fuzzy set can represent the
information on people’s decision which happens periodically.
In addition, we also represent the uncertainty of complex-
valued functions in many physical quantities, for instance,
wave function in quantum mechanics, impedance in electri-
cal engineering, complex amplitude, and so forth.We can also
define the values of belongingness and nonbelongingness for
any object in these complex-valued functions.

In the literature [4, 11], the novelty of using complex
numbers appears in the phase term to get more range-
valuedmembership functions to represent the problems with
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uncertainty and periodicity simultaneously. In addition, it
indicates the uncertainty of complex-valued functions in
many physical quantities, for instance, wave function in
quantum mechanics, impedance in electrical engineering,
complex amplitude, and so forth. In this paper, the novelty
also appears in the phase term but for both membership
and nonmembership functions in some inherent concepts, in
contrast to CFS which is only characterized by membership
function. The literature novelties of phase term are extended
to appear in several prominent concepts under the case of
CAIFS, for instance, distance measure, Cartesian product,
relations, projection, cylindric extension, and so forth. The
CFS [4] has only one additional phase term, but inCAIFS [11],
we have two additional phase terms.This confers more range
values to represent the uncertainty and periodicity semantics
simultaneously, and to define the values of belongingness
andnonbelongingness for any object in these complex-valued
functions. Undoubtedly, the property of periodic nature
of complex-valued memberships helps us to introduce the
present concepts. In other words, the periodicity semantic
can be denoted as a phase term in complex numbers, and the
uncertainty semantic can be denoted as an amplitude term in
complex numbers.

The difference between CAIFS and AIFS is that in our
concept, CAIFS has an ability to represent the problems
with Atanassov’s intuitionistic uncertainty and periodicity
simultaneously. The phase term of CAIFS shows that at least
in some cases a second dimension (periodic dimension) of
membership is required, where the phase term is the distin-
guishing factor between AIFS and CAIFS. In this paper, we
employ CAIFS structure in MADM problems to choose the
best alternative by generalising the selectionmodel from [12].
It is worth noting that one of themost useful properties of the
phase term is the ability to convey Atanassov’s intuitionistic
fuzzy information.

It should be noted that there are many researchers who
combined complex numbers and fuzzy sets, such as Buckley
[13], Nguyen et al. [14], and Zhang et al. [15, 16]. On the
other hand, Ramot et al. [4] introduced a new approach that
is absolutely different from them, where they extended the
range of membership function to unit circle in the complex
plane, unlike the otherswho limited the range to [0, 1]. Ramot
et al. [4] also added an additional term called the phase
term to solve the enigma in translating some complex-valued
functions on physical terms to human language and vice
versa. In 2011, Jun et al. [5] employed complex fuzzy sets to
represent the information with uncertainty and periodicity,
where they introduced a product-sum aggregation operator-
(PSAO-) based prediction (PSAOP) method to generate
a solution of multiple periodic factor prediction (MPFP)
problems.

Since 1965, the concept of fuzzy set theorywas introduced
by Zadeh [2]; numerous researchers did intensive studies on
fuzzy relation (simply denoted by FR) such as Di Nola et al.
[17, 18] and Bandler and Kohout [19]. According to Mendel
[20] in 1995 “fuzzy relation represents a degree of presence
or absence of association, interaction, or interconnectedness”
between the elements of two ormore sets. Later in 2002, com-
plex fuzzy relation (CFR) was introduced by Ramot et al. [4],

where “the CFRs represent both the degree of presence or
absence of association, interaction, or interconnectedness,
and the phase of association, interaction, or interconnected-
ness between the elements of two or more sets.”

Burillo and Bustince introduced the definition of
Atanassov’s intuitionistic fuzzy relation and studied some
of its properties [21–24]. In 2010, Atanassov’s intuitionistic
fuzzy relation was reintroduced by Adam [25] based on the
definition of Atanassov’s intuitionistic fuzzy relation given
by Bustince and Burillo. Adam generalised fuzzy relation
to Atanassov’s intuitionistic fuzzy relation by adding the
nonmembership functions to the fuzzy relation structure.
In this paper, we introduce CAIFRs by extending each
value of the membership and nonmembership functions
from real number, [0, 1], to complex number, the unit
circle. The main benefit expected to be gained from the
introduction of the concept of CAIFR is the ability to denote
both the presence and absence of association, interaction, or
interconnectedness in one set of CAIFS instead of two sets as
in CFS, where CAIFS has membership and nonmembership
functions in the same set, whilst CFS contains only the
membership functions and denotes the presence or absence
of association, interaction, or interconnectedness.

2. Preliminaries

In this section, we recall some definitions and results that will
be effectively employed in this paper.

Definition 1 (see [2]). A fuzzy set𝐴 in a universe of discourse
𝑋 is characterized by amembership function 𝜇

𝐴
(𝑥) that takes

values in the interval [0, 1].

Definition 2 (see [1]). An Atanassov’s intuitionistic fuzzy set
(AIFS) 𝐴 in a nonempty set 𝑋 (a universe of discourse) is an
object having the following form:

𝐴 = {⟨𝑥, 𝜇
𝐴 (𝑥) , 𝛾𝐴 (𝑥)⟩: 𝑥 ∈ 𝑋} , (1)

where the functions 𝜇
𝐴
(𝑥) : 𝑋 → [0, 1], 𝛾

𝐴
(𝑥) : 𝑋 →

[0, 1] denote the degree of membership and degree of non-
membership of each element 𝑥 ∈ 𝑋 to the set 𝐴, respectively,
and 0 ≤ 𝜇

𝐴
(𝑥) + 𝛾

𝐴
(𝑥) ≤ 1 for all 𝑥 ∈ 𝑋.

Definition 3 (see [26]). The complement, union, and inter-
section of two AIFSs 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥), 𝛾

𝐴
(𝑥)⟩ : 𝑥 ∈ 𝑋} and

𝐵 = {⟨𝑥, 𝜇
𝐵
(𝑥), 𝛾

𝐵
(𝑥)⟩ : 𝑥 ∈ 𝑋}, in a universe of discourse 𝑋,

are defined as follows:

(a) 𝐴 = {⟨𝑥, 𝛾
𝐴
(𝑥), 𝜇

𝐴
(𝑥)⟩ : 𝑥 ∈ 𝑋},

(b) 𝐴 ∪ 𝐵 = {⟨𝑥,max(𝜇
𝐴
(𝑥), 𝜇

𝐵
(𝑥)),min(𝛾

𝐴
(𝑥), 𝛾

𝐵
(𝑥))⟩ :

𝑥 ∈ 𝑋},
(c) 𝐴 ∩ 𝐵 = {⟨𝑥,min(𝜇

𝐴
(𝑥), 𝜇

𝐵
(𝑥)),max(𝛾

𝐴
(𝑥), 𝛾

𝐵
(𝑥))⟩ :

𝑥 ∈ 𝑋}.

Definition 4 (see [4]). A complex fuzzy set (CFS) 𝐴, defined
on a universe of discourse𝑋, is characterized bymembership
functions 𝜇

𝐴
(𝑥) that assign to any element 𝑥 ∈ 𝑋 a complex-

valued grade of membership in 𝐴.
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By definition, the values of 𝜇
𝐴
(𝑥) may receive all lying

within the unit circle in the complex plane and are thus of
the form 𝜇

𝐴
(𝑥) = 𝑟

𝐴
(𝑥) ⋅ 𝑒

𝑖𝜔𝐴(𝑥), where 𝑖 = √−1, each of 𝑟
𝐴
(𝑥)

and 𝜔
𝐴
(𝑥) is real-valued, and 𝑟

𝐴
(𝑥) ∈ [0, 1]. The CFS 𝐴 may

be represented as the set of ordered pairs 𝐴 = {(𝑥, 𝜇
𝐴
(𝑥)) :

𝑥 ∈ 𝑋}.

Definition 5 (see [25]). Let 𝐴
1
, . . . , 𝐴

𝑛
be Atanassov’s intu-

itionistic fuzzy sets in𝑋
1
, . . . , 𝑋

𝑛
, respectively. The Cartesian

product𝐴
1
×⋅ ⋅ ⋅×𝐴

𝑛
is an Atanassov’s intuitionistic fuzzy set

defined by

𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛

= {⟨(𝑥
1
, . . . , 𝑥

𝑛
) , 𝜇

𝐴1×⋅⋅⋅×𝐴𝑛
(𝑥

1
, . . . , 𝑥

𝑛
) ,

𝛾
𝐴1×⋅⋅⋅×𝐴𝑛

(𝑥
1
, . . . , 𝑥

𝑛
)⟩ : (𝑥

1
, . . . , 𝑥

𝑛
) ∈ (𝑋

1
, . . . , 𝑋

𝑛
)} ,

(2)

where 𝜇
𝐴1×⋅⋅⋅×𝐴𝑛

(𝑥
1
, . . . , 𝑥

𝑛
) = min[𝜇

𝐴1
(𝑥

1
), . . . , 𝜇

𝐴𝑛
(𝑥

𝑛
)],

and 𝛾
𝐴1×⋅⋅⋅×𝐴𝑛

(𝑥
1
, . . . , 𝑥

𝑛
) = max[𝛾

𝐴1
(𝑥

1
), . . . , 𝛾

𝐴𝑛
(𝑥

𝑛
)].

Definition 6 (see [25]). Let 𝑄 be an Atanassov’s intuitionistic
fuzzy relation in 𝑋

1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
, and let {𝑖

1
, . . . , 𝑖

𝑘
} be a

subsequence of {1, 2, . . . , 𝑛}. Then the projection of 𝑄 on
𝑋
𝑖1
×⋅ ⋅ ⋅×𝑋

𝑖𝑘
is an Atanassov’s intuitionistic fuzzy relation𝑄

𝑝

on𝑋
𝑖1
×⋅ ⋅ ⋅×𝑋

𝑖𝑘
, defined bymembership andnonmembership

functions,

𝜇
𝑄𝑝

(𝑥
𝑖1
, . . . , 𝑥

𝑖𝑘
) = max

𝑥𝑗1
∈𝑋𝑗1

,...,𝑥𝑗
(𝑛−𝑘)

∈𝑋𝑗
(𝑛−𝑘)

𝜇
𝑄
(𝑥

1
, . . . , 𝑥

𝑛
) ,

𝛾
𝑄𝑝

(𝑥
𝑖1
, . . . , 𝑥

𝑖𝑘
) = min

𝑥𝑗1
∈𝑋𝑗1

,...,𝑥𝑗
(𝑛−𝑘)

∈𝑋𝑗
(𝑛−𝑘)

𝛾
𝑄
(𝑥

1
, . . . , 𝑥

𝑛
) ,

(3)

where the {𝑥
𝑗1
, 𝑥

𝑗2
, . . . , 𝑥

𝑗(𝑛−𝑘)
} is the complement of

{𝑥
𝑖1
, 𝑥

𝑖2
, . . . , 𝑥

𝑖𝑘
} with respect to {𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
}.

Definition 7 (see [25]). Let 𝑄 be an Atanassov’s intuitionistic
fuzzy relation in 𝑋

1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
, and let {𝑖

1
, . . . , 𝑖

𝑘
} be a

subsequence of {1, 2, . . . , 𝑛}, then the cylindric extension of
𝑄
𝑝
to 𝑋

1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
is an Atanassov’s intuitionistic fuzzy

relation 𝑄PE on 𝑋
1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
, defined by membership and

nonmembership functions:

𝜇
𝑄PE

(𝑥
1
, . . . , 𝑥

𝑛
) = 𝜇

𝑄𝑃
(𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
) ,

𝛾
𝑄PE

(𝑥
1
, . . . , 𝑥

𝑛
) = 𝛾

𝑄𝑃
(𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
) .

(4)

Definition 8 (see [4]). Let 𝑋 and 𝑌 be two sets. A complex
fuzzy relation 𝑅 of 𝑋 and 𝑌, written 𝑅(𝑈,𝑉), is a complex
fuzzy subset of the product space𝑋×𝑌.The relation𝑅(𝑋,𝑌) is
characterized by the complex membership function 𝜇

𝑅
(𝑥, 𝑦),

where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌, and 𝜇
𝑅
(𝑥, 𝑦) assigns to each

pair (𝑥, 𝑦) a complex-valued grade of membership to the set
𝑅(𝑋, 𝑌). As always, 𝑅(𝑋, 𝑌) may be represented as the set of
ordered pairs:

𝑅 (𝑋,𝑉) = {((𝑥, 𝑦) , 𝜇
𝑅
(𝑥, 𝑦)) | (𝑥, 𝑦) ∈ 𝑋 × 𝑌} . (5)

The values𝜇
𝑅
(𝑥, 𝑦)may be took from the unit circle in the

complex plane and are of the following form: 𝑟(𝑥) ⋅ 𝑒𝑖𝜔(𝑥) (𝑖 =
√−1), 𝑟(𝑥) and 𝜔(𝑥) are both real-valued, with 𝑟(𝑥) ∈ [0, 1].

The complex membership function is to be interpreted in
the following manner:

(i) 𝑟(𝑥) represents a degree of presence or absence
of association, interaction, or interconnectedness
between the elements of𝑋 and 𝑌;

(ii) 𝜔(𝑥) represents the phase of association, interaction,
or interconnectedness between the elements of𝑋 and
𝑌.

Definition 9 (see [15]). Let 𝑋, 𝑌, and 𝑍 be universes, 𝐴 a
complex fuzzy relation of 𝑋 and 𝑌, and 𝐵 a complex fuzzy
relation of 𝑌and 𝑍. Then, we say a composition of 𝐴 and 𝐵,
denoted by 𝐴 ∘ 𝐵, is a complex fuzzy relation of 𝑋 and 𝑍, is
specified by the following function

𝜇
𝐴∘𝐵 (𝑥, 𝑧) = 𝑟

𝐴∘𝐵 (𝑥, 𝑧) ⋅ 𝑒
𝑖 arg
𝐴∘𝐵

(𝑥,𝑧)

= sup
𝑦∈𝑌

min (𝑟
𝐴
(𝑥, 𝑦) , 𝑟

𝐵
(𝑦, 𝑧))

⋅ 𝑒
𝑖 sup
𝑦∈𝑌

min[arg
𝐴
(𝑥,𝑦),arg

𝐵
(𝑦,𝑧)]

.

(6)

Example 10 (see [15]). Let

𝐴 (𝑋, 𝑌) = (

𝑦
1

𝑦
2

𝑥
1

0.6𝑒
𝑖1.2𝜋

0.8𝑒
𝑖1.6𝜋

𝑥
2

1.0𝑒
𝑖2𝜋

0.5𝑒
𝑖𝜋

),

𝐵 (𝑌, 𝑍) = (

𝑧
1

𝑧
2

𝑦
1

0.6𝑒
𝑖1.2𝜋

0.8𝑒
𝑖1.6𝜋

𝑦
2

1.0𝑒
𝑖2𝜋

0.8𝑒
𝑖1.6𝜋

)

(7)

be two relational matrices. Then, to compute 𝐴 ∘ 𝐵(𝑋, 𝑍),
we should note that 𝑋 × 𝑍 has four elements: 𝐴 ∘ 𝐵 =

(
(𝑥1 ,𝑧1) (𝑥1 ,𝑧2)

(𝑥2 ,𝑧1) (𝑥2 ,𝑧2)
). Thus, our task is to determine the member-

ship, 𝜇
𝐴∘𝐵

, values for the four elements. For instance, we use
the function in Definition 9 to determine the membership
function of 𝐴 ∘ 𝐵(𝑥

1
, 𝑧

1
), so we have

𝐴 ∘ 𝐵 (𝑥
1
, 𝑧

1
)

= sup
𝑦∈𝑌

min (𝑟
𝐴
(𝑥

1
, 𝑦) , 𝑟

𝐵
(𝑦, 𝑧

1
))

⋅ 𝑒
𝑖 sup
𝑦∈𝑌

min(𝜔𝐴(𝑥1 ,𝑦),𝜔𝐵(𝑦,𝑧1))

= sup
𝑦∈𝑌

{min [(𝑟
𝐴
(𝑥

1
, 𝑦

1
)) , 𝑟

𝐵
(𝑦

1
, 𝑧

1
)] ,

min [(𝑟
𝐴
(𝑥

1
, 𝑦

2
)) , 𝑟

𝐵
(𝑦

2
, 𝑧

1
)]}

⋅ 𝑒
sup
𝑦∈𝑌

{min[(𝜔𝑟𝐴 (𝑥1 ,𝑦1)),𝜔𝑟𝐵 (𝑦1 ,𝑧1)],min[(𝜔𝑟𝐴 (𝑥1 ,𝑦2)),𝜔𝑟𝐵 (𝑦2 ,𝑧1)]}

= sup
𝑦∈𝑌

{min [0.6, 0.6] ,min [0.8, 1]}

⋅ 𝑒
𝑖 sup
𝑦∈𝑌

{min[1.2𝜋,1.2𝜋],min[1.6𝜋,2𝜋]}

= sup
𝑦∈𝑌

{0.6, 0.8} ⋅ 𝑒
𝑖 sup
𝑦∈𝑌

{1.2𝜋,1.6𝜋}
= 0.8 ⋅ 𝑒

𝑖1.6𝜋
.

(8)
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Analogously, we determine the elements (𝑥
1
, 𝑧

2
),

(𝑥
2
, 𝑧

1
), and (𝑥

2
, 𝑧

2
) therefore, the final relational matrix of

𝐴 ∘ 𝐵 is

𝐴 ∘ 𝐵 = (
0.8𝑒

𝑖1.6𝜋
0.6𝑒

𝑖1.2𝜋

0.8𝑒
𝑖1.6𝜋

0.8𝑒
𝑖1.6𝜋) . (9)

Proposition 11 (see [15]). Let𝑊,𝑋, 𝑌, and𝑍 be universes,𝐴 a
complex fuzzy relation of𝑊 and𝑋, 𝐵 a complex fuzzy relation
of 𝑋 and 𝑌, and 𝐶 a complex fuzzy relation of 𝑌 and 𝑍. Then,
𝐴 ∘ (𝐵 ∘ 𝐶) = (𝐴 ∘ 𝐵) ∘ 𝐶.

Proposition 12 (see [15]). Let𝑋,𝑌, and𝑍 be universes,𝐴 and
𝐵 two complex fuzzy relations of 𝑋 and 𝑌, and 𝐶 a complex
fuzzy relation of 𝑌 and 𝑍. Then,

(i) (𝐴 ∪ 𝐵) ∘ 𝐶 = (𝐴 ∘ 𝐶) ∪ (𝐵 ∘ 𝐶),
(ii) If 𝐴 ⊆ 𝐵, then 𝐴 ∘ 𝐶 ⊆ 𝐵 ∘ 𝐶.

Definition 13 (see [15]). Let𝐴 and𝐵 be two complex fuzzy sets
on𝑋, 𝜇

𝐴
(𝑥) = 𝑟

𝐴
(𝑥)⋅𝑒

𝑖 arg
𝐴
(𝑥) and 𝜇

𝐵
(𝑥) = 𝑟

𝐵
(𝑥)⋅𝑒

𝑖 arg
𝐵
(𝑥) their

membership functions, respectively. We say that 𝐴 is greater
than 𝐵, denoted by𝐴 ⊇ 𝐵 or 𝐵 ⊆ 𝐴, if for any 𝑥 ∈ 𝑋, 𝑟

𝐴
(𝑥) ≤

𝑟
𝐵
(𝑥), and arg

𝐴
(𝑥) ≤ arg

𝐵
(𝑥).

Definition 14 (see [11]). A complex Atanassov’s intuitionis-
tic fuzzy set 𝐴, defined on a universe of discourse 𝑈, is
characterized bymembership and nonmembership functions
𝜇
𝐴
(𝑥) and 𝛾

𝐴
(𝑥), respectively, that assign to any element

𝑥 ∈ 𝑋 a complex-valued grade of both membership and
nonmembership functions in 𝐴.

By definition, the values of 𝜇
𝐴
(𝑥), 𝛾

𝐴
(𝑥), and their sum

may receive all lying within the unit circle in the complex
plane and are of the form 𝜇

𝐴
(𝑥) = 𝑟

𝐴
(𝑥) ⋅ 𝑒

𝑖𝜔𝜇𝐴
(𝑥) for

membership function in 𝐴 and 𝛾
𝐴
(𝑥) = 𝑘

𝐴
(𝑥) ⋅ 𝑒

𝑖𝜔𝛾𝐴
(𝑥) for

nonmembership function in𝐴, where 𝑖 = √−1, each of 𝑟
𝐴
(𝑥)

and 𝑘
𝐴
(𝑥) is real-valued and both belong to the closed unit

interval [0, 1] such that 0 ≤ 𝑟
𝐴
(𝑥) + 𝑘

𝐴
(𝑥) ≤ 1; also, 𝜔

𝜇A
(𝑥)

and 𝜔
𝛾𝐴
(𝑥) are real-valued. We represent the CAIFS 𝐴 as

𝐴 = {⟨𝑥, 𝜇
𝐴 (𝑥) , 𝛾𝐴 (𝑥)⟩ : 𝑥 ∈ 𝑋} , (10)

where 𝜇
𝐴
(𝑥) : 𝑋 → {𝑎 | 𝑎 ∈ 𝐶, |𝑎| ≤ 1}, 𝛾

𝐴
(𝑥) : 𝑋 → {𝑎


|

𝑎

∈ 𝐶, |𝑎


| ≤ 1} and |𝜇

𝐴
(𝑥) + 𝛾

𝐴
(𝑥)| ≤ 1.

Proposition 15 (see [11]). If 𝐴 is any CFS denoted by 𝐴 =

{(𝑥, 𝜇
𝐴
(𝑥)) : 𝑥 ∈ 𝑋}, then we can represent the set 𝐴 as a

set of CAIFS as follows:
𝐴 = {(𝑥, 𝜇

𝐴 (𝑥) , 𝛾𝐴 (𝑥)) : 𝑥 ∈ 𝑋} , (11)

where the nonmembership of aCAIFS𝐴 equals the complement
of CFS 𝐴 (i.e., 𝛾

𝐴
(𝑥) = 𝜇

𝐴
(𝑥)).

Definition 16 (see [11]). Let 𝐴 = {⟨𝑥, 𝜇
𝐴
(𝑥), 𝛾

𝐴
(𝑥)⟩ : 𝑥 ∈ 𝑋}

be a complex Atanassov’s intuitionistic fuzzy set. Define the
complement of 𝐴, 𝑐(𝐴), as
𝑐 (𝐴) = {⟨𝑥, 𝛾

𝐴 (𝑥) , 𝜇𝐴 (𝑥)⟩ : 𝑥 ∈ 𝑋}

= {⟨𝑥, 𝑘
𝐴 (𝑥) ⋅ 𝑒

𝑖(𝜔
𝑘

𝐴
(𝑥))

, 𝑟
𝐴 (𝑥) ⋅ 𝑒

𝑖(𝜔
𝑟

𝐴
(𝑥))

⟩ : 𝑥 ∈ 𝑋} ,

(12)

where 𝜔
𝐴
(𝑥) = 𝜔

𝐴
(𝑥), 2𝜋 − 𝜔

𝐴
(𝑥), or 𝜔

𝐴
(𝑥) + 𝜋.

Definition 17 (see [11]). Let 𝐴 and 𝐵 be two CAIFSs on
universe of discourse 𝑋, with complex-valued membership
and nonmembership functions. The complex Atanassov’s
intuitionistic fuzzy union of 𝐴 and 𝐵, denoted by 𝐴 ∪ 𝐵, is
specified by the following function:

𝐸 : {(𝑎, 𝑎

) | 𝑎, 𝑎


∈ 𝐶 :


𝑎 + 𝑎


≤ 1, |𝑎| ≤ 1,


𝑎

≤ 1}

× {(𝑏, 𝑏

) | 𝑏, 𝑏


∈ 𝐶 :


𝑏 + 𝑏


≤ 1, |𝑏| ≤ 1,


𝑏

≤ 1}

→ {(𝑑, 𝑑

) | 𝑑, 𝑑


∈ 𝐶 :


𝑑 + 𝑑


≤ 1, |𝑑| ≤ 1,


𝑑

≤ 1} ,

(13)

where 𝑎, 𝑏, and 𝑑 and 𝑎
, 𝑏, and 𝑑

 are the membership
and nonmembership functions of 𝐴, 𝐵, and 𝐴 ∪ 𝐵, respec-
tively. 𝐸 assigns a complex value,

𝐸 ((𝑎, 𝑎

) , (𝑏, 𝑏


))

= (𝐸
𝜇 (𝑎, 𝑏) , 𝐸𝛾 (𝑎


, 𝑏


))

= (𝜇
𝐴∪𝐵 (𝑥) , 𝛾𝐴∪𝐵 (𝑥)) = (𝑑, 𝑑


) ,

∀𝑥 ∈ 𝑋.

(14)

The complex Atanassov’s intuitionistic fuzzy union func-
tion, 𝐸, must satisfy at least the following axiomatic require-
ments, for any 𝑎, ,𝑏, 𝑐, 𝑑, 𝑎, ,𝑏, 𝑐, and 𝑑


∈ {𝑥 : 𝑥 ∈ 𝐶, |𝑥| ≤

1}.

(i) Axiom 1: |𝐸
𝜇
(𝑎, 0)| = |𝑎| and |𝐸

𝛾
(𝑎

, 1)| = |𝑎


|

(boundary condition).
(ii) Axiom 2: 𝐸

𝜇
(𝑎, 𝑏) = 𝐸

𝜇
(𝑏, 𝑎) and 𝐸

𝛾
(𝑎

, 𝑏


) =

𝐸
𝛾
(𝑏

, 𝑎


) (commutative condition).

(iii) Axiom 3: If |𝑏| ≤ |𝑑|, then |𝐸
𝜇
(𝑎, 𝑏)| ≤ |𝐸

𝜇
(𝑎, 𝑑)|,

and if |𝑏

| ≤ |𝑑


|, then |𝐸

𝛾
(𝑎

, 𝑏


)| ≤ |𝐸

𝛾
(𝑎

, 𝑑


)|

(monotonic condition).
(iv) Axiom 4: 𝐸

𝜇
(𝐸

𝜇
(𝑎, 𝑏), 𝑐) = 𝐸

𝜇
(𝑎, 𝐸

𝜇
(𝑏, 𝑐)) and

𝐸
𝛾
(𝐸

𝛾
(𝑎

, 𝑏


), 𝑐


) = 𝐸

𝛾
(𝑎

, 𝐸

𝛾
(𝑏

, 𝑐

)) (associative con-

dition).
In some cases, it may be desirable that the following
requirements are also satisfied.

(v) Axiom 5: 𝐸 is a continuous function (continuity).
(vi) Axiom 6: 1 ≥ |𝐸

𝜇
(𝑎, 𝑎)| ≥ |𝑎| and 0 ≤ |𝐸

𝛾
(𝑎

, 𝑎


)| ≤

|𝑎

| (superidempotency).

(vii) Axiom 7: |𝑎| ≤ |𝑐| and |𝑏| ≤ |𝑑| ⇒ |𝐸
𝜇
(𝑎, 𝑏)| ≤

|𝐸
𝜇
(𝑐, 𝑑)|. Also, |𝑎


| ≥ |𝑐


| and |𝑏


| ≥ |𝑑


| ⇒

|𝐸
𝛾
(𝑎

, 𝑏


)| ≥ |𝐸

𝛾
(𝑐

, 𝑑


)| (strict monotonicity).

We may represent the complex Atanassov’s intuitionistic
fuzzy union in the following manner:

𝐴 ∪ 𝐵 = {⟨𝑥, 𝜇
𝐴∪𝐵 (𝑥) , 𝛾𝐴∪𝐵 (𝑥)⟩ : 𝑥 ∈ 𝑋} , (15)

where 𝜇
𝐴∪𝐵

(𝑥) = [𝑟
𝐴
(𝑥)𝑆

𝜇
𝑟
𝐵
(𝑥)] ⋅ 𝑒

𝑖𝜔𝜇𝐴∪𝐵(𝑥) and 𝛾
𝐴∪𝐵

(𝑥) =

[𝑘
𝐴
(𝑥)𝑆

𝛾
𝑘
𝐵
(𝑥)] ⋅ 𝑒

𝑖𝜔𝛾𝐴∪𝐵(𝑥).
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While the phase term for membership and nonmem-
bership functions belongs to (0, 2𝜋], we define 𝜔

𝜇𝐴∪𝐵
(𝑥) =

𝜔
𝐴∪𝐵

(𝑥) = 𝜔
𝛾𝐴∪𝐵

(𝑥) with some forms that Buckley [13]
presented to calculate 𝜔

𝐴∪𝐵
(𝑥) as follows:

(i) Sum: 𝜔
𝐴∪𝐵

(𝑥) = 𝜔
𝐴
(𝑥) + 𝜔

𝐵
(𝑥).

(ii) Max: 𝜔
𝐴∪𝐵

(𝑥) = max(𝜔
𝐴
(𝑥), 𝜔

𝐵
(𝑥)).

(iii) Min: 𝜔
𝐴∪𝐵

(𝑥) = min(𝜔
𝐴
(𝑥), 𝜔

𝐵
(𝑥)).

(iv) “Winner Takes All”:

𝜔
𝐴∪𝐵 (𝑥) = {

𝜔
𝐴 (𝑥) 𝑟

𝐴
> 𝑟

𝐵
,

𝜔
𝐵 (𝑥) 𝑟

𝐴
< 𝑟

𝐵
.

(16)

Definition 18 (see [11]). Let 𝐴 and 𝐵 be two CAIFSs on
universe of discourse 𝑋, with complex-valued membership
and nonmembership functions. The complex Atanassov’s
intuitionistic fuzzy intersection of𝐴 and 𝐵, denoted by𝐴∩𝐵,
is specified by the following function:

𝑄 : {(𝑎, 𝑎

) | 𝑎, 𝑎


∈ 𝐶 :


𝑎 + 𝑎


≤ 1, |𝑎| ≤ 1,


𝑎

≤ 1}

× {(𝑏, 𝑏

) | 𝑏, 𝑏


∈ 𝐶 :


𝑏 + 𝑏


≤ 1, |𝑏| ≤ 1,


𝑏

≤ 1}

→ {(𝑑, 𝑑

) | 𝑑, 𝑑


∈ 𝐶 :


𝑑 + 𝑑


≤ 1, |𝑑| ≤ 1,


𝑑

≤ 1} ,

(17)

where 𝑎, 𝑏, and 𝑑 and 𝑎

, 𝑏


, and 𝑑

 are the membership
and nonmembership functions of 𝐴, 𝐵, and 𝐴 ∩ 𝐵, respec-
tively. 𝑄 assigns a complex value,

𝑄((𝑎, 𝑎

) , (𝑏, 𝑏


))

= (𝑄
𝜇 (𝑎, 𝑏) , 𝑄𝛾

(𝑎

, 𝑏


))

= (𝜇
𝐴∩𝐵 (𝑥) , 𝛾𝐴∩𝐵 (𝑥)) = (𝑑, 𝑑


) , ∀𝑥 ∈ 𝑋.

(18)

The complex Atanassov’s intuitionistic fuzzy intersection
function, 𝑄, must satisfy at least the following axiomatic
requirements, for any 𝑎, 𝑏, 𝑐, 𝑑, 𝑎


, 𝑏


, 𝑐

, and 𝑑

∈ {𝑥 : 𝑥 ∈

𝐶, |𝑥| ≤ 1}.

(i) Axiom 1: If |𝑏| = 1, then |𝑄
𝜇
(𝑎, 𝑏)| = |𝑎|, and if |𝑏| =

0, then |𝐸
𝛾
(𝑎

, 𝑏


)| = |𝑎


| (boundary condition).

(ii) Axiom 2: 𝑄
𝜇
(𝑎, 𝑏) = 𝑄

𝜇
(𝑏, 𝑎) and 𝑄

𝛾
(𝑎

, 𝑏


) =

𝑄
𝛾
(𝑏

, 𝑎


) (commutative condition).

(iii) Axiom 3: If |𝑏| ≤ |𝑑|, then |𝑄
𝜇
(𝑎, 𝑏)| ≤ |𝑄

𝜇
(𝑎, 𝑑)|,

and if |𝑏

| ≤ |𝑑


|, then |𝑄

𝛾
(𝑎

, 𝑏


)| ≤ |𝑄

𝛾
(𝑎

, 𝑑


)|

(monotonic condition).
(iv) Axiom 4: 𝑄

𝜇
(𝑄

𝜇
(𝑎, 𝑏), 𝑐) = 𝑄

𝜇
(𝑎, 𝑄

𝜇
(𝑏, 𝑐)) and

𝑄
𝛾
(𝑄

𝛾
(𝑎

, 𝑏


), 𝑐


) = 𝑄

𝛾
(𝑎

, 𝑄

𝛾
(𝑏

, 𝑐

)) (associative

condition).
In some cases, it may be desirable that the following
requirements are satisfied:

(v) Axiom 5: 𝑄 is a continuous function (continuity).

(vi) Axiom 6: 0 ≤ |𝑄
𝜇
(𝑎, 𝑎)| ≤ |𝑎| and 1 ≥ |𝑄

𝛾
(𝑎

, 𝑎


)| ≥

|𝑎

| (superidempotency).

(vii) Axiom 7: |𝑎| ≤ |𝑐| and |𝑏| ≤ |𝑑| ⇒ |𝑄
𝜇
(𝑎, 𝑏)| ≤

|𝑄
𝜇
(𝑐, 𝑑)|. Also, |𝑎


| ≥ |𝑐


| and |𝑏


| ≥ |𝑑


| ⇒

|𝑄
𝛾
(𝑎

, 𝑏


)| ≥ |𝑄

𝛾
(𝑐

, 𝑑


)| (strict monotonicity).

We may represent the complex Atanassov’s intuitionistic
fuzzy intersection in the following manner:

𝐴 ∩ 𝐵 = {⟨𝑥, 𝜇
𝐴∩𝐵 (𝑥) , 𝛾𝐴∩𝐵 (𝑥)⟩ : 𝑥 ∈ 𝑋} , (19)

where 𝜇
𝐴∩𝐵

(𝑥) = [𝑟
𝐴
(𝑥)𝑇

𝜇
𝑟
𝐵
(𝑥)] ⋅ 𝑒

𝑖𝜔𝜇𝐴∩𝐵(𝑥), 𝛾
𝐴∩𝐵

(𝑥) =

[𝑘
𝐴
(𝑥)𝑇

𝛾
𝑘
𝐵
(𝑥)] ⋅ 𝑒

𝑖𝜔𝛾𝐴∩𝐵(𝑥).
We consider some forms to calculate the phase term,

𝜔
𝐴∩𝐵

(𝑥), such that the same possible choices are given to
calculate the 𝜔

𝐴∪𝐵
(𝑥).

We can use any 𝑆-norm and𝑇-norm that were introduced
by Fathi [3] to demonstrate many examples on the amplitude
terms on complex Atanassov’s intuitionistic fuzzy union
and intersection, respectively, with the membership and
nonmembership functions of 𝐴 ∪ 𝐵 and 𝐴 ∩ 𝐵 are given,
respectively, as follows:

For CAIF union,

𝜇
𝐴∪𝐵 (𝑥) = [𝑟

𝐴 (𝑥) 𝑆𝜇𝑟𝐵 (𝑥)] ⋅ 𝑒
𝑖𝜔𝜇𝐴∪𝐵(𝑥),

𝛾
𝐴∪𝐵 (𝑥) = [𝑘

𝐴 (𝑥) 𝑆𝛾𝑘𝐵 (𝑥)] ⋅ 𝑒
𝑖𝜔𝛾𝐴∪𝐵(𝑥).

(20)

For CAIF intersection,

𝜇
𝐴∩𝐵 (𝑥) = [𝑟

𝐴 (𝑥) 𝑇𝜇𝑟𝐵 (𝑥)] ⋅ 𝑒
𝑖𝜔𝜇𝐴∩𝐵(𝑥),

𝛾
𝐴∩𝐵 (𝑥) = [𝑘

𝐴 (𝑥) 𝑇𝛾𝑘𝐵 (𝑥)] ⋅ 𝑒
𝑖𝜔𝛾𝐴∩𝐵(𝑥).

(21)

Some examples of 𝑆-norm and 𝑇-norm are as follows.

(1) The standard 𝑆-norm:
for any two AIFSs 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥), 𝛾

𝐴
(𝑥)⟩ : 𝑥 ∈ 𝑋}

and 𝐵 = {⟨𝑥, 𝜇
𝐵
(𝑥), 𝛾

𝐵
(𝑥)⟩ : 𝑥 ∈ 𝑋} in a universe of

discourse𝑋, then 𝐴 ∪ 𝐵 is given by

𝐴 ∪ 𝐵 = {⟨𝑥,max (𝜇
𝐴 (𝑥) , 𝜇𝐵 (𝑥)) ,

min (𝛾
𝐴 (𝑥) , 𝛾𝐵 (𝑥))⟩ : 𝑥 ∈ 𝑋} .

(22)

This union is called the basic AIF union or Atanassov
union, and it is the smallest AIFS containing both 𝐴

and 𝐵.
(2) Yager 𝑆-norm:

𝑆 ((𝑎, 𝑎

) , (𝑏, 𝑏


)) = 𝑆 (𝑆

𝜇

𝜔
(𝑎, 𝑏) , 𝑆

𝛾

𝜔
(𝑎


, 𝑏


)) , (23)

where 𝑆
𝜇

𝜔
(𝑎, 𝑏) = min(1, (𝑎𝜔 + 𝑏

𝜔
)
1/𝜔

), and 𝑆
𝛾

𝜔
(𝑎
,

𝑏

) = 1 − min(1, ((1 − 𝑎


)
𝜔
+ (1 − 𝑏


)
𝜔
)
1/𝜔

), with 𝜔 ∈

(0,∞).
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(3) The standard 𝑇-norm:
for any two AIFSs 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥), 𝛾

𝐴
(𝑥)⟩ : 𝑥 ∈ 𝑋}

and 𝐵 = {⟨𝑥, 𝜇
𝐵
(𝑥), 𝛾

𝐵
(𝑥)⟩ : 𝑥 ∈ 𝑋} in a universe of

discourse𝑋, then 𝐴 ∩ 𝐵 is given by

𝐴 ∩ 𝐵 = {⟨𝑥,min (𝜇
𝐴 (𝑥) , 𝜇𝐵 (𝑥)) ,

max (𝛾
𝐴 (𝑥) , 𝛾𝐵 (𝑥))⟩ : 𝑥 ∈ 𝑋} .

(24)

This intersection is called the basic AIF intersection
or Atanassov intersection, and it is the largest AIFS
contained in both 𝐴 and 𝐵.

(4) Yager 𝑇-norm:

𝑇 ((𝑎, 𝑎

) , (𝑏, 𝑏


)) = (𝑇

𝜇

𝜔
(𝑎, 𝑏) , 𝑇

𝛾

𝜔
(𝑎


, 𝑏


)) , (25)

where 𝑇𝜇
𝜔
(𝑎, 𝑏) = 1 −min(1, ((1 − 𝑎)

𝜔
+ (1 − 𝑏)

𝜔
)
1/𝜔

),
and 𝑇

𝛾

𝜔
(𝑎

, 𝑏


) = min(1, ((𝑎)𝜔 + (𝑏


)
𝜔
)
1/𝜔

), with 𝜔 ∈

(0,∞).

Definition 19 (see [15]). Let 𝐴 and 𝐵 be two complex fuzzy
sets on 𝑋 and 𝑌, respectively, where 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥) =

𝑟
𝐴
(𝑥)𝑒

𝑖𝜔𝑟𝐴
(𝑥)

⟩ : 𝑥 ∈ 𝑋} and 𝐵 = {⟨𝑦, 𝜇
𝐵
(𝑦) = 𝑟

𝐵
(𝑦)𝑒

𝑖𝜔𝑟𝐵
(𝑦)

⟩ :

𝑦 ∈ 𝑌}. The complex fuzzy union of 𝐴 and 𝐵 in different
universe of discourse, denoted by 𝐴 ⊕ 𝐵, is specified by

𝐴 ⊕ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴⊕𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} , (26)

where 𝜇
𝐴⊕𝐵

(𝑥, 𝑦) = 𝑟
𝐴⊕𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴⊕𝐵

(𝑥,𝑦)
= max(𝑟

𝐴
(𝑥),

𝑟
𝐵
(𝑦))𝑒

𝑖 max(𝜔𝑟𝐴 (𝑥),𝜔𝑟𝐵 (𝑦)).

Definition 20 (see [15]). Let 𝐴 and 𝐵 be two complex fuzzy
sets on 𝑋 and 𝑌, respectively, where 𝐴 = {⟨𝑥, 𝜇

𝐴
(𝑥) =

𝑟
𝐴
(𝑥)𝑒

𝑖𝜔𝑟𝐴
(𝑥)

⟩ : 𝑥 ∈ 𝑋} and 𝐵 = {⟨𝑦, 𝜇
𝐵
(𝑦) = 𝑟

𝐵
(𝑦)𝑒

𝑖𝜔𝑟𝐵
(𝑦)

⟩ :

𝑦 ∈ 𝑌}.The complex fuzzy intersection of𝐴 and𝐵 in different
universe of discourse, denoted by 𝐴 ⊗ 𝐵, is specified by

𝐴 ⊗ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴⊗𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} , (27)

where 𝜇
𝐴⊗𝐵

(𝑥, 𝑦) = 𝑟
𝐴⊗𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴⊗𝐵

(𝑥,𝑦)
= min(𝑟

𝐴
(𝑥),

𝑟
𝐵
(𝑦))𝑒

𝑖min(𝜔𝑟𝐴 (𝑥),𝜔𝑟𝐵 (𝑦)).

Definition 21 (see [15]). Let 𝐴 and 𝐵 be two complex fuzzy
relations on𝑋 × 𝑌, where

𝐴 = {⟨(𝑥, 𝑦) , 𝜇
𝐴
(𝑥, 𝑦) = 𝑟

𝐴
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐴
(𝑥,𝑦)

⟩ :

(𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

𝐵 = {⟨(𝑥, 𝑦) , 𝜇
𝐵
(𝑥, 𝑦) = 𝑟

𝐵
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐵
(𝑥,𝑦)

⟩ :

(𝑥, 𝑦) ∈ 𝑋 × 𝑌} .

(28)

The complex fuzzy union relation of𝐴 and 𝐵, denoted by
𝐴 ∪ 𝐵, is specified by

𝐴 ∪ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴∪𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} , (29)

where 𝜇
𝐴∪𝐵

(𝑥, 𝑦) = 𝑟
𝐴∪𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴∪𝐵

(𝑥,𝑦)
= max(𝑟

𝐴
(𝑥, 𝑦),

𝑟
𝐵
(𝑥, 𝑦))𝑒

𝑖max(𝜔𝑟𝐴 (𝑥,𝑦),𝜔𝑟𝐵 (𝑥,𝑦)).

Definition 22 (see [15]). Let 𝐴 and 𝐵 be two complex fuzzy
relations on𝑋 × 𝑌, where

𝐴 = {⟨(𝑥, 𝑦) , 𝜇
𝐴
(𝑥, 𝑦) = 𝑟

𝐴
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐴
(𝑥,𝑦)

⟩ :

(𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

𝐵 = {⟨(𝑥, 𝑦) , 𝜇
𝐵
(𝑥, 𝑦) = 𝑟

𝐵
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐵
(𝑥,𝑦)

⟩ :

(𝑥, 𝑦) ∈ 𝑋 × 𝑌} .

(30)

The complex fuzzy intersection relation of 𝐴 and 𝐵,
denoted by 𝐴 ∩ 𝐵, is specified by

𝐴 ∩ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴∩𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} , (31)

where 𝜇
𝐴∩𝐵

(𝑥, 𝑦) = 𝑟
𝐴∩𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴∩𝐵

(𝑥,𝑦)
= min(𝑟

𝐴
(𝑥, 𝑦),

𝑟
𝐵
(𝑥, 𝑦))𝑒

𝑖min(𝜔𝑟𝐴 (𝑥,𝑦),𝜔𝑟𝐵 (𝑥,𝑦)).
We call the relation 𝐼 an identical equal relation on 𝑋, if

its membership is

𝜇
𝐼
(𝑥, 𝑦) = {

1 if 𝑥 = 𝑦

0 if 𝑥 ̸= 𝑦.
(32)

Definition 23 (see [15]). Let 𝐴 ∈ CFS (𝑈 × 𝑈), if 𝜇
𝐴
(𝑥, 𝑥) =

1 for all 𝑥 ∈ 𝑋, then 𝐴 is a reflexive complex fuzzy relation.

Definition 24 (see [15]). Let 𝐴 ∈ CFS (𝑋 × 𝑌), then 𝐴
𝑇

∈

CFS (𝑌 × 𝑋) is a replacement of 𝐴, where

𝜇
𝐴
𝑇 (𝑦, 𝑥) = 𝜇

𝐴
(𝑥, 𝑦) ∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌. (33)

Proposition 25 (see [15]). Let 𝐴 and 𝐵 be two complex fuzzy
relations. Then, the following hold:

(1) (𝐴𝑇
)
𝑇
= 𝐴,

(2) (𝐴 ∪ 𝐵)
𝑇
= 𝐴

𝑇
∪ 𝐵

𝑇and (𝐴 ∩ 𝐵)
𝑇
= 𝐴

𝑇
∩ 𝐵

𝑇,
(3) (𝐴 ∘ 𝐵)

𝑇
= 𝐵

𝑇
∘ 𝐴

𝑇 and (𝐴
𝑛
)
𝑇
= (𝐴

𝑇
)
𝑛,

(4) 𝐴 ⊆ 𝐵 if and only if 𝐵𝑇 ⊆ 𝐴
𝑇.

Definition 26 (see [15]). Let 𝐴 ∈ CFS (𝑋 × 𝑌). Then 𝐴 is a
symmetrical complexAtanassov’s intuitionistic fuzzy relation
if 𝜇

𝐴
(𝑥, 𝑦) = 𝜇

𝐴
𝑇(𝑥, 𝑦) for all (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

Definition 27 (see [15]). Let 𝐴 ∈ CFS (𝑋 × 𝑋). Then 𝐴 is a
transitive complex fuzzy relation if 𝐴 ∘ 𝐴 ⊆ 𝐴.

3. Distance Measure on Complex Atanassov’s
Intuitionistic Fuzzy Sets

In 1962, Hausdorff introduced the concept of distance as
a measure of similarity or difference between sets [27].
Distance measure is very important because the “spatial
distribution” of sets is fixed with respect to selected reference
set [28]. Therefore, distance measure is used in significant
real-life application, for instance, reasoning and decision
making [28–40], fuzzy number ranking, and information
retrieval in databases [41]. Also, in [28], Yang and Chiclana
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proved that the 3D distance of AIFS (i.e., the distance mea-
sured with three parameters membership, nonmembership,
and hesitation functions) is useless and is not necessary
because two-dimensional distance functions (membership
and nonmembership functions) have already provided a sim-
ple and concise expression of the distance between twoAIFSs.
All distance measures in fuzzy set and intuitionistic fuzzy
set are dealing with real-valued parameter, membership,
and/or nonmembership functions, which only represented
the uncertainty semantic. In the case of CAIFS, these param-
eters are complex-valued parameters and have two terms,
uncertainty and periodicity semantics, where the uncertainty
semantic is analogous to the one in traditional FS and/or
AIFS. Therefore, the priority now is to introduce a distance
measure that may involve both uncertainty and periodic
semantics in one structure to confer the concepts of CFS and
CAIFS a simple and concise expression. In application 1, we
illustrate a kind ofMADMproblemwith an additional factor,
the periodic factors (i.e., MADM problems in CIF fields).

In this section, we generalise a distance measure on
CAIFSs to implement a model which is utilized to select
the best product with multiple attributes based on two
dimensions. One of them is the periodic dimension which is
considered as a critical influence to take a suitable decision.
Song et al. [12] introduced a model to select a proper supplier
based on distance measure of AIFS. They presented the
definition of distance between twoAIFSs. Here, we generalise
their definition to CAIFSs and use this new approach of
distance to find out the best periodic product from several
selected products. This is a kind of MADM problem with an
additional factor, the periodic factor (i.e., MADM problems
in CIF fields).

Definition 28. If 𝐴 and 𝐵 are CAIFSs in a universe of
discourse𝑋, where𝐴 = {(𝑥, 𝑟

𝐴
(𝑥)𝑒

𝑖𝜔𝑟𝐴
(𝑥)

, 𝑘
𝐴
(𝑥)𝑒

𝑖𝜔𝑘𝐴
(𝑥)

)}, and
𝐵 = {(𝑥, 𝑟

𝐵
(𝑥)𝑒

𝑖𝜔𝑟𝐵
(𝑥)

, 𝑘
𝐵
(𝑥)𝑒

𝑖𝜔𝑘𝐵
(𝑥)

)}, then

(1) 𝐴 ⊂ 𝐵 if and only if 𝑟
𝐴
(𝑥) < 𝑟

𝐵
(𝑥) and 𝑘

𝐴
(𝑥) > 𝑘

𝐵
(𝑥),

for amplitude terms and the phase terms (arguments)
𝜔
𝑟𝐴
(𝑥) < 𝜔

𝑟𝐵
(𝑥) and 𝜔

𝑘𝐴
(𝑥) > 𝜔

𝑘𝐵
(𝑥), for all 𝑥 ∈ 𝑋.

(2) 𝐴 = 𝐵 if and only if 𝑟
𝐴
(𝑥) = 𝑟

𝐵
(𝑥) and 𝑘

𝐴
(𝑥) = 𝑘

𝐵
(𝑥),

for amplitude terms and the phase terms (arguments)
𝜔
𝑟𝐴
(𝑥) = 𝜔

𝑟𝐵
(𝑥) and 𝜔

𝑘𝐴
(𝑥) = 𝜔

𝑘𝐵
(𝑥), for all 𝑥 ∈ 𝑋.

Let CIFS (𝑋) be the set of all complex Atanassov’s intu-
itionistic fuzzy sets on𝑋.

Definition 29. A distance of complex Atanassov’s intuitionis-
tic fuzzy sets is a function 𝑑 : CIFS (𝑋) × CIFS (𝑋) → [0, 1]

for any 𝐴, 𝐵, and 𝐶 ∈ CIFS (𝑋), satisfying the following
properties:

(D1) 0 ≤ 𝑑(𝐴, 𝐵) ≤ 1.

(D2) 𝑑(𝐴, 𝐵) = 0 if and only if 𝐴 = 𝐵.

(D3) 𝑑(𝐴, 𝐵) = 𝑑(𝐵, 𝐴).

(D4) If 𝐴 ⊂ 𝐵 ⊂ 𝐶 and 𝐴, 𝐵, 𝐶 ∈ CIFS (𝑋), then
𝑑(𝐴, 𝐶) > 𝑑(𝐴, 𝐵), 𝑑(𝐴, 𝐶) > 𝑑(𝐵, 𝐶).

We introduce a function 𝑑 : CIFS (𝑋) × CIFS (𝑋) →

[0, 1] between CAIFSs 𝐴 and 𝐵, defined as follows:

𝑑 (𝐴, 𝐵)

=
1

2∑
𝑛

𝑖=1
𝑤
𝑖

× [

𝑛

∑
𝑖=1

𝑤
𝑖
[(𝛼

1
⋅
𝑟𝐴 (𝑥

𝑖
) − 𝑟

𝐵
(𝑥

𝑖
)


+ 𝛽
1
⋅
𝑘𝐴 (𝑥

𝑖
) − 𝑘

𝐵
(𝑥

𝑖
)


+ 𝜎
1
⋅max (𝑟𝐴 (𝑥

𝑖
) − 𝑟

𝐵
(𝑥

𝑖
)
 ,

𝑘𝐴 (𝑥
𝑖
) − 𝑘

𝐵
(𝑥

𝑖
)
)

+
1

2𝜋
(𝛼

2
⋅

𝜔
𝑟𝐴

(𝑥
𝑖
) − 𝜔

𝑟𝐵
(𝑥

𝑖
)

+ 𝛽

2

⋅

𝜔
𝑘𝐴

(𝑥
𝑖
) − 𝜔

𝑘𝐵
(𝑥

𝑖
)


+ 𝜎
2
⋅max (𝜔𝑟𝐴 (𝑥𝑖) − 𝜔

𝑟𝐵
(𝑥

𝑖
)

,


𝜔
𝑘𝐴

(𝑥
𝑖
) − 𝜔

𝑘𝐵
(𝑥

𝑖
)

))] ] ,

(34)

where 𝛼
1
, 𝛽

1
, 𝜎

1
, 𝛼

2
, 𝛽

2
, and 𝜎

2
∈ [0, 1], 𝛼

1
+𝛽

1
+𝜎

1
= 1 and

𝛼
2
+ 𝛽

2
+ 𝜎

2
= 1. 𝑤

𝑖
∈ [0, 1], 𝑖 ∈ {1, 2, . . . , 𝑚}.

Theorem30. The function𝑑(𝐴, 𝐵) defined in (34) is a distance
measure of complex Atanassov’s intuitionistic fuzzy set between
two CAIFSs 𝐴 and 𝐵 in𝑋.

Proof. (1) By definition of CAIFS, we have for all 𝑥
𝑖

in 𝑋, where 𝑖 = 1, 2, . . . , 𝑛, each of 𝑟
𝐴
(𝑥

𝑖
), 𝑟

𝐵
(𝑥

𝑖
),

𝑘
𝐴
(𝑥

𝑖
), and 𝑟

𝐵
(𝑥

𝑖
) lies in the interval [0, 1]. Also each

of 𝜔
𝑟𝐴
(𝑥

𝑖
), 𝜔

𝑟𝐵
(𝑥

𝑖
), 𝜔

𝑘𝐴
(𝑥

𝑖
), and 𝜔

𝑘𝐵
(𝑥

𝑖
) lies in the interval

[0, 2𝜋]. So it is easy to conclude that each of the following lies
between 0 and 1: |𝑟

𝐴
(𝑥

𝑖
) − 𝑟

𝐵
(𝑥

𝑖
)|, and |𝑘

𝐴
(𝑥

𝑖
) − 𝑘

𝐵
(𝑥

𝑖
)|. Also,

|𝜔
𝑟𝐴
(𝑥

𝑖
) − 𝜔

𝑟𝐵
(𝑥

𝑖
)| and |𝜔

𝑘𝐴
(𝑥

𝑖
) − 𝜔

𝑘𝐵
(𝑥

𝑖
)| lie between 0 and

2𝜋.
So we have

𝑑 (𝐴, 𝐵)

≤
1

2∑
𝑛

𝑖=1
𝑤
𝑖

× [

𝑛

∑
𝑖=1

𝑤
𝑖
[ (𝛼

1
⋅ 1 + 𝛽

1
⋅ 1 + 𝜎

1
⋅max (1, 1))

+
1

2𝜋
(𝛼

2
⋅ 2𝜋 + 𝛽

2
⋅ 2𝜋 + 𝜎

2
⋅max (2𝜋, 2𝜋)] ]

=
1

2∑
𝑛

𝑖=1
𝑤
𝑖

[

𝑛

∑
𝑖=1

𝑤
𝑖
[(𝛼

1
+ 𝛽

1
+ 𝜎

1
) + (𝛼

2
+ 𝛽

2
+ 𝜎

2
)]] .

(35)
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Since 𝛼
1
+ 𝛽

1
+ 𝜎

1
= 1 and 𝛼

2
+ 𝛽

2
+ 𝜎

2
= 1, we have

0 ≤ 𝑑 (𝐴, 𝐵) ≤
1

2∑
𝑛

𝑖=1
𝑤
𝑖

[

𝑛

∑
𝑖=1

2𝑤
𝑖
] = 1. (36)

(2) By Definition 28, it is easy to see that 𝑑(𝐴, 𝐵) satisfies
the second and third conditions of Definition 29.

(3) By using Definition 28,

1 ≥ 𝑘
𝐴
(𝑥

𝑖
) ≥ 𝑘

𝐵
(𝑥

𝑖
) ≥ 𝑘

𝐶 (𝑥) ≥ 0,

2𝜋 ≥ 𝜔
𝑘𝐴

(𝑥
𝑖
) ≥ 𝜔

𝑘𝐵
(𝑥

𝑖
) ≥ 𝜔

𝑘𝐶
(𝑥

𝑖
) ≥ 0.

(37)

Then, we can conclude that
𝑟𝐴 (𝑥

𝑖
) − 𝑟

𝐵
(𝑥

𝑖
)
 ≤

𝑟𝐴 (𝑥
𝑖
) − 𝑟

𝐶
(𝑥

𝑖
)
 ,


𝜔
𝑟𝐴

(𝑥
𝑖
) − 𝜔

𝑟𝐵
(𝑥

𝑖
)

≤

𝜔
𝑟𝐴

(𝑥
𝑖
) − 𝜔

𝑟𝐶
(𝑥

𝑖
)

,

𝑘𝐴 (𝑥
𝑖
) − 𝑘

𝐵
(𝑥

𝑖
)
 ≥

𝑘𝐴 (𝑥
𝑖
) − 𝑘

𝐶
(𝑥

𝑖
)
 ,


𝜔
𝑘𝐴

(𝑥
𝑖
) − 𝜔

𝑘𝐵
(𝑥

𝑖
)

≥

𝜔
𝑘𝐴

(𝑥
𝑖
) − 𝜔

𝑘𝐶
(𝑥

𝑖
)

.

(38)

So, 𝑑(𝐴, 𝐵) ≤ 𝑑(𝐴, 𝐶).
Analogously, we can get 𝑑(𝐵, 𝐶) ≤ 𝑑(𝐴, 𝐶).
From (82), (83), and (84), we conclude that 𝑑(𝐴, 𝐵) is a

distance measure between CAIFSs 𝐴 and 𝐵.

In the following example, Application 31, we apply a
selection model from [12]. Also, we generalise the selection
operation to be covered by CAIFS to get the desired car or
the best alternative for a company to select a car from four
models of cars with its production date simultaneously. So we
have a two-dimensional problem, namely, model of cars and
production date of the cars.

Application 31. Suppose Company𝑋 decides to purchase cars
from a carmaker 𝑌. The carmaker 𝑌 offers Company𝑋 some
information on four models of cars with different production
dates for each model. So Company𝑋 has four models (Car

1
,

Car
2
, Car

3
, and Car

4
) to select with its production date

simultaneously. The company’s team of analysts agreed that
five attributes should be considered. They are 𝐴

1
: reliability,

𝐴
2
: maximum payload, 𝐴

3
: purchasing cost, 𝐴

4
: maximum

speed, and𝐴
5
: durability. But these attributes will be affected

and changed if the production date is different for the same
model of cars.Thedecisionmade by the teamwill also depend
on their knowledge and experience. So, we may get “yes,”
“no,” “I do not know,” or “I am not sure” as an answer to
the selection of the desired cars. Consequently, as illustrated
above, the best way to represent this sort of information is
by using CAIFS (i.e., represent the information on people’s
decision which happens periodically), in which with each
new product model of car, the consumers have different
opinions andmentalities. To bemore explicit, assume that the
company’s team of analysts has suggested an ideal car, before
getting the characteristic information from carmaker 𝑌. The
target of the team is to select a suitable car listed by carmaker
𝑌 that is most likely to be the ideal car. Then, every analyst
in the selection team gives each car’s attribute a score 1 or
−1 to indicate whether the car is suitable for the attribute or
not and gives a score 0 when he is not sure of the model and
production date of car.

For instance, suppose the team of analysts feels that at
least 70% of them believe that the ideal model car is suitable
at the first attribute; and not more than 10% of the analysts
believe that the ideal model car is poor at the first attribute, in
which this process is utilized to calculate the amplitude terms
for both membership and nonmembership functions respec-
tively, in CAIFS. The phase terms that present production
date for first attribute of ideal car can be given as follows: if
the team of analysts thought that at least 80% of them believe
that the ideal production date of car is suitable at the first
attribute; and not more than 15% of them believe that the
ideal production date of car is poor. So the ideal car’s first
attribute can be presented as (0.7𝑒𝑖2𝜋(0.8), 0.1𝑒𝑖2𝜋(0.15)). In this
way, all data can be obtained in the form of CAIFS, where
both amplitude and phase terms can represent information
of Atanassov’s intuitionistic uncertainty (see Table 1).

To continue our example, we recall a proper model to get
a suitable car that is most likely to be the ideal car (see [12]).

Let 𝑑(Car
𝑗
, I.C.) be a distance measure between complex

Atanassov’s intuitionistic fuzzy sets Car
𝑗
and I.C. So, the

model can be introduced as follows:

𝑀 = {Car
𝑗
| 𝑑 (Car

𝑗
, I.C.)

= min(

𝑛

∑
𝑖=1

𝑑 (Car
1,𝑖
, I.C

𝑖
.) , . . . ,

𝑛

∑
𝑖=1

𝑑 (Car
𝑘,𝑖
, I.C

𝑖
.)) ,

𝑗 = 1, . . . , 𝑘, 𝑖 = 1, . . . , 𝑛} .

(39)

Suppose the team of analysts gives the weight for each
attribute as follows.

Let 𝑤
1
= 0.2, 𝑤

2
= 0.1, 𝑤

3
= 0.5, 𝑤

4
= 0.7, and 𝑤

5
=

0.5 present the weight for each attribute. Let 𝛼
1
= 0.2, 𝛽

1
=

0.5, and 𝜎
1
= 0.3 be the weight for the amplitude term, while

𝛼
2
= 0.4, 𝛽

2
= 0.4, and 𝜎

2
= 0.2 be the weight for the phase

term.

To identify the ideal car from the information given
in Table 1, we substitute the data into distance formula
(Definition 29) to evaluate the values between each car
(Car

𝑗
, 𝑗 = 1, 2, 3, 4) and the ideal car (I.C.):

𝑑 (Car
1
, I.C.)

=

5

∑
𝑖=1

𝑑 (Car
1,𝑖
, I.C

𝑖
.)

=
1

2 ⋅ (2.9)

× [

5

∑
𝑖=1

𝑤
𝑖
[ (𝛼

1
⋅
𝑟𝐴 (𝑥

𝑖
) − 𝑟

𝐵
(𝑥

𝑖
)


+ 𝛽
1
⋅
𝑘𝐴 (𝑥

𝑖
) − 𝑘

𝐵
(𝑥

𝑖
)


+ 𝜎
1
⋅max (𝑟𝐴 (𝑥

𝑖
) − 𝑟

𝐵
(𝑥

𝑖
)
 ,

𝑘𝐴 (𝑥
𝑖
) − 𝑘

𝐵
(𝑥

𝑖
)
) )
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Table 1: Car data and the ideal car.

Car
1

Car
2

Car
3

Car
4

Ideal Car (I.C.)
𝐴
1 (0.4𝑒

𝑖2𝜋(0.3)
, 0.3𝑒

𝑖2𝜋(0.2)
) (0.7𝑒

𝑖2𝜋(0.6)
, 0.3𝑒

𝑖2𝜋(0.3)
) (0.3𝑒

𝑖2𝜋(0.4)
, 0.6𝑒

𝑖2𝜋(0.4)
) (0.2𝑒

𝑖2𝜋(0.8)
, 0.5𝑒

𝑖2𝜋(0.1)
) (0.7𝑒

𝑖2𝜋(0.5)
, 0.1𝑒

𝑖2𝜋(0.3)
)

𝐴
2 (0.7𝑒

𝑖2𝜋(0.5)
, 0.1𝑒

𝑖2𝜋(0.4)
) (0.4𝑒

𝑖2𝜋(0.9)
, 0.2𝑒

𝑖2𝜋(0.1)
) (0.6𝑒

𝑖2𝜋(0.6)
, 0.3𝑒

𝑖2𝜋(0.4)
) (0.7𝑒

𝑖2𝜋(0.3)
, 0.3𝑒

𝑖2𝜋(0.3)
) (0.4𝑒

𝑖2𝜋(0.6)
, 0.5𝑒

𝑖2𝜋(0.2)
)

𝐴
3 (0.5𝑒

𝑖2𝜋(0.6)
, 0.3𝑒

𝑖2𝜋(0.2)
) (0.7𝑒

𝑖2𝜋(0.7)
, 0.2𝑒

𝑖2𝜋(0.3)
) (0.3𝑒

𝑖2𝜋(0.4)
, 0.5𝑒

𝑖2𝜋(0.6)
) (0.6𝑒

𝑖2𝜋(0.5)
, 0.1𝑒

𝑖2𝜋(0.3)
) (0.5𝑒

𝑖2𝜋(0.5)
, 0.3𝑒

𝑖2𝜋(0.1)
)

𝐴
4 (0.7𝑒

𝑖2𝜋(0.7)
, 0.1𝑒

𝑖2𝜋(0.2)
) (0.4𝑒

𝑖2𝜋(0.6)
, 0.3𝑒

𝑖2𝜋(0.1)
) (0.7𝑒

𝑖2𝜋(0.7)
, 0.1𝑒

𝑖2𝜋(0.1)
) (0.6𝑒

𝑖2𝜋(0.5)
, 0.3𝑒

𝑖2𝜋(0.4)
) (0.8𝑒

𝑖2𝜋(0.7)
, 0.2𝑒

𝑖2𝜋(0.1)
)

𝐴
5 (0.4𝑒

𝑖2𝜋(0.4)
, 0.2𝑒

𝑖2𝜋(0.5)
) (0.5𝑒

𝑖2𝜋(0.3)
, 0.3𝑒

𝑖2𝜋(0.6)
) (0.7𝑒

𝑖2𝜋(0.8)
, 0.2𝑒

𝑖2𝜋(0.1)
) (0.4𝑒

𝑖2𝜋(0.8)
, 0.4𝑒

𝑖2𝜋(0.1)
) (0.6𝑒

𝑖2𝜋(0.9)
, 0.1𝑒

𝑖2𝜋(0.1)
)

+
1

2𝜋
(𝛼

2
⋅

𝜔
𝑟𝐴

(𝑥
𝑖
) − 𝜔

𝑟𝐵
(𝑥

𝑖
)


+ 𝛽
2
⋅

𝜔
𝑘𝐴

(𝑥
𝑖
) − 𝜔

𝑘𝐵
(𝑥

𝑖
)


+ 𝜎
2
⋅max (𝜔𝑟𝐴 (𝑥𝑖) − 𝜔

𝑟𝐵
(𝑥

𝑖
)

,


𝜔
𝑘𝐴

(𝑥
𝑖
) − 𝜔

𝑘𝐵
(𝑥

𝑖
)

))]] .

(40)

For the first attribute 𝐴
1
, (𝑖 = 1), the distance is given as

follows:

𝑑 (Car
1,1

, I.C
1
.)

=
1

2 ⋅ (2.9)
[0.2 [ (0.2 ⋅ |0.4 − 0.7| + 0.5 ⋅ |0.3 − 0.1|

+0.3 ⋅max (0.3, 0.2))

+
1

2𝜋
(0.4 ⋅ |0.3 (2𝜋) − 0.5 (2𝜋)|

+ 0.4 ⋅ |0.2 (2𝜋) − 0.3 (2𝜋)|

+0.2 ⋅max (0.2 (2𝜋) , 0.1 (2𝜋))) ]]

=
1

2 ⋅ (2.9)
[0.082] .

(41)

Analogously, we calculate the distances for Car
1
for each

attribute,

𝑑 (Car
1,2

, I.C
2
.)

=
1

2 ⋅ (2.9)
[0.054] , 𝑑 (Car

1,3
, I.C

3
.)

=
1

2 ⋅ (2.9)
[0.05] , 𝑑 (Car

1,4
, I.C

4
.)

=
1

2 ⋅ (2.9)
[0.112] , 𝑑 (Car

1,5
, I.C

5
.)

=
1

2 ⋅ (2.9)
[0.305] .

(42)

Then,

𝑑 (Car
1
, I.C.) =

1

2 ⋅ (2.9)

× [0.082 + 0.054 + 0.05 + 0.112 + 0.305]

= 0.104.

(43)

Analogously, we calculate the distance values for 𝑑(Car
2
,

I.C.) = 0.842,𝑑(Car
3
,I.C.) = 0.538, and𝑑(Car

4
, I.C.) = 0.796.

Therefore, 𝑑(Car
1
, I.C.) = 0.104 is the smallest value, so Car

1

is the desired car.

Note 1. Different weights of the criteria lead to different
results. A company needs to set proper weights for the
criteria, in order to get the proper result.

If we have the same model of cars but with different
production date for the first attribute, surely the team of
analysts will give us different values from those mentioned
in the table above for the first attribute, because every year,
the carmakers produce the same model of cars but with a
slight improvement and difference. Even though the changes
are slightly improved in the new models of cars, people’s
acceptance and appreciation may get changed to buy the new
production model.

4. Complex Atanassov’s Intuitionistic
Fuzzy Relation

Fuzzy logics and systems open immense applications in engi-
neering, medical, physics, automobiles, defense and security,
internet and computer security, and other fields. It is a
meaningful topic to introduce the concept of CAIF logics and
systems which give us the ability to extend the realm of real-
life applications in the CAIF environment. So, we develop the
concept of complex Atanassov’s intuitionistic fuzzy relations
and compositions before introducing the concept of CAIF
logics and systems.

The relation 𝑅 between the sets 𝑋
1
, . . . , 𝑋

𝑛
is a subset of

the Cartesian product𝑋
1
× ⋅ ⋅ ⋅ ×𝑋

𝑛
. If we denote the relation

above by 𝑅(𝑋
1
, . . . , 𝑋

𝑛
), then

𝑅 (𝑋
1
, . . . , 𝑋

𝑛
) ⊂ 𝑋

1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
. (44)

Firstly, we should introduce the Cartesian product
between complex Atanassov’s intuitionistic fuzzy sets. In
general, the Cartesian product between several CAIFSs is
given as follows.
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Definition 32. Let 𝐴
1
, . . . , 𝐴

𝑛
be complex Atanassov’s intu-

itionistic fuzzy sets in𝑋
1
, . . . , 𝑋

𝑛
, respectively. The Cartesian

product 𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛
is a complex intuitionistic fuzzy set

defined by

𝐴
1
× ⋅ ⋅ ⋅ × 𝐴

𝑛

= {⟨(𝑥
1
, . . . , 𝑥

𝑛
) , 𝜇

𝐴1×⋅⋅⋅×𝐴𝑛
(𝑥

1
, . . . , 𝑥

𝑛
) ,

𝛾
𝐴1×⋅⋅⋅×𝐴𝑛

(𝑥
1
, . . . , 𝑥

𝑛
)⟩ :

(𝑥
1
, . . . , 𝑥

𝑛
) ∈ 𝑋

1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
} ,

(45)

where
𝜇
𝐴1×⋅⋅⋅×𝐴𝑛

(𝑥
1
, . . . , 𝑥

𝑛
)

= [min (𝜇
𝐴1

(𝑥
1
) , . . . , 𝜇

𝐴𝑛
(𝑥

𝑛
))

⋅ 𝑒
𝑖min(𝜔𝜇𝐴1 (𝑥1),...,𝜔𝜇𝐴𝑛 (𝑥𝑛))] ,

𝛾
𝐴1×⋅⋅⋅×𝐴𝑛

(𝑥
1
, . . . , 𝑥

𝑛
)

= [max (𝛾
𝐴1

(𝑥
1
) , . . . , 𝛾

𝐴𝑛

(𝑥
𝑛
))

⋅𝑒
𝑖 max(𝜔𝛾𝐴1 (𝑥1),...,𝜔𝛾𝐴𝑛 (𝑥𝑛))] .

(46)

In the case of two complex Atanassov’s intuitionistic fuzzy
sets 𝐴 and 𝐵 in𝑋 and 𝑌, respectively, we have

𝐴 × 𝐵

= {⟨(𝑥, 𝑦) , 𝜇
𝐴×𝐵

(𝑥, 𝑦) , 𝛾
𝐴×𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

(47)

where

𝜇
𝐴×𝐵

(𝑥, 𝑦) = min (𝜇
𝐴 (𝑥) , 𝜇𝐵 (𝑦)) ⋅ 𝑒

𝑖min(𝜔𝜇𝐴 (𝑥),𝜔𝜇𝐵 (𝑦)),

𝛾
𝐴×𝐵

(𝑥, 𝑦) = max (𝛾
𝐴 (𝑥) , 𝛾𝐵 (𝑦)) ⋅ 𝑒

𝑖max(𝜔𝛾𝐴 (𝑥),𝜔𝛾𝐵 (𝑦)).

(48)

A special case is obtained when we generate a relation
between two sets 𝑋 and 𝑌. So, we present a definition of a
complex Atanassov’s intuitionistic fuzzy relation as follows.

Definition 33. A complex Atanassov’s intuitionistic fuzzy
relation 𝑅(𝑋, 𝑌) between CAIFSs 𝑈 and 𝑉 is a subset of
the product space 𝑋 × 𝑌, where the complex membership
and nonmembership functions of the relation 𝑅(𝑋, 𝑌) are
characterized by 𝜇

𝑅
(𝑥, 𝑦) and 𝛾

𝑅
(𝑥, 𝑦), respectively, that

assign each pair to each (𝑥, 𝑦) ∈ 𝑋 × 𝑌 a complex-valued
grade of membership and nonmembership functions to the
set 𝑅(𝑋, 𝑌), where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌. We write the relation
𝑅(𝑋, 𝑌) as

𝑅 (𝑋, 𝑌) = {⟨(𝑥, 𝑦) , 𝜇
𝑅
(𝑥, 𝑦) , 𝛾

𝑅
(𝑥, 𝑦)⟩ | (𝑥, 𝑦) ∈ 𝑋 × 𝑌} .

(49)

The values 𝜇
𝑅
(𝑥, 𝑦) and 𝛾

𝑅
(𝑥, 𝑦) may receive lie within

the unit circle in the complex plane and are of the fol-
lowing form: 𝑟(𝑥) ⋅ 𝑒

𝑖𝜔𝜇(𝑥), and 𝑘(𝑥) ⋅ 𝑒
𝑖𝜔𝛾(𝑥) (𝑖 = √−1),

where 𝑟(𝑥), 𝑘(𝑥), 𝜔
𝜇
(𝑥), and 𝜔

𝛾
(𝑥) are all real-valued, with

𝑟(𝑥), 𝑘(𝑥) ∈ [0, 1], and 0 ≤ 𝑟(𝑥) + 𝑘(𝑥) ≤ 1.
The membership and nonmembership functions in a

CAISR represent both the degree of presence and absence of
association, interaction, or interconnectedness, and the phase
of association, interaction, or interconnectedness between
the elements of two ormore sets. Under the assertion that any
of the complex fuzzy sets can be represented as a CAIFS (see
[11, Proposition 2.3]), we rewrite Example 5 of Ramot et al. [4,
page 183] in terms of CAIFS to demonstrate the utilization of
CAIFR in real life.

Example 34. Let𝑋 be the set of financial indicators or indexes
of the American economy. Possible elements of this set are
unemployment rate, inflation, interest rates, growth rate,
GDP, Dow-Jones industrial average, and so forth. Let 𝑌 be
the set of financial indicators of the Japanese economy. Let
the complex fuzzy relation 𝑅(𝑋, 𝑌) represent the relation of
influence of American financial indexes on Japanese financial
indexes: “𝑦 is influenced by 𝑥,” where 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌.

The membership and nonmembership functions for the
relation 𝑅(𝑋, 𝑌), 𝜇(𝑋, 𝑌), and 𝛾(𝑋, 𝑌) are complex-valued,
with an amplitude term and a phase term. The amplitude
terms of membership and nonmembership functions indi-
cate the degree of influence and noinfluence of an American
financial index on a Japanese financial index, respectively.
An amplitude term with a value close to one implies a large
degree of influence, while a value close to zero suggests
small to no influence. The phase terms of membership and
nonmembership functions indicate the “phase” of influence
and no-influence, or time lag that characterizes the influence
and no influence of an American index on a Japanese index.
Thus, the phase terms represent the time that elapses before
the influence and no-influence of a certain occurrence in
an American financial indicator is evident in a Japanese
counterpart.

Consider for example, 𝜇
𝑅
(Growth Rate,Export) and

𝛾
𝑅
(Growth Rate,Export), that is, the grade of membership

and nonmembership associated with the statement “Ameri-
can growth rate influences and noinfluences Japanese export,
respectively.” The values of 𝜇

𝑅
and 𝛾

𝑅
may be calculated

from available economic statistics using a variety of methods
(genetic algorithms, neural nets, etc.) or obtained from an
expert. In this example, the latter of the two options is
considered.

Suppose an expert was to state that “the influence of
American growth rate on Japanese export is large, and the
effect of a decline or increase in American growth is evident
in Japanese export in three–five months.” If 𝑅(𝑋, 𝑌) was a
traditional Atanassov’s intuitionistic fuzzy relation, values
of about 0.8 and 0.1 would be selected for the grade of
membership and nonmembership, respectively, and all infor-
mation regarding the time frame of the interaction between
these two economic parameters would be lost. However,
𝑅(𝑋, 𝑌) is a complex Atanassov’s intuitionistic fuzzy relation,
𝜇
𝑅
(Growth Rate,Export) and 𝛾

𝑅
(Growth Rate,Export) thus

can be assigned a complex value which incorporates all of the
information provided by the expert.
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Assume 𝑅(𝑋, 𝑌) measures interactions between Amer-
ican and Japanese financial indicators in the limited time
frame of 12 months. The following value may, therefore, be
attributed to 𝜇

𝑅
(Growth Rate,Export) and 𝛾

𝑅
(Growth Rate,

Export):

𝜇
𝑅
(Growth Rate,Export) = 0.8 ⋅ 𝑒

(4/12)2𝜋𝑖
,

𝛾
𝑅
(Growth Rate,Export) = 0.1 ⋅ 𝑒

(4/12)2𝜋𝑖
.

(50)

Note that the amplitude terms selected are 0.8 and 0.1,
similar to the grade of membership and nonmembership of
a traditional Atanassov’s intuitionistic fuzzy set. The phase
term is chosen to be 4 as an average of “three–five months,”
normalized by 12 months—the maximum timeframe the
relation is designed to take into account for bothmembership
phase and nonmembership phase functions.

Definition 35. Let 𝐴 and 𝐵 be two complex Atanassov’s
intuitionistic fuzzy sets on𝑋 and 𝑌, respectively, where

𝐴 = {⟨𝑥, 𝜇
𝐴 (𝑥) = 𝑟

𝐴 (𝑥) 𝑒
𝑖𝜔𝑟𝐴

(𝑥)
,

𝛾
𝐴 (𝑥) = 𝑘

𝐴 (𝑥) 𝑒
𝑖𝜔𝑘𝐴

(𝑥)
⟩ : 𝑥 ∈ 𝑋} ,

𝐵 = {⟨𝑦, 𝜇
𝐵
(𝑦) = 𝑟

𝐵
(𝑦) 𝑒

𝑖𝜔𝑟𝐵
(𝑦)

,

𝛾
𝐵
(𝑦) = 𝑘

𝐵
(𝑦) 𝑒

𝑖𝜔𝑘𝐵
(𝑦)

⟩ : 𝑦 ∈ 𝑌} .

(51)

The complex Atanassov’s intuitionistic fuzzy union of 𝐴
and 𝐵 in different universe of discourse, denoted by 𝐴 ⊕ 𝐵, is
specified by

𝐴 ⊕ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴⊕𝐵

(𝑥, 𝑦) , 𝛾
𝐴⊕𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

(52)

where 𝜇
𝐴⊕𝐵

(𝑥, 𝑦) = 𝑟
𝐴⊕𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴⊕𝐵

(𝑥,𝑦)
=

max(𝑟
𝐴
(𝑥), 𝑟

𝐵
(𝑦))𝑒

𝑖max(𝜔𝑟𝐴 (𝑥),𝜔𝑟𝐵 (𝑦)) and 𝛾
𝐴⊕𝐵

(𝑥, 𝑦) =

𝑘
𝐴⊕𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑘𝐴⊕𝐵

(𝑥,𝑦)
= min(𝑘

𝐴
(𝑥), 𝑘

𝐵
(𝑦))𝑒

𝑖min(𝜔𝑘𝐴 (𝑥),𝜔𝑘𝐵 (𝑦)).

Example 36. Let

𝐴 = {
(0.5𝑒

𝑖1.3𝜋
, 0.4𝑒

𝑖0.5𝜋
)

−1
,
(1.0𝑒

𝑖1.5𝜋
, 0.0𝑒

𝑖0.5𝜋
)

0
,

(0.7𝑒
𝑖0.3𝜋

, 0.2𝑒
𝑖1.5𝜋

)

1
} ,

𝐵 = {
(0.8𝑒

𝑖1.1𝜋
, 0.2𝑒

𝑖0.7𝜋
)

−1
,
(0.4𝑒

𝑖0.9𝜋
, 0.4𝑒

𝑖𝜋
)

0
,

(0.7𝑒
𝑖0.9𝜋

, 0.2𝑒
𝑖0.4𝜋

)

1
} ,

(53)

then

𝐴 ⊕ 𝐵 = {
(0.8𝑒

𝑖1.3𝜋
, 0.2𝑒

𝑖0.5𝜋
)

(−1, −1)
,
(0.5𝑒

𝑖1.3𝜋
, 0.4𝑒

𝑖0.5𝜋
)

(−1, 0)
,

(0.7𝑒
𝑖1.3𝜋

, 0.2𝑒
𝑖0.4𝜋

)

(−1, 1)
,
(1.0𝑒

𝑖1.5𝜋
, 0.0𝑒

𝑖0.5𝜋
)

(0, −1)
,

(1.0𝑒
𝑖1.5𝜋

, 0.0𝑒
𝑖0.5𝜋

)

(0, 0)
,
(0.7𝑒

𝑖0.9𝜋
, 0.2𝑒

𝑖1.0𝜋
)

(1, 0)
,

(0.8𝑒
𝑖1.1𝜋

, 0.2𝑒
𝑖0.7𝜋

)

(1, −1)
,
(0.7𝑒

𝑖0.9𝜋
, 0.2𝑒

𝑖1.0𝜋
)

(1, 0)
,

(0.7𝑒
𝑖0.9𝜋

, 0.2𝑒
𝑖0.4𝜋

)

(1, 1)
} .

(54)

Definition 37. Let 𝐴 and 𝐵 be two complex Atanassov’s
intuitionistic fuzzy sets on𝑋 and 𝑌, respectively, where

𝐴 = {⟨𝑥, 𝜇
𝐴 (𝑥) = 𝑟

𝐴 (𝑥) 𝑒
𝑖𝜔𝑟𝐴

(𝑥)
,

𝛾
𝐴 (𝑥) = 𝑘

𝐴 (𝑥) 𝑒
𝑖𝜔𝑘𝐴

(𝑥)
⟩ : 𝑥 ∈ 𝑋} ,

𝐵 = {⟨𝑦, 𝜇
𝐵
(𝑦) = 𝑟

𝐵
(𝑦) 𝑒

𝑖𝜔𝑟𝐵
(𝑦)

,

𝛾
𝐵
(𝑦) = 𝑘

𝐵
(𝑦) 𝑒

𝑖𝜔𝑘𝐵
(𝑦)

⟩ : 𝑦 ∈ 𝑌} .

(55)

The complex Atanassov’s intuitionistic fuzzy intersection
of𝐴 and𝐵 in different universe of discourse, denoted by𝐴⊗𝐵,
is specified by

𝐴 ⊗ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴⊗𝐵

(𝑥, 𝑦) , 𝛾
𝐴⊗𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

(56)

where 𝜇
𝐴⊗𝐵

(𝑥, 𝑦) = 𝑟
𝐴⊗𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴⊗𝐵

(𝑥,𝑦)
=

min(𝑟
𝐴
(𝑥), 𝑟

𝐵
(𝑦))𝑒

𝑖min(𝜔𝑟𝐴 (𝑥),𝜔𝑟𝐵 (𝑦)) and 𝛾
𝐴⊗𝐵

(𝑥, 𝑦) =

𝑘
𝐴⊗𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑘𝐴⊗𝐵

(𝑥,𝑦)
= max(𝑘

𝐴
(𝑥), 𝑘

𝐵
(𝑦))𝑒

𝑖max(𝜔𝑘𝐴 (𝑥),𝜔𝑘𝐵 (𝑦)).

Example 38. Using the CAIFS 𝐴 and 𝐵 as in Example 36, we
have

𝐴 ⊗ 𝐵 = {
(0.5𝑒

𝑖1.1𝜋
, 0.4𝑒

𝑖0.7𝜋
)

(−1, −1)
,
(0.4𝑒

𝑖0.9𝜋
, 0.4𝑒

𝑖1.0𝜋
)

(−1, 0)
,

(0.5𝑒
𝑖0.9𝜋

, 0.4𝑒
𝑖0.5𝜋

)

(−1, 1)
,
(0.8𝑒

𝑖1.1𝜋
, 0.2𝑒

𝑖0.7𝜋
)

(0, −1)
,

(0.4𝑒
𝑖0.9𝜋

, 0.4𝑒
𝑖1.0𝜋

)

(0, 0)
,
(0.7𝑒

𝑖0.9𝜋
, 0.2𝑒

𝑖0.5𝜋
)

(0, 1)
,

(0.7𝑒
𝑖0.3𝜋

, 0.2𝑒
𝑖1.5𝜋

)

(1, −1)
,
(0.4𝑒

𝑖0.3𝜋
, 0.4𝑒

𝑖1.5𝜋
)

(1, 0)
,

(0.7𝑒
𝑖0.3𝜋

, 0.2𝑒
𝑖1.5𝜋

)

(1, 1)
} .

(57)
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Definition 39. Let 𝐴 and 𝐵 be two complex Atanassov’s
intuitionistic fuzzy relations on𝑋 × 𝑌, where

𝐴 = {⟨(𝑥, 𝑦) , 𝜇
𝐴
(𝑥, 𝑦) = 𝑟

𝐴
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐴
(𝑥,𝑦)

,

𝛾
𝐴
(𝑥, 𝑦) = 𝑘

𝐴
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑘𝐴
(𝑥,𝑦)

⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

𝐵 = {⟨(𝑥, 𝑦) , 𝜇
𝐵
(𝑥, 𝑦) = 𝑟

𝐵
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐵
(𝑥,𝑦)

,

𝛾
𝐵
(𝑥, 𝑦) = 𝑘

𝐵
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑘𝐵
(𝑥,𝑦)

⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} .

(58)

The complex Atanassov’s intuitionistic fuzzy union rela-
tion of 𝐴 and 𝐵, denoted by 𝐴 ∪ 𝐵, is specified by

𝐴 ∪ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴∪𝐵

(𝑥, 𝑦) , 𝛾
𝐴∪𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

(59)

where 𝜇
𝐴∪𝐵

(𝑥, 𝑦) = 𝑟
𝐴∪𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴∪𝐵

(𝑥,𝑦)
= max(𝑟

𝐴
(𝑥, 𝑦),

𝑟
𝐵
(𝑥, 𝑦))𝑒

𝑖max(𝜔𝑟𝐴 (𝑥,𝑦),𝜔𝑟𝐵 (𝑥,𝑦)) and 𝛾
𝐴∪𝐵

(𝑥, 𝑦) = 𝑘
𝐴∪𝐵

(𝑥,
𝑦)𝑒

𝑖𝜔𝑘𝐴∪𝐵
(𝑥,𝑦)

= min(𝑘
𝐴
(𝑥, 𝑦), 𝑘

𝐵
(𝑥, 𝑦))𝑒𝑖min(𝜔𝑘𝐴 (𝑥,𝑦),𝜔𝑘𝐵 (𝑥,𝑦)).

Example 40. Let𝑋 = {𝑎, 𝑏} and 𝑌 = {1, 2}. Let

𝐴 = {
(0.5𝑒

𝑖1.3𝜋
, 0.4𝑒

𝑖0.5𝜋
)

(𝑎, 1)
,
(0.7𝑒

𝑖0.3𝜋
, 0.2𝑒

𝑖1.5𝜋
)

(𝑎, 2)
,

(1.0𝑒
𝑖1.5𝜋

, 0.0𝑒
𝑖0.5𝜋

)

(𝑏, 1)
,
(0.8𝑒

𝑖0.7𝜋
, 0.1𝑒

𝑖1.1𝜋
)

(𝑏, 2)
} ,

𝐵 = {
(0.8𝑒

𝑖1.1𝜋
, 0.2𝑒

𝑖0.7𝜋
)

(𝑎, 1)
,
(0.7𝑒

𝑖0.9𝜋
, 0.2𝑒

𝑖0.4𝜋
)

(𝑎, 2)
,

(0.4𝑒
𝑖0.9𝜋

, 0.4𝑒
𝑖𝜋
)

(𝑏, 1)
,
(0.1𝑒

𝑖𝜋
, 0.7𝑒

𝑖0.6𝜋
)

(𝑏, 2)
} .

(60)

Then,

𝐴 ∪ 𝐵 = {
(0.8𝑒

𝑖1.3𝜋
, 0.2𝑒

𝑖0.5𝜋
)

(𝑎, 1)
,
(0.7𝑒

𝑖0.9𝜋
, 0.2𝑒

𝑖0.4𝜋
)

(𝑎, 2)
,

(1.0𝑒
𝑖1.5𝜋

, 0.0𝑒
𝑖0.5𝜋

)

(𝑏, 1)
,
(0.8𝑒

𝑖1.0𝜋
, 0.1𝑒

𝑖0.6𝜋
)

(𝑏, 2)
} .

(61)

Definition 41. Let 𝐴 and 𝐵 be two complex Atanassov’s
intuitionistic fuzzy relations on𝑋 × 𝑌, where

𝐴 = {⟨(𝑥, 𝑦) , 𝜇
𝐴
(𝑥, 𝑦) = 𝑟

𝐴
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐴
(𝑥,𝑦)

,

𝛾
𝐴
(𝑥, 𝑦) = 𝑘

𝐴
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑘𝐴
(𝑥,𝑦)

⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

𝐵 = {⟨(𝑥, 𝑦) , 𝜇
𝐵
(𝑥, 𝑦) = 𝑟

𝐵
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑟𝐵
(𝑥,𝑦)

,

𝛾
𝐵
(𝑥, 𝑦) = 𝑘

𝐵
(𝑥, 𝑦) 𝑒

𝑖𝜔𝑘𝐵
(𝑥,𝑦)

⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} .

(62)

The complex Atanassov’s intuitionistic fuzzy intersection
relation of 𝐴 and 𝐵, denoted by𝐴 ∩ 𝐵, is specified by

𝐴 ∩ 𝐵 {⟨(𝑥, 𝑦) , 𝜇
𝐴∩𝐵

(𝑥, 𝑦) , 𝛾
𝐴∩𝐵

(𝑥, 𝑦)⟩ : (𝑥, 𝑦) ∈ 𝑋 × 𝑌} ,

(63)

where 𝜇
𝐴∩𝐵

(𝑥, 𝑦) = 𝑟
𝐴∩𝐵

(𝑥, 𝑦)𝑒
𝑖𝜔𝑟𝐴∩𝐵

(𝑥,𝑦)
= min(𝑟

𝐴
(𝑥, 𝑦),

𝑟
𝐵
(𝑥, 𝑦))𝑒

𝑖min(𝜔𝑟𝐴 (𝑥,𝑦),𝜔𝑟𝐵 (𝑥,𝑦)) and 𝛾
𝐴∩𝐵

(𝑥, 𝑦) = 𝑘
𝐴∩𝐵

(𝑥,
𝑦)𝑒

𝑖𝜔𝑘𝐴∩𝐵
(𝑥,𝑦)

= max(𝑘
𝐴
(𝑥, 𝑦), 𝑘

𝐵
(𝑥, 𝑦))𝑒𝑖max(𝜔𝑘𝐴 (𝑥,𝑦),𝜔𝑘𝐵 (𝑥,𝑦)).

Example 42. Using the CAIFS 𝐴 and 𝐵 as in Example 40, we
have

𝐴 ∩ 𝐵 = {
(0.8𝑒

𝑖1.3𝜋
, 0.2𝑒

𝑖0.5𝜋
)

(𝑎, 1)
,
(0.7𝑒

𝑖0.9𝜋
, 0.2𝑒

𝑖0.4𝜋
)

(𝑎, 2)
,

(1.0𝑒
𝑖1.5𝜋

, 0.0𝑒
𝑖0.5𝜋

)

(𝑏, 1)
,
(0.8𝑒

𝑖1.0𝜋
, 0.1𝑒

𝑖0.6𝜋
)

(𝑏, 2)
} .

(64)

Following Zhang et al. [15], we call the relation 𝐼 an
identical equal relation on 𝑋, if its membership and non-
membership functions are defined as follows:

𝜇
𝐼
(𝑥, 𝑦) = {

1𝑒
𝑖2𝜋

= 1 if𝑥 = 𝑦

0𝑒
𝑖0𝜋

= 0 if𝑥 ̸= 𝑦,

𝛾
𝐼
(𝑥, 𝑦) = {

0𝑒
𝑖0𝜋

= 0 if𝑥 = 𝑦

1𝑒
𝑖2𝜋

= 1 if𝑥 ̸= 𝑦.

(65)

Definition 43. Let 𝐴 ∈ CAIFS(𝑋 × 𝑋). If 𝜇
𝐴
(𝑥, 𝑥) = 1 and

𝛾
𝐴
(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝑈, then 𝐴 is a reflexive complex

Atanassov’s intuitionistic fuzzy relation.

Definition 44. Let𝐴 ∈ CIFS(𝑋×𝑌).Then𝐴
𝑇
∈ CIFS (𝑌×𝑋)

is a replacement of 𝐴, where

𝜇
𝐴
𝑇 (𝑦, 𝑥) = 𝜇

𝐴
(𝑥, 𝑦) ,

𝛾
𝐴
𝑇 (𝑦, 𝑥) = 𝛾

𝐴
(𝑥, 𝑦) ,

∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

(66)

Proposition 45. If 𝐴 and 𝐵 are two complex Atanassov’s
intuitionistic fuzzy relations, then the following hold:

(1) (𝐴𝑇
)
𝑇
= 𝐴,

(2) (𝐴 ∪ 𝐵)
𝑇
= 𝐴

𝑇
∪ 𝐵

𝑇 and (𝐴 ∩ 𝐵)
𝑇
= 𝐴

𝑇
∩ 𝐵

𝑇,
(3) (𝐴 ∘ 𝐵)

𝑇
= 𝐵

𝑇
∘ 𝐴

𝑇 and (𝐴
𝑛
)
𝑇
= (𝐴

𝑇
)
𝑛,

(4) 𝐴 ⊆ 𝐵 if and only if 𝐵𝑇 ⊆ 𝐴
𝑇.

Proof. Trivial.

Definition 46. Let𝐴 ∈ CIFS(𝑋×𝑌). Then𝐴 is a symmetrical
complex Atanassov’s intuitionistic fuzzy relation if

𝜇
𝐴
(𝑥, 𝑦) = 𝜇

𝐴
𝑇 (𝑥, 𝑦) ,

𝛾
𝐴
(𝑥, 𝑦) = 𝛾

𝐴
𝑇 (𝑥, 𝑦) ,

∀ (𝑥, 𝑦) ∈ 𝑋 × 𝑌.

(67)
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Definition 47. Let 𝐴 ∈ CIFS (𝑋 × 𝑋). Then 𝐴 is a transitive
complex Atanassov’s intuitionistic fuzzy relation if𝐴∘𝐴 ⊆ 𝐴.

5. Projection and Cylindric
Extension of Complex Atanassov’s
Intuitionistic Fuzzy Relations

In this section, we introduce the concepts of projection
and cylindric extension as generalizations of projection and
cylindric extension, respectively, for AIFRs.

Definition 48. Let 𝑄 be a complex Atanassov’s intuitionistic
fuzzy relation on 𝑋

1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
, and let {𝑖

1
, . . . , 𝑖

𝑘
} be

a subsequence of {1, . . . , 𝑛}. Then the projection of 𝑄 on
𝑋
𝑖1
× ⋅ ⋅ ⋅ × 𝑋

𝑖𝑘
is a complex Atanassov’s intuitionistic fuzzy

relation 𝑄
𝑝
on 𝑋

𝑖1
× ⋅ ⋅ ⋅ × 𝑋

𝑖𝑘
, defined by membership and

nonmembership functions:

𝜇
𝑄𝑝

(𝑥
𝑖1
, . . . , 𝑥

𝑖𝑘
)

= max
𝑥𝑗𝑖
∈𝑋𝑗1

,..., 𝑥𝑗
(𝑛−𝑘)

∈𝑋𝑗
(𝑛−𝑘)

𝑟
𝑄
(𝑥

1
, . . . , 𝑥

𝑛
)

⋅ 𝑒
𝑖max𝑥𝑗𝑖 ∈𝑋𝑗1 ,..., 𝑥𝑗(𝑛−𝑘) ∈𝑋𝑗(𝑛−𝑘)

𝜔𝑟𝑄
(𝑥1 ,...,𝑥𝑛)

,

𝛾
𝑄𝑝

(𝑥
𝑖1
, . . . , 𝑥

𝑖𝑘
)

= min
𝑥𝑗𝑖
∈𝑋𝑗1

,..., 𝑥𝑗
(𝑛−𝑘)

∈𝑋𝑗
(𝑛−𝑘)

𝑘
𝑄
(𝑥

1
, . . . , 𝑥

𝑛
)

⋅ 𝑒
𝑖min𝑥𝑗𝑖 ∈𝑋𝑗1 ,..., 𝑥𝑗(𝑛−𝑘) ∈𝑋𝑗(𝑛−𝑘)

𝜔𝑘
𝑄

(𝑥1 ,...,𝑥𝑛)

,

(68)

where the {𝑥
𝑗1
, . . . , 𝑥

𝑗(𝑛−𝑘)
} is the complement of {𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
}

with respect to {𝑥
1
, . . . , 𝑥

𝑛
}.

Example 49. Let𝑋 = {2, 3, 4} and 𝑌 = {𝑎, 𝑏} be two universes
of discourse, and let𝑄 be a complex Atanassov’s intuitionistic
fuzzy relation on𝑋 × 𝑌 defined by

𝑄 = {⟨(2, 𝑎) , 0.3 ⋅ 𝑒
𝑖0.9𝜋

, 0.5 ⋅ 𝑒
𝑖0.3𝜋

⟩ ,

⟨(3, 𝑎) , 0.1 ⋅ 𝑒
𝑖1.5𝜋

, 0.7 ⋅ 𝑒
𝑖𝜋
⟩ ,

⟨(4, 𝑎) , 0.5 ⋅ 𝑒
𝑖1.7𝜋

, 0.4 ⋅ 𝑒
𝑖0.5𝜋

⟩ ,

⟨(2, 𝑏) , 0.5 ⋅ 𝑒
𝑖0.7𝜋

, 0.5 ⋅ 𝑒
𝑖2𝜋

⟩ ,

⟨(3, 𝑏) , 0.3 ⋅ 𝑒
𝑖0.2𝜋

, 0.4 ⋅ 𝑒
𝑖1.7𝜋

⟩ ,

⟨(4, 𝑏) , 0.3 ⋅ 𝑒
𝑖1.5𝜋

, 0.4 ⋅ 𝑒
𝑖1.3𝜋

⟩} .

(69)

We compute the projection of CAIFR 𝑄 on 𝑋 and 𝑌,
denoted by 𝑄

𝑋
and 𝑄

𝑌
respectively. The projection 𝑄

𝑋
, is

given by

𝜇
𝑄𝑝

(𝑥) = (max
𝑦∈𝑌

𝑟
𝑄
(𝑥, 𝑦)) ⋅ 𝑒

𝑖max𝑦∈𝑌 𝜔𝑟𝑄 (𝑥,𝑦),

𝛾
𝑄𝑝

(𝑥) = (min
𝑦∈𝑌

𝑘
𝑄
(𝑥, 𝑦)) ⋅ 𝑒

𝑖min𝑦∈𝑌 𝜔𝑘𝑄 (𝑥,𝑦).

𝑄
𝑋 (𝑥) = {⟨2, ∨ (0.3, 0.5) 𝑒

𝑖∨(0.9𝜋,0.7𝜋)
,

∧ (0.5, 0.5) 𝑒
𝑖∧(0.3𝜋,2𝜋)

⟩ ,

⟨3, ∨ (0.1, 0.3) 𝑒
𝑖∨(1.5𝜋,0.2𝜋)

,

∧ (0.7, 0.4) 𝑒
𝑖∧(𝜋,1.7𝜋)

⟩ ,

⟨4, ∨ (0.5, 0.3) 𝑒
𝑖∨(1.7𝜋,1.5𝜋)

,

∧ (0.4, 0.4) 𝑒
𝑖∧(0.5𝜋,1.3𝜋)

⟩} .

= {⟨2, 0.5𝑒
𝑖0.9𝜋

, 0.5𝑒
𝑖0.3𝜋

⟩ , ⟨3, 0.3𝑒
𝑖1.5𝜋

, 0.4𝑒
𝑖𝜋
⟩ ,

⟨4, 0.5𝑒
𝑖1.7𝜋

, 0.4𝑒
𝑖0.5𝜋

⟩} .

(70)

The projection 𝑄
𝑌
is given by

𝜇
𝑄𝑌

(𝑦) = (max
𝑥∈𝑋

𝑟
𝑄
(𝑥, 𝑦)) ⋅ 𝑒

𝑖max𝑥∈𝑋 𝜔𝑟
𝑄

(𝑥,𝑦)

,

𝛾
𝑄𝑌

(𝑥) = (min
𝑥∈𝑋

𝑘
𝑄
(𝑥, 𝑦)) ⋅ 𝑒

𝑖minx∈X 𝜔𝑘
𝑄

(𝑥,𝑦)

.

𝑄
𝑌
(𝑦) = {⟨𝑎, ∨ (0.3, 0.1, 0.5) 𝑒

𝑖∨(0.9𝜋,1.5𝜋,1.7𝜋)
,

∧ (0.5, 0.7, 0.4) 𝑒
𝑖∧(0.3𝜋,𝜋,0.5𝜋)

⟩ ,

⟨𝑏, ∨ (0.5, 0.3, 0.3) 𝑒
𝑖∨(0.7𝜋,0.2𝜋,1.5𝜋)

,

∧ (0.5, 0.4, 0.4) 𝑒
𝑖∧(2𝜋,1.7𝜋,1.3𝜋)

⟩} .

= {⟨𝑎, 0.5𝑒
𝑖1.7𝜋

, 0.4𝑒
𝑖0.3𝜋

⟩ , ⟨𝑏, 0.5 ⋅ 𝑒
𝑖1.5𝜋

, 0.4𝑒
𝑖1.3𝜋

⟩} .

(71)

Definition 50. Let 𝑄 be a complex Atanassov’s intuitionistic
fuzzy relation on 𝑋

1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
and let {𝑖

1
, . . . , 𝑖

𝑘
} be a

subsequence of {1, . . . , 𝑛}. The cylindric extension of 𝑄
𝑃
to

𝑋
1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
, is a complex Atanassov’s intuitionistic fuzzy

relation 𝑄PE on 𝑋
1
× ⋅ ⋅ ⋅ × 𝑋

𝑛
, defined by membership and

nonmembership functions:

𝜇
𝑄PE

(𝑥
1
, . . . , 𝑥

𝑛
) = [𝑟

𝑄𝑃
(𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
) ⋅ 𝑒

𝑖𝜔𝑟𝑄𝑃
(𝑥𝑖1

,...,𝑥𝑖
𝑘
)
] ,

𝛾
𝑄PE

(𝑥
1
, . . . , 𝑥

𝑛
) = [𝑘

𝑄𝑃
(𝑥

𝑖1
, . . . , 𝑥

𝑖𝑘
) ⋅ 𝑒

𝑖𝜔𝑘𝑄𝑃
(𝑥𝑖1

,...,𝑥𝑖
𝑘
)
] .

(72)

Example 51. We consider Example 49 to find the cylindric
extensions of 𝑄

𝑋
and 𝑄

𝑌
. The cylindric extension of 𝑄

𝑋
is

a complex Atanassov’s intuitionistic fuzzy relation 𝑄XE given
by 𝜇

𝑄XE
(𝑥, 𝑦) = 𝜇

𝑄𝑋
(𝑥), and 𝛾

𝑄XE
(𝑥, 𝑦) = 𝛾

𝑄𝑋
(𝑥). Then,

𝑄XE = {⟨(2, 𝑎) , 0.5𝑒
𝑖0.9𝜋

, 0.5𝑒
𝑖0.3𝜋

⟩ ,

⟨(3, 𝑎) , 0.3𝑒
𝑖1.5𝜋

, 0.4𝑒
𝑖𝜋
⟩ ,

⟨(4, 𝑎) , 0.5𝑒
𝑖1.7𝜋

, 0.4𝑒
𝑖0.5𝜋

⟩ ,

⟨(2, 𝑏) , 0.5𝑒
𝑖0.9𝜋

, 0.5𝑒
𝑖0.3𝜋

⟩ ,

⟨(3, 𝑏) , 0.3𝑒
𝑖1.5𝜋

, 0.4𝑒
𝑖𝜋
⟩ ,

⟨(4, 𝑏) , 0.5𝑒
𝑖1.7𝜋

, 0.4𝑒
𝑖0.5𝜋

⟩} .

(73)
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The cylindric extension of 𝑄
𝑌
is a complex Atanassov’s

intuitionistic fuzzy relation 𝑄YE given by 𝜇
𝑄YE

(𝑥, 𝑦) =

𝜇
𝑄𝑌

(𝑦), and 𝛾
𝑄YE

(𝑥, 𝑦) = 𝛾
𝑄𝑌

(𝑦). Thus,

𝑄YE = {⟨(2, 𝑎) , 0.5𝑒
𝑖1.7𝜋

, 0.4𝑒
𝑖0.3𝜋

⟩ ,

⟨(3, 𝑎) , 0.5𝑒
𝑖1.7𝜋

, 0.4𝑒
𝑖0.3𝜋

⟩ ,

⟨(4, 𝑎) , 0.5𝑒
𝑖1.7𝜋

, 0.4𝑒
𝑖0.3𝜋

⟩ ,

⟨(2, 𝑏) , 0.5𝑒
𝑖1.5𝜋

, 0.4𝑒
𝑖1.3𝜋

⟩ ,

⟨(3, 𝑏) , 0.5𝑒
𝑖1.5𝜋

, 0.4𝑒
𝑖1.3𝜋

⟩ ,

⟨(4, 𝑏) , 0.5𝑒
𝑖1.5𝜋

, 0.4𝑒
𝑖1.3𝜋

⟩} .

(74)

6. Composition of Complex Atanassov’s
Intuitionistic Fuzzy Relations

In this section, we introduce the definition of composition
of complex Atanassov’s intuitionistic fuzzy relations. Some
properties of composition of CAIFRs are obtained.The com-
position of complex Atanassov’s intuitionistic fuzzy relations
is introduced as in the following.

Definition 52. Let 𝑋, 𝑌, and 𝑍 be universes, 𝐴 a complex
Atanassov’s intuitionistic fuzzy relation of 𝑋 and 𝑌, and 𝐵 a
complex Atanassov’s intuitionistic fuzzy relation of 𝑌 and 𝑍.
The composition of 𝐴 and 𝐵, denoted by 𝐴 ∘ 𝐵, is a complex
Atanassov’s intuitionistic fuzzy relation of𝑋 and 𝑍, specified
by the following functions:

𝜇
𝐴∘𝐵 (𝑥, 𝑧) = 𝑟

𝐴∘𝐵 (𝑥, 𝑧) ⋅ 𝑒
𝑖 𝜔𝑟𝐴∘𝐵(𝑥,𝑧)

= [sup
𝑦∈𝑌

min (𝑟
𝐴
(𝑥, 𝑦) , 𝑟

𝐵
(𝑦, 𝑧))

⋅ 𝑒
𝑖 sup
𝑦∈𝑌

min(𝜔𝑟𝐴(𝑥,𝑦),𝜔𝑟𝐵(𝑦,𝑧))] ,

𝛾
𝐴∘𝐵 (𝑥, 𝑧) = 𝑟

𝐴∘𝐵
(𝑥, 𝑦) ⋅ 𝑒

𝑖 𝜔𝑘𝐴∘𝐵(𝑥,𝑧)

= [inf
𝑦∈𝑌

max (𝑘
𝐴
(𝑥, 𝑦) , 𝑘

𝐵
(𝑦, 𝑧))

⋅ 𝑒
𝑖 inf𝑦∈𝑌max(𝜔𝑘𝐴(𝑥,𝑦),𝜔𝑘𝐵(𝑦,𝑧))] .

(75)

Example 53. Let 𝐾, 𝑆, 𝐽, 𝑃, and 𝐿 be name of cities, and let
𝑋 = {𝐾, 𝑆}, 𝑌 = {𝐾, 𝐽} and 𝑊 = {𝑃, 𝐿} be three sets of these
cities. Then, the Cartesian product of 𝑋 and 𝑌 is the set 𝑋 ×

𝑌 = {(𝐾,𝐾), (𝐾, 𝐽), (𝑆, 𝐾), (𝑆, 𝐽)}, and the Cartesian product
of 𝑌 and 𝑍 is the set 𝑌 × 𝑍 = {(𝐾, 𝑃), (𝐾, 𝐿), (𝐽, 𝑃), (𝐽, 𝐿)}.
For example, let𝐴(𝑋, 𝑌) be a relation called “the first element
(city) is colder than the second element (city) in winter,
summer, autumn, or spring,” and let 𝐵(𝑌, 𝑍) be a relation
called “the first element (city) is more attractive than the
second element (city) in winter, summer, autumn or spring.”

The relations 𝐴(𝑋, 𝑌) and 𝐵(𝑌, 𝑍) can be presented by the
following relational matrices:

𝐴 (𝑋, 𝑌)

= [

[

𝐾 𝐽

𝐾 (0.9𝑒
𝑖(0.3/24)𝜋

, 0𝑒
𝑖(3/24)𝜋

) (0.7𝑒
𝑖(1.5/24)𝜋

, 0.3𝑒
𝑖(5/24)𝜋

)

𝑆 (0.6𝑒
𝑖(1/24)𝜋

, 0.3𝑒
𝑖(1.8/24)𝜋

) (0.3𝑒
𝑖(3/24)𝜋

, 0.7𝑒
𝑖(1/24)𝜋

)

]

]

,

𝐵 (𝑌, 𝑍)

= [

[

𝑃 𝐿

𝐾 (0.2𝑒
𝑖(3/24)𝜋

, 0.7𝑒
𝑖(3/24)𝜋

) (0.1𝑒
𝑖(12/24)𝜋

, 0.8𝑒
𝑖(5/24)𝜋

)

𝐽 (0.1𝑒
𝑖(15/24)𝜋

, 0.9𝑒
𝑖(5/24)𝜋

) (0.2𝑒
𝑖(3/24)𝜋

, 0.6𝑒
𝑖(2/24)𝜋

)

]

]

.

(76)

We compute the composite relational matrix, denoted
by 𝐴 ∘ 𝐵(𝑋, 𝑍). We should note that 𝑋 × 𝑍 has four
elements: (𝐾, 𝑃), (𝐾, 𝐿), (𝑆, 𝑃), and (𝑆, 𝐿). Thus, our task is
to determine the membership, 𝜇

𝐴∘𝐵
, and nonmembership,

𝛾
𝐴∘𝐵

, values for the four elements above.We use Definition 52
to determine the membership and nonmembership of 𝐴 ∘

𝐵(𝐾, 𝑃). Thus, we have

𝜇
𝐴∘𝐵 (𝐾, 𝑃)

= sup
𝑦∈𝑉

{min [(𝑟
𝐴 (𝐾,𝐾)) , 𝑟𝐵 (𝐾, 𝑃)] ,

min [(𝑟
𝐴 (𝐾, 𝐽)) , 𝑟𝐵 (𝐽, 𝑃)]}

⋅ 𝑒
sup
𝑦∈𝑉

{min[(𝜔𝑟𝐴 (𝐾,𝐾)),𝜔𝑟𝐵 (𝐾,𝑃)],min[(𝜔𝑟𝐴 (𝐾,𝐽)),𝜔𝑟𝐵 (𝐽,𝑃)]}

= sup
𝑦∈𝑉

{min [0.9, 0.2] ,min [0.7, 0.1]}

⋅ 𝑒
𝑖 sup
𝑦∈𝑉

{min[(0.3/24)𝜋,(3/24)𝜋],min[(1.5/24)𝜋,(15/24)𝜋]}

= sup
𝑦∈𝑉

{0.2, 0.1} 𝑒
𝑖 sup
𝑦∈𝑉

{(0.3/24)𝜋,(1.5/24)𝜋}
= 0.2𝑒

𝑖(1.5/24)𝜋
.

(77)

Analogously, we have

𝛾
𝐴∘𝐵 (𝐾, 𝑃)

= inf
𝑦∈𝑉

{max [(𝑘
𝐴 (𝐾,𝐾)) , 𝑘𝐵 (𝐾, 𝑃)] ,

max [(𝑘
𝐴 (𝐾, 𝐽)) , 𝑘𝐵 (𝐽, 𝑃)]}

⋅ 𝑒
inf𝑦∈𝑉{max[(𝜔𝑘𝐴 (𝐾,𝐾)),𝜔𝑘𝐵 (𝐾,𝑃)],max[(𝜔𝑘𝐴 (𝐾,𝐽)),𝜔𝑘𝐵 (𝐽,𝑃)]}

= inf
𝑦∈𝑉

{max [0, 0.7] ,max [0.3, 0.9]}

⋅ 𝑒
𝑖inf𝑦∈𝑉{max[(3/24)𝜋,(3/24)𝜋],max[(5/24)𝜋,(5/24)𝜋]}

= inf
𝑦∈𝑉

{0.7, 0.9} 𝑒
𝑖inf𝑦∈𝑉{(3/24)𝜋,(5/24)𝜋]} = 0.7𝑒

𝑖(3/24)𝜋
.

(78)
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Analogously, we determine the elements (𝐾, 𝐿), (𝑆, 𝑃),
and (𝑆, 𝐿). Thus, the final relational matrix of 𝐴 ∘ 𝐵 is

𝐴 ∘ 𝐵 (𝑋, 𝑍)

=
[
[
[

[

𝑃 𝐿

𝐾 (0.2𝑒
𝑖(15/24)𝜋

, 0.7𝑒
𝑖(3/24)𝜋

) (0.2𝑒
𝑖(3/24)𝜋

, 0.6𝑒
𝑖(5/24)𝜋

)

𝑆 (0.2𝑒
𝑖(3/24)𝜋

, 0.7𝑒
𝑖(5/24)𝜋

) (0.2𝑒
𝑖(3/24)𝜋

, 0.7𝑒
𝑖(2/24)𝜋

)

]
]
]

]

.

(79)

Note 2. In Example 53 the amplitude terms represent the
belongingness and nonbelongingness to the set of cold and
attractiveness, and the phase terms represent the belonging-
ness and nonbelongingness to the phase of season.

Max-Min and Max Product Compositions

(1) The max-min composition of CAIFRs between
𝐴(𝑋, 𝑌) and𝐵(𝑌, 𝑍) is a CAIFR𝐴∘𝐵 in𝑋×𝑍, defined
by the membership and nonmembership functions

𝜇
𝐴∘𝐵 (𝑥, 𝑧) = [max

𝑦∈𝑉

min (𝑟
𝐴
(𝑥, 𝑦) , 𝑟

𝐴
(𝑦, 𝑧))

⋅ 𝑒
𝑖max𝑦∈𝑉min(arg

𝜇𝐴
(𝑥,𝑦),arg

𝜇𝐵
(𝑦,𝑧))

] ,

𝛾
𝐴∘𝐵 (𝑥, 𝑧) = [min

𝑦∈𝑉

max (𝑟
𝐴
(𝑥, 𝑦) , 𝑟

𝐵
(𝑦, 𝑧))

⋅ 𝑒
𝑖min𝑦∈𝑉max(arg

𝛾𝐴
(𝑥,𝑦),arg

𝛾𝐵
(𝑦,𝑧))

] .

(80)

(2) The max product composition of CAIFRs between
𝐴(𝑋, 𝑌) and𝐵(𝑌, 𝑍) is a CAIFR𝐴∘𝐵 in𝑋×𝑍, defined
by the membership and nonmembership functions:

𝜇
𝐴∘𝐵 (𝑥, 𝑧) = [max

𝑦∈𝑉

(𝑟
𝐴
(𝑥, 𝑦) ⋅ 𝑟

𝐵
(𝑦, 𝑧))

⋅ 𝑒
𝑖(1/2𝜋)max𝑦∈𝑉(arg𝜇𝐴(𝑥,𝑦)⋅arg𝜇𝐵(𝑦,𝑧))] ,

𝜇
𝐴∘𝐵 (𝑥, 𝑧) = [min

𝑦∈𝑉

(𝑟
𝐴
(𝑥, 𝑦) ⋅ 𝑟

𝐵
(𝑦, 𝑧))

⋅ 𝑒
𝑖(1/2𝜋)min𝑦∈𝑉(arg𝛾𝐴(𝑥,𝑦)⋅arg𝛾𝐵(𝑦,𝑧))] .

(81)

Proposition 54. Let 𝑊, 𝑋, 𝑌, and 𝑍 be universes, 𝐴 a
complex Atanassov’s intuitionistic fuzzy relation of𝑊 and𝑋, 𝐵

a complex Atanassov’s intuitionistic fuzzy relation of𝑋 and 𝑌,
and 𝐶 a complex Atanassov’s intuitionistic fuzzy relation of 𝑌
and 𝑍. Then 𝐴 ∘ (𝐵 ∘ 𝐶) = (𝐴 ∘ 𝐵) ∘ 𝐶.

Proof. Let𝐴∘(𝐵∘𝐶) = {⟨(𝑤, 𝑧), 𝜇
𝐴∘(𝐵∘𝐶)

(𝑤, 𝑧), 𝛾
𝐴∘(𝐵∘𝐶)

(𝑤, 𝑧)⟩ :

(𝑤, 𝑧) ∈ 𝑊 × 𝑍}, and (𝐴 ∘ 𝐵) ∘ 𝐶 = {⟨(𝑤, 𝑧),
𝜇
(𝐴∘𝐵)∘𝐶

(𝑤, 𝑧), 𝛾
(𝐴∘𝐵)∘𝐶

(𝑤, 𝑧)⟩ : (𝑤, 𝑧) ∈ 𝑊 × 𝑍}. To prove
the equality 𝐴 ∘ (𝐵 ∘ 𝐶) = (𝐴 ∘ 𝐵) ∘ 𝐶, we have to show that

𝜇
𝐴∘(𝐵∘𝐶)

= 𝜇
(𝐴∘𝐵)∘𝐶

and 𝛾
𝐴∘(𝐵∘𝐶)

= 𝛾
(𝐴∘𝐵)∘𝐶

. By Definition 52,
we have
𝜇
𝐴∘(𝐵∘𝐶) (𝑤, 𝑧)

= [sup
𝑥∈𝑋

min [𝑟
𝐴 (𝑤, 𝑥) , (𝑟(𝐵∘𝐶) (𝑥, 𝑧))]

⋅𝑒
𝑖 sup
𝑥∈𝑋

min[𝜔𝜇𝐴 (𝑤,𝑥),(𝜔𝜇(𝐵∘𝐶) (𝑥,𝑧))]]

= [sup
𝑥∈𝑋

min[𝑟
𝐴 (𝑤, 𝑥) , (sup

𝑦∈𝑌

min (𝑟
𝐵
(𝑥, 𝑦) , 𝑟

𝐶
(𝑦, 𝑧)))]

⋅𝑒
𝑖 sup
𝑥∈𝑋

min[𝜔𝜇𝐴 (𝑤,𝑥),(sup𝑦∈𝑌min(𝜔𝜇𝐵 (𝑥,𝑦),𝜔𝜇𝐶 (𝑦,𝑧)))]]

= [ sup
𝑥∈𝑋,𝑦∈𝑌

min [𝑟
𝐴 (𝑤, 𝑥) , 𝑟𝐵 (𝑥, 𝑦) , 𝑟𝐶 (𝑦, 𝑧)]

⋅𝑒
𝑖sup
𝑥∈𝑋,𝑦∈𝑌

min[𝜔𝜇𝐴 (𝑤,𝑥),𝜔𝜇𝐵 (𝑥,𝑦),𝜔𝜇𝐶 (𝑦,𝑧)]]

= [sup
𝑦∈𝑌

min[(sup
𝑥∈𝑋

min (𝑟
𝐴 (𝑤, 𝑥) , 𝑟𝐵 (𝑥, 𝑦))) , 𝑟

𝐶
(𝑦, 𝑧)]

⋅𝑒
𝑖 sup
𝑦∈𝑌

min[(sup
𝑥∈𝑋

min(𝜔𝜇𝐴 (𝑤,𝑥),𝜔𝜇𝐵 (𝑥,𝑦))),𝜔𝜇𝐶 (𝑦,𝑧)]]

= [sup
𝑦∈𝑌

min [(𝑟
(𝐴∘𝐵)

(𝑤, 𝑦)) , 𝑟
𝐶
(𝑦, 𝑧)]

⋅ 𝑒
𝑖 sup
𝑦∈𝑌

min[(𝜔𝜇
(𝐴∘𝐵)

(𝑤,𝑦)),𝜔𝜇𝐶
(𝑦,𝑧)]

] = 𝜇
(𝐴∘𝐵)∘𝐶 (𝑤, 𝑧) .

(82)
Also,
𝛾
𝐴∘(𝐵∘𝐶) (𝑤, 𝑧)

= [inf
𝑥∈𝑋

max [𝑘
𝐴 (𝑤, 𝑥) , (𝑘(𝐵∘𝐶) (𝑥, 𝑧))]

⋅ 𝑒
𝑖inf𝑥∈𝑋max[𝜔𝛾𝐴 (𝑤,𝑥),(𝜔𝛾(𝐵∘𝐶) (𝑥,𝑧))]]

= [inf
𝑥∈𝑋

max [𝑘
𝐴 (𝑤, 𝑥) ,

(inf
𝑦∈𝑌

max (𝑘
𝐵
(𝑥, 𝑦) , 𝑘

𝐶
(𝑦, 𝑧)))]

⋅𝑒
𝑖inf𝑥∈𝑋max[𝜔𝛾𝐴 (𝑤,𝑥),(inf𝑦∈𝑌max(𝜔𝛾𝐵 (𝑥,𝑦),𝜔𝛾𝐶 (𝑦,𝑧)))]]

= [ inf
𝑥∈𝑋,𝑦∈𝑌

[𝑘
𝐴 (𝑤, 𝑥) , 𝑘𝐵 (𝑤, 𝑦) , 𝑘

𝐶
(𝑦, 𝑧)]

⋅𝑒
𝑖inf𝑥∈𝑋,𝑦∈𝑌max[𝜔𝛾𝐴 (𝑤,𝑥),𝜔𝛾𝐵 (𝑤,𝑦),𝜔𝛾𝐶 (𝑦,𝑧)]]
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= [inf
𝑦∈𝑌

max [(inf
𝑥∈𝑋

max (𝑘
𝐴 (𝑤, 𝑥) , 𝑘𝐵 (𝑥, 𝑦))) ,

𝑘
𝐶
(𝑦, 𝑧) ]

⋅ 𝑒
𝑖inf𝑦∈𝑌max

]

= [inf
𝑦∈𝑌

max [(𝑘
(𝐴∘𝐵)

(𝑤, 𝑦)) , 𝑘
𝐶
(𝑦, 𝑧)]

⋅ 𝑒
𝑖inf𝑦∈𝑌 max[(𝜔𝛾

(𝐴∘𝐵)
(𝑤,𝑦)),𝜔𝛾𝐶

(𝑦,𝑧)]
] = 𝛾

(𝐴∘𝐵)∘𝐶 (𝑤, 𝑧) .

(83)

So we have 𝜇
𝐴∘(𝐵∘𝐶)

= 𝜇
(𝐴∘𝐵)∘𝐶

from (82), and we
have 𝛾

𝐴∘(𝐵∘𝐶)
= 𝛾

(𝐴∘𝐵)∘𝐶
from (83). Therefore, the proof is

completed.

Proposition 55. Let 𝑋, 𝑌, and 𝑍 be universes, 𝐴 and 𝐵 two
complex Atanassov’s intuitionistic fuzzy relations of 𝑋 and 𝑌,
and 𝐶 a complex Atanassov’s intuitionistic fuzzy relation of 𝑍
and 𝑋. Then,

(i) 𝐶 ∘ (𝐴 ∪ 𝐵) = (𝐶 ∘ 𝐴) ∪ (𝐶 ∘ 𝐵),
(ii) 𝐶 ∘ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∘ 𝐴) ∩ (𝐶 ∘ 𝐵).

Proof. (i) To prove the equality𝐶∘ (𝐴∪𝐵) = (𝐶∘𝐴)∪ (𝐶∘𝐵),
we have to show that 𝜇

𝐶∘(𝐴∪𝐵)
= 𝜇

(𝐶∘𝐴)∪(𝐶∘𝐵)
and 𝛾

𝐶∘(𝐴∪𝐵)
=

𝛾
(𝐶∘𝐴)∪(𝐶∘𝐵)

. By Definitions 52, 17, and 18 we have

𝜇
𝐶∘(𝐴∪𝐵)

= sup min [𝑟
𝐶
, (𝑟

(𝐴∪𝐵)
)] ⋅ 𝑒

𝑖 sup min[𝜔𝜇𝐶 ,(𝜔𝜇(𝐴∪𝐵) )]

= sup min [𝑟
𝐶
, (max (𝑟

𝐴
, 𝑟
𝐵
))]

⋅ 𝑒
𝑖 sup min[𝜔𝜇𝐶 ,(max(𝜔𝜇𝐴 ,𝜔𝜇𝐵 ))]

= max [(sup min (𝑟
𝐶
, 𝑟
𝐴
)) , (sup min (𝑟

𝐶
, 𝑟
𝐵
))]

⋅ 𝑒
𝑖max[(sup min(𝜔𝜇𝐶 ,𝜔𝜇𝐴 )),(sup min(𝜔𝜇𝐶 ,𝜔𝜇𝐵 ))]

= 𝜇
(𝐶∘𝐴)∪(𝐶∘𝐵)

,

(84)

Also,

𝛾
𝐶∘(𝐴∪𝐵)

= inf max [𝑘
𝐶
, (𝑘

(𝐴∪𝐵)
)] ⋅ 𝑒

inf max[𝜔𝛾𝐶 ,(𝜔𝛾(𝐴∪𝐵) )]

= [ inf max [𝑘
𝐶
, (min (𝑘

𝐴
, 𝑘

𝐵
))]

⋅ 𝑒
inf max[𝜔𝛾𝐶 ,(min(𝜔𝛾𝐴 ,𝜔𝛾𝐵 ))]]

= [min [(inf max (𝑘
𝐶
, 𝑘

𝐴
)) , (inf max (𝑘

𝐶
, 𝑘

𝐵
))]

⋅ 𝑒
min[(inf max(𝜔𝛾𝐶 ,𝜔𝛾𝐴 )),inf(max(𝜔𝛾𝐶 ,𝜔𝛾𝐵 ))]]

= 𝛾
(𝐶∘𝐴)∪(𝐶∘𝐵)

.

(85)

Therefore, by (84) and (85), proof of (i) is completed.

(ii) To prove the subsets 𝐶 ∘ (𝐴 ∩ 𝐵) ⊆ (𝐶 ∘ 𝐴) ∩

(𝐶 ∘ 𝐵), we have to show that 𝑟
𝐶∘(𝐴∩𝐵)

≤ 𝑟
(𝐶∘𝐴)∩(𝐶∘𝐵)

and
Arg

𝜇𝐶∘(𝐴∩𝐵)
≥ Arg

𝜇(𝐶∘𝐴)∩(𝐶∘𝐵)
for the membership function and

𝑘
𝐶∘(𝐴∩𝐵)

≤ 𝑘
(𝐶∘𝐴)∩(𝐶∘𝐵)

and Arg
𝛾𝐶∘(𝐴∩𝐵)

≤ Arg
𝛾(𝐶∘𝐴)∩(𝐶∘𝐵)

for the
nonmembership function. By Definitions 28, 52, and 18, we
have

𝑟
𝐶∘(𝐴∩𝐵)

= sup min [𝑟
𝐶
,min (𝑟

𝐴
, 𝑟
𝐵
)] = sup (𝑟

𝑗
)

𝑟
(𝐶∘𝐴)∩(𝐶∘𝐵)

= min [supmin (𝑟
𝐶
, 𝑟
𝐴
) , sup min (𝑟

𝐶
, 𝑟
𝐵
)]

= min sup (𝑟
𝑗
) ,

(86)

where 𝑗 = 𝐴, 𝐵, or𝐶 for any of the following cases:

𝑟
𝐴
≤ 𝑟

𝐵
≤ 𝑟

𝐶
, 𝑟

𝐵
≤ 𝑟

𝐴
≤ 𝑟

𝐶
, 𝑟

𝐶
≤ 𝑟

𝐵
≤ 𝑟

𝐴
,

𝑟
𝐶
≤ 𝑟

𝐴
≤ 𝑟

𝐵
, 𝑟

𝐴
≤ 𝑟

𝐶
≤ 𝑟

𝐵
, 𝑟

𝐵
≤ 𝑟

𝐶
≤ 𝑟

𝐴
.

(87)

So, we conclude that

𝑟
𝐶∘(𝐴∩𝐵)

= sup (𝑟
𝑗
) ≥ min sup (𝑟

𝑗
) = 𝑟

(𝐶∘𝐴)∩(𝐶∘𝐵)
. (88)

To prove the nonmembership parts, we use similar steps
as for the membership term. Therefore, this completes the
proof of (ii).

Corollary 56. Let 𝑋, 𝑌, and 𝑍 be universes, 𝐴
𝑡
(𝑡 ∈ 𝑇)

complex Atanassov’s intuitionistic fuzzy relations of 𝑋 and 𝑌,
and 𝐶 a complex Atanassov’s intuitionistic fuzzy relation of 𝑍
and 𝑋, where 𝑇 is an arbitrary index set. Then,

(i) 𝐶 ∘ (∪
𝑡∈𝑇

𝐴
𝑡
) = ∪

𝑡∈𝑇
(𝐶 ∘ 𝐴

𝑡
),

(ii) 𝐶 ∘ (∩
𝑡∈𝑇

𝐴
𝑡
) ⊆ ∩

𝑡∈𝑇
(𝐶 ∘ 𝐴

𝑡
).

Proof. This is straightforward from Proposition 55.

Proposition 57. Let 𝑋, 𝑌, and 𝑍 be universes, 𝐴 and 𝐵 two
complex Atanassov’s intuitionistic fuzzy relations of 𝑋 and 𝑌,
and 𝐶 a complex fuzzy relation of 𝑍 and 𝑋. If 𝐴 ⊆ 𝐵, then

(i) 𝐶 ∘ 𝐴 ⊆ 𝐶 ∘ 𝐵.

Proof. This is straightforward from Proposition 55 and Defi-
nitions 52 and 28.

7. Conclusions

In this research, a new model deals with multi-attribute
decision-making problems by representing the type of
Atanassov’s intuitionistic fuzzy information which is hap-
pening repeatedly over a period of time. This generalised
model (Application 31) is easy to realize and appropriate
with human recognition. The difference between this model
and Atanassov’s intuitionistic fuzzy model in [12] is that
in our approach, complex Atanassov’s intuitionistic fuzzy
set represents the problems with Atanassov’s intuitionistic
fuzzy uncertainty and periodicity simultaneously, in which
the phase degree, of membership and nonmembership have
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precious and pivotal values. Besides, the phase term can
represent both the fuzzy information and precise/accurate
time. So, CAIFSs can be useful and applicable in many
areas, such as decision-making processes, to select the best
alternative.

The development of complex Atanassov’s intuitionistic
fuzzy relation is important as it forms a basis for the
derivation of complex Atanassov’s intuitionistic fuzzy logic.
Complex Atanassov’s intuitionistic fuzzy relation is formally
generalised from a conventional Atanassov’s intuitionistic
fuzzy relation, based on complex Atanassov’s intuitionistic
fuzzy sets, in which the ranges of values of CAIFR are
extended to the unit circle in complex plane instead of
[0, 1] as in the conventional Atanassov’s intuitionistic fuzzy
functions. We have also introduced the Cartesian product of
CAIFSs and derived two properties of the product space.The
concepts of projection, cylindric extension, and composition
of CAIFRs are also introduced. Finally, an example of CAIFR
in real life situation is illustrated in this paper.

8. Future Research

In future research, it is a meaningful topic to introduce
the concept of CAIF logics and systems based on CAIF
relation, which gives the ability to extend the realm of real-
life applications in the CAIF environment. The concepts
of logics and systems open for us immense applications
in engineering, medical, physics, automobiles, defense and
security, internet and computer security, and other fields.
We can also introduce 𝛿-equalities of complex Atanassov’s
intuitionistic fuzzy relations.
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