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Power electronics circuits are rich in nonlinear dynamics. Their
operation is characterized by cyclic switching of circuit topologies,
which gives rise to a variety of nonlinear behavior. This paper pro-
vides an overview of the chaotic dynamics and bifurcation scenarios
observed in power converter circuits, emphasizing the salient fea-
tures of the circuit operation and the modeling strategies. In par-
ticular, this paper surveys the key publications in this field, reviews
the main modeling approaches, and discusses the salient bifurca-
tion behaviors of power converters with particular emphasis on the
disruption of standard bifurcation patterns by border collisions.

Keywords—Bifurcation, chaos, dc–dc converters, nonlinear dy-
namics, power electronics, switching power converters.

I. INTRODUCTION

Power electronics is a discipline spawned by real-life
applications in industrial, commercial, residential, and
aerospace environments. Much of its development evolves
around some immediate needs for solving specific power
conversion problems. In the past three decades, this branch
of electrical and electronic engineering has undergone an
intense development in many aspects of technology [1],
including power devices, control methods, circuit design,
computer-aided analysis, passive components, packaging
techniques, etc. The principal focus in power electronics,
as reflected from topics discussed in some key conferences
[2], [3], is to fulfill the functional requirements of the
application for which its circuits are used. Like many areas
of engineering, power electronics is mainly motivated by
practical applications and it often turns out that a partic-
ular circuit topology or system implementation has found
widespread applications long before it has been thoroughly
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analyzed. For instance, the widespread application of a
simple switching converter may date back to more than three
decades ago. However, good analytical models allowing
better understanding and systematic circuit design were
only developed in the late 1970s [4] and in-depth analytical
characterization and modeling is still being actively pursued
today. Despite their common occurrence in power elec-
tronics circuits, nonlinear phenomena have only recently
received appropriate formal treatments.

In this paper, we review some of the nonlinear phenomena
observed in typical power electronics systems. Our inten-
tion is to provide an overview of the recent research effort
in the study of nonlinear phenomena in power converters,
and to summarize the essential analytical approaches that
can be used to perform a systematic study of the nonlinear
behavior of such systems. The rest of the paper is outlined
as follows. We begin in Section II with a brief overview of
power electronics circuits, followed by a discussion of the
benefits of studying chaotic dynamics in power electronics
in Section II-C. A quick tour of some recent findings is pre-
sented in Section III. In Section IV, we present a discussion of
the modeling methods for characterizing nonlinear behavior
such as bifurcation and chaos in switching converter circuits.
In Section V, we focus on the typical bifurcation scenarios
observed in switching power converters, expounding their
most relevant aspects from a practical viewpoint.

II. BRIEF OVERVIEW OF SWITCHING CONVERTERS

OPERATION

The basic operation of any power electronics circuit in-
volves toggling among a set of linear or nonlinear circuit
topologies, under the control of a feedback system. As such,
they can be regarded asswitchedor piecewise-smoothdy-
namical systems.

For example, in simple direct current–direct current
(dc–dc) converters, such as the ones shown in Fig. 1, an
inductor is “switched” between the input and the output
through an appropriate switching element (labeled as
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(a) (b)

(c)

Fig. 1. Simple dc–dc converters. (a) Buck converter. (b) Buck-boost converter. (c) Boost converter.

in the figure). The way in which the inductor is switched
determines the output voltage level and transient behavior.
Usually, a semiconductor switch and a diode are used to
implement such switching and through the use of a feedback
control circuit, the relative durations of the various switching
intervals are continuously adjusted. Such feedback action
effectively controls the transient and steady-state behaviors
of the circuit. Thus, both the circuit topology and the control
method used determine the dynamical behavior of a power
electronics circuit.

A. Simple DC–DC Converter Circuits

Many power converters are designed on the basis of the
three simple converters shown in Fig. 1. In a typical period-1
operation,1 the switch and the diode are turned on and off in a
cyclic and complementary manner, under the command of a
pulse-width modulator. When the switch is closed (the diode
is open), the inductor current ramps up. When the switch is
open (the diode closed), the inductor current ramps down.
The duty ratio, defined as the fraction of a repetition period
during which the switch is closed, is continuously controlled
by a feedback circuit that aims to maintain the output voltage
at a fixed level even under input and load variations. Two typ-
ical feedback arrangements are shown in the next subsection.

As we will see later in this paper, although the period-1
stable operation is the preferred operation for most indus-
trial applications, it represents only one particular operating
regime. Because of the existence of many possible operating
regimes, it would be of practical importance to have a thor-
ough understanding of what determines the behavior of the
circuit so as to guarantee a desired operation or to avoid an
undesirable one.

B. Typical Control Strategies

Most dc–dc converters are designed to deliver a reg-
ulated output voltage. The control of dc–dc converters
usually takes on two approaches, namely, voltage feedback

1In dc–dc converters, period-1 operation refers to an operating regime
where all waveforms repeat at the same rate as the driving clock. Thus, pe-
riod-n operation refers to the case where the periods of all waveforms are
exactlyn times that of the driving clock.

control and current-programmed control, also known as
voltage-modeand current-modecontrol, respectively [6].
In voltage-mode control, the output voltage is compared
with a reference signal to generate a control signal which
drives the pulse-width modulator via some typical feedback
compensation configuration. For current-mode control, an
inner current loop is used in addition to the voltage feedback
loop. The aim of this inner loop is to force the inductor
current to follow some reference signal provided by the
output voltage feedback loop. The result of current-mode
control is a faster response. This kind of control is mainly
applied to boost and buck-boost converters, which suffer
from an undesirable nonminimum phase response [5], [6].
The simplified schematics are shown in Fig. 2.

C. Studying Chaos in Switching Power Converters

Power electronics engineers have to deal frequently with
unexpected phenomena such as subharmonic oscillations,
jumps, quasi-periodic operating regimes, sudden broadening
of power spectra, bifurcations, and chaos. Despite their fre-
quent occurrence, nonlinear phenomena and the underlying
causes are not always thoroughly understood by engineers
[7], [8]. For instance, most power supply engineers would
have experienced bifurcation phenomena and chaos in their
circuits when some parameters (e.g., input voltage and
feedback gain) are varied, but usually do not examine the
phenomena in detail. The usual reaction of the engineers is to
avoid these phenomena by adjusting component values and
parameters, often through some trial-and-error procedure.
Thus, these phenomena remain somewhat mysterious and
rarely examined in a formal manner.

The barrier to the study of nonlinear behavior in power
electronics lies mainly in the engineers’ attitude to this
kind of study rather than technical competence. As will be
discussed in Section IV, one of the most favorite techniques
in engineering has beenlinearization. This has the obvious
advantage of making the analysis easier through the familiar
frequency-domain small-signal techniques. Indeed, if lin-
earized models can be profitably used in design (and as long
as the restricted validity of the models does not adversely
compromise the design integrity), there seems to be no
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Fig. 2. Typical control approaches for dc–dc converters.
(a) Voltage-mode control. (b) Current-mode control.

immediate need for investigating nonlinear phenomena
such as chaos and bifurcation. However, as the field of
power electronics gains maturity and as the demand for
better functionality, reliability and performance of power
electronics systems increases, in-depth analysis of complex
behavior and nonlinear phenomena becomes justifiable and
even mandatory. On the one hand, the study of nonlinear
phenomena offers the opportunity of rationalizing the com-
monly observed behavior. Thus, knowing how and when
chaos occurs, for instance, will certainly help to avoid it, if
“avoiding it” is what the engineers want. On the other hand,
many previously unused nonlinear operating regimes may
be profitably exploited for useful engineering applications,
provided that such operations are thoroughly understood.
For these reasons, the study of bifurcations and chaos in
power electronics has recently attracted much attention from
both the power electronics and the circuits and systems
communities.

In Section III, we present a chronological survey of some
of the most relevant recent findings in the identification, anal-
ysis, and modeling of nonlinear phenomena in power elec-
tronics circuits and systems.

III. SURVEY OF RESEARCHFINDINGS

The occurrence of bifurcations and chaos in power elec-
tronics was first reported in the literature in the late 1980s

[9]–[11]. Experimental observations regarding boundedness,
chattering and chaos were also made by Krein and Bass [12]
in 1990. Although these early reports did not contain any
rigorous analysis, they seriously pointed out the importance
of studying the complex behavior of power electronics and
its possible benefits for practical design. Since then, much
interest has been directed toward pursuing formal studies
of the complex phenomena commonly observed in power
electronics.

In 1990, Hamillet al.[13] reported a first attempt to study
chaos in a simple buck converter at the IEEE Power Elec-
tronics Specialists Conference. Their work became subject
of further investigations in the following years and stimu-
lated much of the ongoing research effort into the nonlinear
behavior of power converters. Using an implicit iterative
map, the occurrence of period doublings, subharmonics,
and chaos in a simple buck converter was demonstrated
by numerical analysis, PSPICE simulation, and laboratory
measurements. The derivation of a closed-form iterative
map for the boost converter under a current-mode control
scheme was presented later by the same group of researchers
[14]. This closed-form iterative map allowed the analysis
and classification of bifurcations and structural instabilities
of this simple converter. Since then, a number of authors
have contributed to the identification of bifurcation patterns
and strange attractors in a wide class of circuits and devices
of relevance to power electronics. Some key publications
are summarized below. Alternative reviews are found in
[15]–[17]. Most recently, an edited book, which is devoted
entirely to the subject of nonlinear phenomena in power
electronics, has also been published [18].

The occurrence of period-doubling cascades for a simple
dc–dc converter operating in discontinuous mode was re-
ported in 1994 by Tse [19], [20]. By modeling the dc–dc
converter as a first-order iterative map, the onset of pe-
riod-doubling bifurcations can be located analytically. The
idea is based on evaluating the Jacobian of the iterative map
about the fixed point corresponding to the solution under-
going the period doubling and determining the condition
for which a period-doubling bifurcation occurs. Simulations
and laboratory measurements have confirmed the findings.
Formal theoretical studies of conditions for the occurrence
of period-doubling cascades in discontinuous-mode dc–dc
converter were reported subsequently by Chan and Tse [21].
Further work on the bifurcation behavior of the buck con-
verter was reported by Chakrabartyet al. [22], who specifi-
cally studied the bifurcation behavior under variation of a
range of circuit parameters including storage inductance,
load resistance, output capacitance, etc. In 1996, Fossas
and Olivar [23] presented a detailed analytical description
of the buck converter dynamics, identifying the topology
of its chaotic attractor and studying the regions associated
with different system evolutions. Various possible types of
operation of a simple voltage-feedback pulse-width-mod-
ulated buck converter were also investigated through the
so-called stroboscopic map obtained by periodically sam-
pling the system states. This method will be discussed later
in this paper.
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Fig. 3. Bifurcation diagrams from a current-mode controlled
boost converter withL = 1:5 mH,R = 40 
 andT = 100 �s.
I denotes the reference peak inductor current, i.e., the inductor
current value at the turn-off instant of the switch. For (a),
T=CR = 0:125 (largeC), and for (b),T=CR = 0:625 (smallC).

The bifurcation behavior of dc–dc converters under
current-mode control has been studied by a number of
authors. Deane [24] first discussed the route to chaos in
a current-mode controlled boost converter. Chan and Tse
[25] studied various types of routes to chaos and their de-
pendence upon the choice of bifurcation parameters. Fig. 3
shows two bifurcation diagrams numerically obtained from
a current-mode controlled boost converter, with inductor
current level being the bifurcation parameter. Fig. 4 shows
a series of trajectories as the current level increases. In
1995, the study of bifurcation phenomena was extended to
a fourth-order C´ uk dc–dc converter under a current-mode
control scheme [26]. The four-dimensional system is repre-
sented by an implicit fourth-order iterative map, from which
routes to chaos are identified numerically.

As can be seen from Fig. 3(a) for the case of the boost
converter, the bifurcation behavior contains transitions
where a “sudden jump from periodic solutions to chaos” is
observed. These transitions cannot be explained in terms of
standard bifurcations such as “period doubling” and “saddle
node.” In fact, as proposed by Banerjeeet al. [27], [28]
and Di Bernardo [30], these transitions are due to a class
of bifurcations known as “grazings” or “border collisions,”
which is unique to switched dynamical systems [31]–[33].
(See Section V for details.)

Since most power electronics circuits are nonautonomous
systems driven by fixed-period clock signals, the study of the
dynamics can be effectively carried out using appropriate
iterative maps. In addition to simple uniform sampling,
Di Bernardoet al.[34] studied alternative sampling schemes
and their applications to the study of bifurcation and chaos
in power electronics [30]. It has been found that nonuni-
form (event-driven) sampling can be used, under certain
conditions, to derive iterative maps which can be used to
characterize effectively the occurrence of bifurcations and
chaos in both autonomous and nonautonomous systems.
Also, the occurrence of periodic chattering (high-frequency
switchings) or multiple pulsing can be explained in terms of
so-called sliding solutions [35].

When external clocks are absent and the system is
“free-running,” e.g., under a hysteretic control scheme, the
system is autonomous and does not have a fixed switching
period. Such free-running converters were indeed extremely
common in the old days when fixed-period integrated-circuit
controllers were not available. A representative example is
the free-running C´ uk converter that has been shown by Tse
et al. [36] to exhibit Hopf bifurcation and chaos. Another
example is the tolerance-band controlled converter that
has been shown by Magauer and Banerjee [37] to exhibit
merging crisis and saddle-node bifurcations.

Power electronics circuits other than dc–dc converters
have also been examined in recent years. Dobsonet al.
[38] reported “switching time bifurcation” of diode and
thyristor circuits. Such bifurcation manifests as jumps in
the switching times. Bifurcation phenomena from induction
motor drives were reported separately by Kuroe [39] and
Nagyet al. [40]. Finally, some attempts have been made to
study higher order parallel-connected systems of converters,
which are becoming popular design choice for high-current
applications [41], [42].

IV. M ODELING STRATEGIES

A. Modeling Alternatives

As mentioned previously, switching converters are essen-
tially piecewise-switched circuits [43]. The number of pos-
sible circuit topologies is usually fixed and the switching
is done in a cyclic manner (but not necessarily periodically
because of the feedback action). This results in a nonlinear
time-varying operating mode, which naturally demands the
use of nonlinear methods for analysis and design. Indeed, re-
searchers and engineers who work in this field are always
dealing with nonlinear problems and have attempted to ex-
plore methods not normally used in other circuit design areas,
e.g., state-space averaging [4], phase-plane trajectory anal-
ysis [44], Lyapunov-based control [45], Volterra series ap-
proximation [46], etc. However, in order to expedite the de-
sign of power electronics systems, “adequate” simplifying
models are imperative. In the process of deriving models,
accuracy is often traded off for simplicity for many good
practical reasons. Since closed-loop stability and transient
responses are basic design concerns in practical power elec-
tronics systems, models that can permit the direct application
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Fig. 4. Trajectories from a current-mode controlled boost converter.v andi are output voltage
and inductor current, respectively, consistent with Fig. 2. (a) Stable period-1 operation. (b) Stable
period-2 operation. (c) Stable period-4 operation. (d) Chaotic operation.

of conventional frequency-domain approaches will present
obvious advantages. Thus, much research in modeling power
electronics circuits has been directed toward the derivation
of a linear model that is appropriate to a frequency-domain
analysis, the limited validity being the price to pay. (The fact
that most engineers are trained to use linear methods is also
a strong motivation for developing linearized models.) The
use of linearized models for analysis is relatively mature in
power electronics. However, it falls short of predicting any
nonlinear behavior.

Since our purpose here is nonlinear analysis, we will not
consider linearization right at the start of the analysis, which
effectively suppresses all nonlinear terms. In fact, lineariza-
tion is a useful technique only when we need to characterize
the system behavior locally around a point in the state space.
The major modeling step prior to linearization is the deriva-
tion of a suitable nonlinear model. We will focus on two par-
ticularly useful modeling approaches:

1) continuous-time averaging approach;
2) discrete-time iterative-map approach.
Before going into details of these approaches, we should

emphasize that each of them has its own advantages and
disadvantages. Averaging is simple and more likely to give
tractable mathematical and circuit models; it is, however,
useful only to characterize low-frequency phenomena. On
the contrary, the derivation of iterative maps is more compli-
cated but the resulting maps offer more complete information
on the dynamical behavior of the system under investigation.

As we will see, each method can be used to study bifurcation
behavior of switching converters. The key question is “when
to use what.” We will come back to this important issue after
we have described the salient features of these modeling al-
ternatives (see Section IV-D).

Because of their suitability to study low- or high-fre-
quency regimes, the aforementioned modeling approaches
have been sometimes labeled as slow- and fast-scale
approaches, respectively. The observed phenomena may
therefore be classified accordingly. Analysis from this
viewpoint has recently been reported by Mazumderet al.
[47].

B. Averaging

The averaging approach [4] is one of the most widely
adopted modeling strategies for switching converters. It
initially yields simple nonlinear models that contain no
time-varying parameters and, hence, can be used more con-
veniently for analysis and design. Essentially, an averaged
model does not take into account the switching details but
focuses only on the envelope of the dynamical motion. This
is well suited to characterize power electronics circuits in
the low-frequency domain.2

2In practice, such so-called “averaged” models are often linearized to
yield linear time-invariant models that can be directly studied in a standard
Laplace transform domain or frequency domain, facilitating design of con-
trol loops and evaluation of transient responses in ways that are familiar to
practitioners.
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Suppose the switching converter under study toggles be-
tween circuit topologies. In one switching cycle, it spends
a fraction of time in one particular topology. Letbe the
state vector, be the fraction of the period in which the cir-
cuit stays in the th topology, and be the period of one
switching cycle. Obviously, we have .
Thus, we can write down the following state equations for the
first period:

if
if

if

(1)

where and are the system matrices for theth topology
and is the input voltage. It should be noted that most prac-
tical switching converters involve a relatively small, typ-
ically two or three. The essential step in the modeling is to
“average” out the system matrices [4], yielding the following
averaged model:

for all (2)

where

and (3)

Finally, we need to state the control law which completes the
model. This is usually given as a set of equations defining
explicitly or implicitly the quantities . The general form of
such a set of equations is

(4)

Note that the above equations generally define the duty cy-
cles as nonlinear functions of the system states and pa-
rameters. Thus, despite its appearance, the averaged model
is nonlinear.

In the case of a simple dc–dc converter having two
topological states, the control law specifies just one duty
cycle, say , i.e., the fraction of time spent in one of
the two possible configurations. The usual pulse-width
modulation feedback control method involves comparing a
control signal (depending on the state variables) with a ramp
signal. The system then switches to a different configuration
whenever these two signals intersect. Thus, the control law
can be simply stated as

(5)

where is a ramp voltage signal and is a suitable
control signal derived from the state variables.

In essence, averaging retains the low-frequency properties
while ignoring the detailed dynamics within a switching
cycle. Usually, the validity of averaged models is only
restricted to the low-frequency range up to an order of
magnitude below the switching frequency. For this reason,
averaged models become inadequate when the aim is to
explore nonlinear phenomena that may appear across a wide

spectrum of frequencies. Nevertheless, averaging techniques
can be useful to analyze those bifurcation phenomena which
are confined to the low-frequency range. For instance, in a
switching converter, an averaged model can be effectively
used to study the so-called Hopf bifurcation, which explains
the formation of persistent oscillations (limit cycles) con-
sisting of many switching periods (low-frequency orbit)
[36], [48].

C. Derivation of Iterative-Maps

An effective approach for modeling power electronics cir-
cuits with a higher degree of accuracy is to use appropriate
discrete-time maps obtained by uniform or nonuniform sam-
pling of the system states. Essentially, the aim is to derive an
iterative function that expresses the state variables at one sam-
pling instant in terms of those at an earlier sampling instant.

To illustrate the idea, we consider maps3 obtained by uni-
form sampling of the system states at time instants multiple of
the period , i.e., , for . Referring
to (1), we can express the value of the state vectorat the end
of the subinterval corresponding to theth topology in terms
of its value at the beginning of that subinterval. For the sake
of brevity, let be the time instant at the beginning of theth
subinterval, i.e., the time instant that corresponds to the circuit
switching from the th to the th configuration. More-
over, letting be the duty ratio corresponding to the subin-
terval beginning at , i.e., , we have

(6)

where is the transition matrix corresponding to. Thus,
by composing together equations for all subintervals within a
switching period, we obtain the required iterative map, which
takes the following form:

(7)

(8)

where denotes the state vector at , denotes the
set of duty ratios for the cycle beginning at , and

(9)

(10)

3These maps are often termedstroboscopic mapsto distinguish those ob-
tained by nonuniform sampling or switching maps.
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Finally, a control law is needed, as in the averaging case, to
complete the model. This can take the form of (4). Alterna-
tively, we can also consider discrete-time control laws of the
form at the beginning of each switching cycle,
i.e., at .

D. Suitability of the Models

To sum up, we have introduced two types of modeling
strategies. The averaged model takes the form of a set of
continuous differential equations, whereas the iterative-map
model takes a discrete-time form. They are suited for dif-
ferent analytical scenarios, as will become apparent later.
Briefly, the averaged model is useful for characterizing the
low-frequency behavior of the circuit while the iterative map
allows a more complete dynamical description. For instance,
averaged models can be used to study the scenario where a
regular periodic motion breaks down via a Hopf bifurcation
into a limit cycle or a quasi-periodic orbit of a much longer
period [36]. On the other hand, period doublings and other bi-
furcations causing the formation of solutions in the high-fre-
quency range can only be studied through appropriate dis-
crete-time models [19]–[30].

V. ANALYSIS OF BIFURCATIONS IN SWITCHING POWER

CONVERTERS

As mentioned earlier in Section III, switching power
converters can exhibit several bifurcation phenomena. These
include standard bifurcations such as period doublings
and Hopf bifurcations, as well as nonstandard ones such as
border collisions and grazings which are due to the switching
(i.e., nonsmooth) nature of these systems.4 These latter
phenomena often manifest themselves as discontinuous
transitions or “sudden jumps,” for instance, from periodic
regimes to chaos. In the literature, the occurrence of these
transitions is commonly explained as due to interactions be-
tween system trajectories and state-space boundaries where
the system switches from one configuration to another (or
switching manifolds) [54]. For example, aborder collision
is said to occur when, under parameter variations, an
equilibrium or fixed point of the system under investigation
crosses one of these boundaries [see Fig. 8(b)].Grazing
bifurcations, instead, correspond to tangential intersections
of a periodic orbit with a switching manifold [see Fig. 8(a)].
Other bifurcations are possible when other solutions, such
as quasi-periodic trajectories, interact with the switching
manifolds.

Typically, power electronics systems exhibit a combina-
tion of standard bifurcations, border collisions, and other
nonsmooth bifurcations, as one or more parameters are
varied.

4In the Russian literature, these bifurcations are known collectively asC

bifurcations, whereC is the first letter of the Russian word for “sewing.”
Heuristically these bifurcations “sew” together sections of trajectories be-
longing to different system configurations. For clarity in this paper, we refer
mainly to border collisions and grazings as these terms describe better the
actually physical meaning when applied to power electronics circuits and
systems.

A. Standard Bifurcations and Border Collisions—A Real
Phenomenon in Switching Converters

At the time of writing, there is enough analytical and ex-
perimental evidence to conclude that switching converters
exhibit mainly a combination of the following two types of
bifurcations, which can occur under the variation of the same
(set of) parameter(s):

1) standard bifurcations (e.g., period doubling, Hopf,
etc.);

2) border collisions and grazings (e.g., period-1 to chaos,
period-2 to period-3, etc.).

Namely, a switching converter can exhibit a series of stan-
dard bifurcations, e.g., period doubling, Hopf, saddle node,
etc., as some parameters are varied. Moreover, because of the
switching nature, sudden transitions or “jumps” can occur,
for instance, from a periodic orbit to chaos. Two examples are
shown in Fig. 3. In the bifurcation diagram of Fig. 3(a), the
system exhibits a period doubling once at , then
suddenly jumps (without further period doublings) to chaos
at . Likewise, in Fig. 3(b), the system undergoes
a period doubling at , and abruptly jumps to a pe-
riod-4 orbit at . Then, period doubling resumes.

To appreciate the underlying cause of border collisions and
how they disrupt standard bifurcation patterns, let us take
a simple practical viewpoint and consider a switching con-
verter where the switching instant is determined by the inter-
section of a ramp signal and a control signal. Essentially, as
shown in Fig. 5(a), the switch is turned on or off, according
to the ramp signal being larger or smaller, respectively, than
the control signal. Therefore, the ramp signal defines an hy-
perplane in the phase space across which the system changes
its configuration.

Now, suppose we increase the feedback gain gradually
and examine the steady-state waveforms. The following is
what typically happens in a voltage-mode controlled buck
converter.

1) As the feedback gain increases, the converter exhibits
period doubling. Fig. 5(b) and (c) shows the situation
before and after a period-doubling bifurcation.

2) As the feedback gain increases further, the control
signal swings too high and fails to hit the ramp signal
within each cycle. A border-collision bifurcation
corresponds to the limiting case where the control
signal just “grazes” the upper or lower tip of the ramp
signal. Its occurrence can give rise to a sudden jump
to a chaotic regime thereafter. Fig. 5(d) shows the
situation when border collision occurs.

Clearly, as described earlier, we can see that a border col-
lision results from an excessive swing of the control signal,
which causes the duty ratio to saturate abruptly to zero or one,
thus preventing the standard period-doubling cascade from
proceeding further as the parameter continues to vary. Such
interplay between standard bifurcations and border collisions
is characteristic of many power electronics circuits. In fact,
for converters employing different control methods, similar
scenarios can be identified. For example, current-mode con-
trolled boost converters have been shown to undergo almost
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(a) (b)

(c) (d)

Fig. 5. Period-doubling cascade interrupted by a border collision as the feedback gain increases.
(a) Period-1 operation. (b) Period-1 operation (larger feedback gain). (c) Period-2 operation.
(d) Border collision (often leading to the onset of chaotic regimes).

always a border collision after a period-doubling bifurcation.
The underlying cause for the occurrence of the border colli-
sion in this case is similar, i.e., the limited range within which
the standard bifurcation cascade can continue to develop (see
Fig. 3).

B. Analysis of Standard Bifurcations

The literature already abounds with methods of anal-
ysis and classification of standard bifurcations like period
doublings and Hopf bifurcations [49]. In what follows, we
summarize some typical analytical approaches to study
standard bifurcations in switching power converters. Rather
than giving a detailed analytical account we outline the
main ideas behind their characterization from a practical
viewpoint.

Essentially, the analysis begins with the system model. If
an averaged model is studied, the set of continuous-time dif-
ferential equations used to describe the circuit and its control
law will be used to analyze the possible bifurcation scenarios.
The linearized system is examined and its eigen-
values are found by solving

(11)

where is the unit matrix of appropriate size. Generally,
standard bifurcations such as period-doubling and Hopf bi-
furcations are associated with eigenvalues with a zero real
part in continuous-time systems and unitary modulus in dis-
crete-time ones. Thus, to locate bifurcations, we are inter-
ested in observing how the eigenvalues of the model move
on the complex plane (root loci) as a chosen parameter is
varied.

For example, when a continuous-time model exhibits a
pair of complex conjugate eigenvalues that crosses the imag-
inary axis for some parameter value at a nonzero rate, then a
Hopf bifurcation may occur. Appropriate Poincaré maps can
also be used to characterize the stability of the resulting limit
cycles [49], [51].

If an iterative map is used to model the system, the
linearized system is again examined. Specifically, suppose
the iterative map is , then the Jacobian
characterizing the linearized system is given by
evaluated at the fixed point. The eigenvalues ofcan be
obtained by solving the characteristic equation

(12)

In this case, the modulus of the eigenvalues needs to be taken
into account. For instance, if one of the eigenvalues is ob-
served to move out of the unit circle on the real line, i.e.,
through the point 1, then we may establish a period dou-
bling. A host of analytical results and solution approaches
can be found in standard texts on nonlinear dynamical sys-
tems [50]–[53].

In general, both continuous-time and discrete-time models
or maps can be used to study bifurcations. Thus, the impor-
tant question is againwhat is the right model for the analysis.
Clearly, the answer varies from one converter to the other.
In power electronics, as in many other practical engineering
disciplines, the clue often comes from carrying out suitable
computer simulations and/or experimental observations. For
instance, when studying a voltage-mode controlled buck con-
verter, one could be tempted at first to use a simple averaged
model. However, experiments and simulations would soon
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(a) (b)

(c) (d)

Fig. 6. Hopf bifurcation from a free-running C´ uk converter [36]. This refers to the loss of stability
of a fixed point in the averaged sense bifurcating into a limit cycle.v , v , andi are the state
variables of the system and, in this case, are the two capacitor voltages and the inductor current in
a Ćuk converter circuit. (a) Trajectory spiralling into stable period-1 orbit or fixed point in the
averaged sense. (b) Stable period-1 orbit enlarged (fixed point in the averaged sense). (c) Trajectory
spiralling away from the unstable period-1 orbit (fixed point in the averaged sense) after a Hopf
bifurcation. (d) Limit cycle reached by the trajectory of (c).

show the limitations of such a model in describing high-fre-
quency behavior such as the period-doubling phenomena ob-
served in the real circuit. Likewise, when sufficient evidence
has been collected from experiments and simulations that a
low-frequency limit cycle originates from a Hopf bifurcation,
the use of an averaged model will adequately yield consistent
predictions.

As mentioned earlier in Section III, switching converters
can exhibit a variety of nonlinear phenomena depending
upon the circuit topology and the control method used. From
what has been reported so far in the literature, the following
general observations can be made.

1) Voltage-mode controlled buck converters typically
undergo period-doubling bifurcations [13], [22], [23],
whereas boost converters are more likely to exhibit
Hopf or Neimark–Sacker bifurcation [36], [48].

2) Period doubling is also common in buck- or boost-type
converters operating in discontinuous-mode [19]–[21]
and current-mode controlled converters [24], [25].

3) A variety of bifurcations are possible when other
nonlinear control methods are used, e.g., crisis,
saddle-node bifurcation, switching-time bifurcation,
etc. [15], [37], [38].

4) Nonsmooth bifurcations such as border collisions
are often present and are essential in organizing the
overall bifurcation pattern observed in the converters
[27], [34].

To conclude the discussion on standard bifurcations, let us
take a look at some typical bifurcations observed in switching
power converters. Fig. 6 shows a Hopf bifurcation observed
from a free-running C´ uk converter. Prediction by an aver-
aged model and corresponding experimental measurements
are found in [36]. Also, Fig. 7 captures the disruption of
standard period-doubling cascades by border collision in a
current-controlled boost converter. Analysis of current-mode
controlled converters by the iterative-map approach can be
found in [24], [25], and [29].

C. Analysis of Border Collisions, Grazings, and Other
Nonsmooth Bifurcations

We have seen that power converters can exhibit standard
bifurcations together with abrupt transitions due to border
collisions and other nonsmooth bifurcations (or-bifurca-
tions), which are associated with interactions between the
system trajectories and so-called switching manifolds.
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(a)

(b)

(c)

Fig. 7. Period-doubling cascade interrupted by a border collision.
Dimensionless parameter that is relevant to this bifurcation is
T=CR [27]. From (a) to (c), the output capacitor gradually
changes from a large value to a small value. (a)T=CR = 0:0025.
(b) T=CR = 0:0256. (c)T=CR = 0:2564.

Specifically, for continuous-time switched dynamical sys-
tems, a dramatic change of the system behavior is usually
observed when a part of the system trajectory hits one of the

(a)

(b)

Fig. 8. Schematic representation of (a) grazing (continuous time)
and (b) border collision (discrete time).

boundaries in the phase space (or switching manifolds) as-
sociated with a change of the system configuration. Fig. 8(a)
illustrates this situation. When this occurs, the system is said
to undergo agrazingbifurcation [33], [55]–[58], [63]. Equiv-
alently, for systems modeled by iterative maps, sudden tran-
sitions from one evolution to the other are associated with
fixed points crossing one of the switching manifolds. This
event is termedborder collision [27], [28], [31], [32], as
shown in Fig. 8(b). Through the use of appropriate Poincaré
maps, grazing bifurcations and border collisions can be uni-
fied under the same theoretical framework [60]. It can be
shown that grazing bifurcations and border collisions are ac-
tually equivalent if the continuous-time system trajectory in-
teracts with a discontinuous switching manifold (e.g., a ramp
signal) [59]. In what follows, we will simply refer to this type
of bifurcations as border collisions.

As mentioned above, in switching power converters, the
occurrence of border collisions, for example, is often due to
the limiting effect of the pulse-width modulation process or
in general to the limited range within which a standard bifur-
cation cascade can be allowed to grow. At the edge of this
limit, such as in the case shown earlier where the control
signal “grazes” the tip of the ramp signal in the usual pulse-
width modulator, a border collision occurs. These bifurca-
tions can have many possible consequences. For instance, a
periodic orbit can disappear or give rise to the sudden ap-
pearance of chaotic regimes. Predicting the type of scenario
resulting from a border collision that can be observed in
the system under investigation is particularly important in
applications.
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(a) (b)

(c) (d)

Fig. 9. Classification of border collisions in a 1-D map. Scenario observed at a border collision
(� = 0) depends on the slopes of the map sections. (b) Saddle-node like scenario is observed as the
map (a) crosses the boundaryx = 0. (d) Change in the map slopes leads to different scenarios (c).

In Section V-D, we present a simplified classification
strategy of border collisions, the purpose being to enable
one to predict the scenario following a border collision as
one or more of the system parameters are varied.

D. Classification of Border Collisions

The problem of finding appropriate strategies to classify
border-collision bifurcations is the subject of much ongoing
research. A complete classification for one-dimensional
(1-D) and two-dimensional maps has been presented by
Nusse et al. [31] and more recently by Banerjee and
Grebogi [64]. For higher dimensional systems, no complete
classification strategy is available yet. A first strategy to
classify border collisions in systems with any number of
states was reported by Di Bernardoet al. [61]. The aim
of all classification methods is to provide a link between
some properties of the system under investigation and the
scenarios observed after the bifurcation of interest. In what
follows, we briefly summarize the key results concerning the
classification of border collision in-dimensional switched
dynamical systems (see [61] for further details).

When the system Jacobian is discontinuous at the border-
collision point, the key step to classify border collision is the
linearization of the system about the bifurcation point in the
two regions across the discontinuity boundary. More specif-
ically, suppose that for some parameter value , a
fixed point, say, , crosses the switching manifold causing
a border collision to occur, as shown in Fig. 8(b). Further, as-
sume that for , is in region and when ,
is in region . Then, the system can be linearized about

in regions and . After an appropriate coordinate trans-
formation, the linearized system can be written in the form

if

if
(13)

where and are the system matrices and vectors
of appropriate dimensions.

An appropriate classification of border collisions can then
be obtained in terms of the matrices , and . Fig. 9
shows a graphical interpretation for the case of a 1-D system.
In general, the scenario following a border collision can be
predicted by studying the eigenvalues of the matrices char-
acterizing the linearized system [61], [64]. For instance, one
may predict a “jump” from a period-1 orbit to chaos, a pe-
riod-1 orbit to another period-1 orbit, etc.

E. Sliding

Recently, a peculiar type of behavior unique to nonsmooth
systems, termedsliding, has been studied in switching con-
verters. Sliding can be understood as a solution characterized
by a large number of switchings (ideally infinite) between
different system configurations. Because of this high-fre-
quency switching behavior, the system trajectory will
remain close to the switching manifold. For instance, in a
pulse-width modulator, where a ramp signal is compared
with a control signal, sliding is characterized by the control
signal crossing the ramp repeatedly from above and below.

The presence of sliding can give rise to the formation of
so-called sliding orbits, i.e., periodic solutions characterized
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by sections of sliding motion (or chattering). These solu-
tions can play an important role in organizing the dynamics
of a given power electronics circuit [35]. Research is still
ongoing in identifying a novel class of bifurcations, called
sliding bifurcations, which involve interactions between the
system trajectories and discontinuity sets where sliding mo-
tion is possible [66].

Note that practitioners often include so-calledlatch flip-
flops in their design in order to avoid the occurrence of re-
peated switching (or multiple pulsing). It can be shown that
when sliding is possible, the introduction of these devices
can lead to worse dynamical scenarios such as high-ampli-
tude chaotic oscillations (see [67]).

VI. CURRENT STATUS AND FUTURE WORK

A. Current Status

Research in nonlinear phenomena of power electronics
can be said to have gone through its first phase of develop-
ment. Most of the work reported so far has focused on identi-
fying bifurcations and nonlinear phenomena and explaining
them using the theory of nonlinear dynamics. The research
activity of the past decade has served a two-fold purpose.
First, it has shown to engineers that the commonly observed
“strange” phenomena (e.g., chaos and bifurcations) in power
electronics can be characterized and treated systematically,
rather than being considered as just “bad” laboratory obser-
vations. Second, the proliferation of publications in this area
has demonstrated the richness of dynamical behavior exhib-
ited by power electronics, posing new interesting challenges
to the nonlinear system theorists [56], [60], [61], [64], [68],
[69].

It seems that identification and classification work will
continue to be an important area of investigation. This
is because power electronics emphasizes reliability and
predictability and it is imperative to understand the system
behavior as thoroughly as possible and under all kinds
of operating conditions. Knowing when and how a cer-
tain bifurcation occurs, for example, will provide useful
information to derive appropriate strategies to avoid it or
even exploit its occurrence. Moreover, power electronics
is an emerging discipline; new circuits and applications
are generated every day. The lack of general solutions for
nonlinear problems means that each new system has to be
treated separately and the growing complexity of power
electronics applications makes it of utmost importance to
understand the nonlinear behavior of such kinds of systems.

B. Using Chaos in Power Electronics—Electromagnetic
Interference Suppression and System Design

Future research will inevitably move toward any prof-
itable exploitation of the nonlinear properties of power
electronics. As a start, some applications of chaotic power
electronics systems and related theory have been identified,
for instance, in the control of electromagnetic interference
(EMI) by “spreading” the noise spectrum [70]–[74], in the
application of “targeting” orbits with less iterations (i.e.,
directing trajectories to certain orbits in as little time as

possible) [75], and in the stabilization of periodic operations
[76].

Among the applications of chaos in power electronics that
have been proposed so far, the suppression of EMI has at-
tracted considerable attention because of the practical impor-
tance of avoiding excessive spectrum spikes. In recent years,
international regulatory standards have imposed stringent re-
quirements on the maximum noise level that can be allowed
for most power electronics products. To meet these require-
ments, the use of chaos may provide a quick solution by low-
ering the spectrum peaks. It has been shown (see, e.g., [74])
that by “chaotifying” either the switching frequency or some
relevant switching subinterval(s) around a nominal value, the
amplitudes of the peaks in the noise spectrum can be reduced.
However, further work is still needed to make the technique
truly viable since the use of chaos merely readjusts the spec-
trum to avoid excessive spectrum spikes, but does not reduce
the overall noise power emitted. Thus, from the engineering
viewpoint, the problem of EMI cannot be claimed to have
been fully fixed.

Furthermore, from the body of knowledge we have already
gathered for some specific practical power electronics sys-
tems, it is timely for researchers to consider putting the re-
sults to engineering use. For example, the results concerning
the bifurcation of power converters can be systematically col-
lected to form a design guide that can help identify the pa-
rameter ranges within which a particular system can remain
in a given operating regime. This area is still rarely addressed
in the literature, despite its practical importance.

VII. CONCLUSION

In this paper, we have reviewed the major findings over
the past decade in the study of nonlinear behavior of power
electronics. In particular, we have presented:

1) a survey of the key publications, highlighting the
salient aspects of research in the identification of
chaotic and bifurcation behavior;

2) an overview of the key modeling approaches that have
been pivotal in the development of the field;

3) an overview of the bifurcation phenomena in switching
power converters, emphasizing the role that non-
smooth bifurcations such as border collisions play in
organizing the overall bifurcation patterns.

As new applications continue to emerge in power electronics,
new nonlinear problems are posed. The development of ana-
lytical methods to characterize such problems will continue
to advance. At the current rate of development, we expect and
hope to see meaningful applications of the nonlinear study of
power converters to be reported soon in the literature. This
should be the ultimate aim of all the past efforts spent in
characterizing the nonlinear dynamics of power electronics
circuits and systems.
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