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INTRODUCTION

During the past ten years there has been rapid development and applica-

tion of a theory variously known as complex scaling, complex coordinates,

coordinate-rotation, and dilatation analyticity, to problems of resonances

in atomic and molecular physics and in chemistry. Resonances are
ubiquitous. A few examples:

1. an excited species radiates;

2. a multiply excited atom autoionizes;

3. an atomic or molecular system in an external field is subject to field

or multiphoton ionization;

4. an appropriately excited molecule dissociates unimolecularly;

5. electrons attach to molecules and the resulting quasibound molecular

ions dissociate into stable ionic and neutral subsystems.

Each of these processes is typified by the formation and decay of an
intermediate state, or resonance, which is a nonstationary (or quasi-

bound) state with a lifetime long enough to be well characterized, and

long enough to make its explicit recognition of experimental and theoreti-

cal importance. The simplest, and most naive, mathematical description

of such states is that they resemble bound stationary states in that
they are "localized" in space (at t =0), and their time evolution 
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224 REINHARDT

given by (1-3)

~R(t) = exp(- iERt / h )~/R(O) 1.

which is the usual stationary state time dependence, except that now the

energy, ER, of the resonant state is complex:

£. = £re, -- it~2 2.

where Er~s and F are real, and F>~0. The presence of the "-iF/2"

forces exponential decay, if we accept Eq. 1, thus allowing description of

a decaying state. If we assume for the moment that such a simple
description of the time evolution is adequate (it very often is), a priori

calculation of the real and imaginary parts of E~ allows prediction of the

formation energies and lifetimes of intermediate species, and thus is an

important task. However, an immediate question arises: If the

Hamiltonian for the system at hand is Hermitian, how can a "complex

eigenvalue" such as ER ever occur? Hermitian operators have real eigen-

values! This observation has led to almost continuous discussion and

dispute since 1930. Refs. (1-7) contain sensible discussions. Many others
do not. However, even without detailing any of this discussion, it is

straightforward to state that one of the major purposes of the introduc-

tion of complex coordinates in nonrelativistic quantum theory is to

produce exactly those (non-Hermitian) operators which have the complex
energies of Eq. 2 among their actual eigenvalues. That the procedure for

constructing these new operators is, at first glance, totally trivial is

certainly a reason for the popularity and utility of the method. A

pleasant bonus is that the eigenfunctions associated with these complex
resonance eigenvalues are square integrable (henceforth, 2) and t hus

satisfy our feeling that resonances are localized, at least at complex

values of the coordinates.
Thus, one result of the use of complex coordinates is calculation of the

energies and lifetimes of decaying systems, be they atoms or molecules,

and for all types of decay mechanisms. As the formalism is developed, it
will also emerge that use of complex coordinates by no means implies a

particular a priori assumption as to the actual time evolution: it might be

exponential for all times, t, of physical interest, ~’short~,t%’rlong [for
example, (5) and (6) contain discussions of the origin of the mandatory

existence of long-time departures from pure exponential decay] or it

might be strongly nonexponential, and not at all well described by a

single complex eigenvalue for any reasonable length of time. Another use

of the technique is the production of rigorous mathematical results
governing what we can expect SchrOdinger theory to predict for bound

state and scattering dynamics of atoms and molecules. The third major
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COMPLEX SCALE TRANSFORMATIONS225

use of the method is in the area of computational scattering theory. In

the flurry of successful activities relating to calculation of resonance

properties, many workers have overlooked an original motivation for

interest in the method: namely, direct calculation of scattering and

photoabsorption cross sections without detailed enforcement of boundary

conditions. The ability to develop computational methods that flout the

usual channel-by-channel accounting of multichannel scattering theory is

essential as the number of channels increases (or becomes infinite as in
impact ionization or collisional dissociation) and was a dominant interest

of many of the early workers attempting to apply complex coordinates in
atomic and molecular physics (8-18). These three areas--resonances,

results of rigorous theory, and potential for development of techniques

that ignore usual scattering boundary conditions--form the body of the

review, and are interwoven with discussion of applications.
Before proceeding a few additional comments are in order. The status

of theory and computation as of early 1978 are well represented in the

proceedings (19) of a March 1978 Sanibel Workshop. An extensive

discursive review of computational aspects relating mainly to atomic

electronic resonance structure, and, in particular, use of complex basis
functions has been prepared by Junker (20). The present review 

intended for physical chemists, which is taken to imply that there is

usually no need for the great mathematical precision that can be found in

abundance in much of the cited literature. Thus, for example, the

spectrum of an operator is taken to consist of the set of its eigenvalues;

we assume that square integrable bound state eigenfunctions correspond

to discrete eigenvalues, and that g-function normalized scattering, or
continuum, eigenfunctions correspond to eigenvalues in the continuous

spectrum: this is the usual language of physicists.

CONCEPTUAL AND MATHEMATICAL

BACKGROUND

Before stating the results of the theory of many-particle analytically

continued Hamiltonians developed by Aguilar & Combes (21), Balslev 

Combes (22), Reed & Simon (7), Simon (23, 24), and van Winter (25), 

is useful to give a little qualitative background and motivation. (Experts

may skip the next two subsections.)

How Can Coordinates Be Complex?

We take the view of Heisenberg: Only observables are subject to physical
interpretation, and observables are matrix elements and eigenvalues.
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226 rU~INHARDT

Consider the hydrogen atom Hamiltonian (in a.u.) for s-states (l = 

1 1 d 2d 1
3.~----~(r)= 2 2 dr r - ~r-7

r being the radial variables in spherical polar coordinates. The expected

value of the energy is thus

foUR(r)[ 1 1 d 2d ~]R(r)r2dr/fo~R~(r)r~dr ( E ) 
2 r2 cff r -~r --

assuming that the state function is ’{’(r,/9, ~) R(r)/4v~, and that R( r)

is real, as it may always be taken (s-states are nondegenerate). It 

usually assumed that the integration in Eq. 4 is over the real range of r

from 0 to m, and that the radial coordinate of Eq. 3 is real. However, if

R(r) is analytic in r (e.g. a combination of actual hydrogenic functions,
or Slater functions, or Gaussian radial functions) we can rewrite, using

Cauchy’s theorem, Eq. 4 in terms of contour integrals

fc
( 1 1 d 2d l)R(o)oZdO/fcRZ(O)oZdo 5(E>-- R(o)

2 o2 °do o "

without changing the value of (E). Three possible contours, C, are

shown in Figure 1. If we take R(r) = 2e-r (the exact radial ls function),

the contour need not even return to the real axis at o~, as long as O has a

positive real part at o~ insuring convergence of the integral. Thus, for

COMPLEX r- PLANE

Figure ] Complex r integration contours, The integral Jn Eq. (5 has the same value on each

of these. C~ is the usual real axis contour, C
2 

is asymptotically real, and C3 heads off into

the complex plane even as 0 -’ o~.
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COMPLEX SCALE TRANSFORMATIONS 227

example, taking~ p = rei° (O real, for the moment), which "scales" r by

the complex factor d°, we have

fome-re’°(

e-Z*°ld.2d e-*°). _ e-,ei°(eiOr)2eiOdr
2 r= -~rr dr r

<E) , 6.

fom( e "e’e)=( eie r )2eie 

which may be directly evaluated, giving the usual value, - 1/2. Thus the

expected energy is not altered if we use the complex scaled wave function

R(reiO) = 2e-,e*~

along with the scaled operator

~(~(O)=_~(~(reiO)=_e_2iol I 2 rz d; r dr

e-iO

integrated with the scaled measure e3iOr2dr. Note also that just as

R(r) = 2e-" is an eigenfunction of the %(r) of Eq. 3, with eigenvalue

- 1/2, 2e-e’°r is an eigenfunction of ~(rd°), with the same eigenvalue,

as is easily checked by substitution, or more laboriously, by usual power

series techniques (26, 27). As Eqs. 6-8 give the same matrix element and

eigenvahie as 2e-r with Eqs. 3 and 4, no predictions are changed.

Whether we prefer to think of the coordinate r in R(r) as real, or as a
scaled complex coordinate 0 = d°r, makes no difference in this example

as long as the following hold:

1. r is not itself an observable. (This is usually true--think about it,
spectroscopy and scattering experiments do not give "r" directly).

2. The operators are also appropriately scaled.

3. We note that as Eqs. 5-8 arose from Eq. 4 by changing the radial

integration contour via Cauchy’s theorem, there is no complex conju-

gation of the e~° arising from the scale transformation, whether it

occurs on the left or fight of the operator. On the other hand, if R(r)
for r real (i.e. 0 = 0) is intrinsically complex (e. R(r) = r-r+ ie-2")

then the complex conjugation of the usual definition of expectation

value does apply to (but only to) the intrinsically complex part of the

function. Thus, for example, the spherical harmonics, Y~,,,, are
conjugated as usual.

Thus, without changing any observable properties of the system, we can
work with a complex radial variable. The only care that need be taken is

~The "angle" 0 defining the complex scaling factor d° is not to be confused with the 0 of
usual (r, 0, 4~) coordinates. This will always be clear in context.
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228 REINHARDT

with regard to Condition 3 above, as not all "i"s are treated alike in
forming expectation values--an odd rule unless it turns out to be useful.

Finally, we note that the e3i0, arising as r2 dr --, e3i°r2 dr when r -~ reiO, is

often included with the scaled functions, leaving the "measure" r2 dr

unchanged thus

fo~°(e,30/2e. _,O(re ) e-2i°ld2 r2 drr 2d~r e-i°)(e’3°/2e-re’°)r2dr7

<E> =

fo°~( ei3e/2e-re’°)2r2 dr

9.

In this case the e~3°/2, as well as the rd°, are not complex conjugated.

But, again, any intrinsically complex functions are treated as usual. The

reason for this last rearrangement becomes clear below, when a unitary

transformation is introduced to effect the scale transformation: Everyone

knows that operators don’t "act" on the integration measure, so the
ei3°/2’s have to be stuck in! The ideas of this subsection are taken far

more seriously in Refs. (8, 10, 28-32), where they are referred to 

contour distortion techniques.

So far, much complexity, a peculiar set of operations for performing
expectation values (not all is are equivalent!) and no new results, but:

What About Boundary Conditions?

Boundary conditions determine whether an operator has eigenvalues, and

whether the corresponding eigenfunctions are L2 (bound states) or non-
L2, 6-function-normalized, scattering states. What happens to boundary

conditions as r ~ rei°? For our example of R(r)= 2e-r, which is cer-

tainly L~, there is no problem. R(rei°) = 2exp(--rexp(iO)) is also 2,

unless 101 ~> ~r/2, a restriction that must be observed. Thus the boundary

condition of square integrability is preserved. Conversely, no new square

integrable eigenfunctions with real eigenvalues suddenly appear as r ~ re~°

and ~(r)-~ %(re~°). That is ~(r) and ~(re ~°) have the same real
bound state eigenvalues.

What about scattering states? This is where things begin to happen.
Scattering wave functions are non-normalizable, but they remain finite as

r --* o~. Thus, unless the potentials are too long ranged, radial scattering

solutions look like linear combinations (e+ikr)/r and (e-ikr)/r as r --, ~.

k is the momentum (in units of h) and E-~k2/2. To preserve this
(bounded) asymptotic form as r ~ re ~° we must simultaneously take

k -~ ke-~°. If we don’t, one of the exponentials will grow exponentially at

~z, violating the boundary condition of everywhere finite wave functions.
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COMPLEX SCALE TRANSFORMATIONS 229

DILATATION TRANSFORMATION,

H’-~H (~)

o- (HI o- (H(0))

Figure 2 Effect of the transformation r--, rexp(iO) on the spectrum "o’" of a one-body

problem. Bound states are invariant as is the threshold where the continuum begins. The

continuous spectrum "rotates" about the threshold by -20, exposing a higher Riemann

sheet of the resolvent.

If k ~ ke-i°, then E = k2/2 -~ e-2i°k2/2, for the allowed scattering

eigenenergies. This suggests immediately: the complex scaled Hamilto-
nian ~(0) of Eq. 8 has the same bound state eigenvalues as does the
original of ~£ (Eq. 3), but the scattering states have energies Ee-2i°(O <~ 

< oo). The continuum is then rotated into the lower half complex energy

plane, as shown in Figure 2. This is the correct result even though for the
Coulomb problem the asymptotic forms aren’t quite (e ’-~kr)/r. It is the

fact that the continuous spectrum of %(0) is different from that of 
which is the key to the utility of the r--, rei° transformation. With this

very qualitative motivation, we now simply state the results of the full

theory.

Spectral Theory of Dilatation Analytic Hamiltonians

This section contains the mathematical results of the theory of complex

scaling. The basic result is that if, for an N-body Coulomb system, we

take (0 real and postive, to simplify the discussion)

~1~( 0 ) = -- -2i0 ~+ e-i°V~v°ul, 10.
2

where e-2i°, e-~° are complex numbers which scale the ordinary N-body

kinetic energy -~7~/2, and N-body Coulomb potential energy
V~°ul, ~(~) has complex eigenvalues with z eigenfunctions ( for c ertain

ranges of e) which we associate [a carefully chosen word, see (33) and

below] with resonances. Those wishing to see applications before invest-

ing the energy to follow a fuller statement of the theory may look at

Figures 2 and 3, and then proceed to the applications sections, having
noted that Eq. 10 is just Eq. 8 scaled up to N-particles.

The rigorous theory (7, 21-25) that follows gives results for eigenvalues

of complex scaled N-body nonrelativistic Coulomb Hamiltonians, and
their behavior under the complex scale transformation r--, rd°. The
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230 REINHARDT

parallel results for the analytic structure of Hilbert space matrix elements
of the resolvent (z- ~C)-1 are also stated. Rather than by direct use of

Cauchy’s theorem and the contour distortions of the previous sections,

the rigorous theory is compactly formulated in terms of unitary transfor-

mations called dilatation transformations (dilate =-- dilatate = stretch),

conveying the idea that stretching scales the system but does not change
angles. We thus define a unitary operator U(O) whose action on wave

functions is defined in configuration space for three dimensions

U( O )¢( F) =~ ei3°/2 ~(-Fei°) 11.

for a two-body system, F being the relative center-of-mass coordinate
vector (see Eq. 9 and following equations). For N-body systems, if fiN(r-)

is the corresponding function F~ (F~, F2, F3... FN), where only N- 1 of the

~ are independent in center-of-mass coordinates, we have

U( O )~N( ) ~ ei 3(N-1)O/2 ~( ;ei O).    

The corresponding transformation on the N-body operators, exemplified

by the Hamiltonian, is

~]v( O ) =~ ~}~N( ’°) =--- U(O )~s( F)U( O ) 13.

For the case of the N-body Coulomb problem

- (r) 14.
2

DILATATION TRANSFORMATION,
H.--~ H (0)

o" (H) o-

/---,.,=/~ ,.,T H R E S H O L D S ~-~1

STATES STATES

RESONA RESONAN

(HI DDEN) (EXPOSED)

FiE~re ~ Effect of dilatation tr~sformafio~ o~ a m~y-bod~ Ha~]to~. A~ boung

states a~g t~esho]~s ~e inv~ant. ~owever, ~ the continua rotate, complex ~esou~ce

cJ~e~v~ucs ma~ be exposed. Such ei~cnv~ues cotrcspo~ to poles o~ the rcsolvcm

but are "~dden" on a ~her sheet ~[ 8=0, a~d wi]] be exposed i~ the cuts

app[opriatdy moved.
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COMPLEX SCALE TRANSFORMATIONS 231

and

~,~v( O ) =~ U( O )~f~v( fi’)U( O )- ’ = ’~)

~2
¢--2i0 N ~ --~0 coul:- ~ e V~ . 15.

2

That is, for N-body systems with only p~r-wise Coulomb interactions,
the scaled H~lto~an ~(0) is obtained by simply multiplying the total

relative kinetic energy by e-2~0, and the potential energy by e-~°. Note

that t~s is precisely the analog of Eq. 8, as obtained by contour

distortion. Not only does the Coulomb potential scale in a simple

manner; the Coulomb interaction belongs to a special class of potentials
called dilatation analytic, a more restrictive condition than simple analy-

ticity in the inte~article coordinates, w~ch the Coulomb potential has

(except at r~j : 0, w~ch causes no difficulty). The precise definition, and
deter~nation of w~ch potentials are or are not dilatation analytic, is a

nontfivial mathematical tec~icality (see gels. 7, 21-25, 34-36), into

w~ch we shall not delve. That the N-body Coulomb potential is dilata-

tion analytic allows us to state at once (suppressing the "N" in ~):

1. Bound state eigenvalues of ~(0) are independent of 0, ~d identical

to those of ~ for 101 ~ w/2.
2. Scattering thresholds corresponding to the possibility of fragmenta-

tion of different subsystems in differing states of excitation are also

independent of 0, 101 ~ ~/2.

3. The segments of continua beginning at each scattering threshold
rotate by an an~e 20 into the lower half plane (0 ~ 0), each about its

individual threshold. (T~s follows from the fact that the continua are

related to the ~netic energy, not the potential.)

Points 1, 2, ~d 3 ~c the simp~stic analysis of the preceding

subsection (see Figure 2); now, addifion~ly:

4. New, complex, discrete eigenvalues of H(O) may appear in the lower
half complex energy plane, in the sector 0 > arg(z - E~~sh) ~ - 20

where z is the complex energy, and Ed~sh is the lowest energy-scattering

threshold. These are the complex eigenvalues that we associate with

resonances. The corresponding eigenfunctions x(O) are L~, as befits their

association with discrete eigenv~ues. Note that the X(0) obtained 
t~ng limo~oX(O) will not be L~, unless its eigenvalues were real to

begin ~th, and it represents a bound state. The discrete complex

eigenvalues of H(O) are independent of O as long as they remain isolated

from parts of the continuum. As the continua rotate as a function of 0,
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232 REINHARDT

discrete complex eigenvalues may appear or disappear as the continua
sweep by, and:

5. All discrete eigenvalues of %(0) are of finite multiplicity, and can
accumulate only at thresholds (i.e. only near a threshold is it possible to

have an infinite number of discrete, bound state, or resonance eigenval-

ues, in an arbitrarily small region of the complex plane).

These changes in the spectrum (the set of eigenvalues) "o" of ~(0) 

a function of 0, are illustrated in Figures 2 and 3.
An important reinterpretation of Figures 2 and 3 is in terms of the

resolvent. Consider a matrix element of the resolvent (z- ~3C)-l:

Ro(z ) -~ (e~,(z -- ~(~)-’~) 16.

as a function of the complex variable z. For all but exceptional L2 vectors

~,, in our N-body Hilbert space, R,(z) has well-known properties: it is
analytic in z everywhere off the real axis [~ = ~C(~’) is Hermitian]; it has

(simple) poles corresponding to bound state eigenvalues; and, has branch

points corresponding to thresholds, with the segments of continua run-
ning to + ~ from the various thresholds acting as branch cuts. The

branch cuts force R,(z) to be carefully interpreted as z approaches the
real axis if Re(z)>~ E~tucsh, the lowest scattering threshold energy. Thus

we associate points of nonanalyticity of Rq,(z) with the spectrum (ei-

genvalues) of the operator. Thus R,(z) is analytic for Ira(z) ~ O, as the
spectrum of ~ is real.

What about the resolvent (z -- ~C(0))-l? How is it related to 

~)- 1 ? This is where the utility of defining the complex scale transforma-
tions via the unitary transformations of Eqs. 12 and 13 becomes ap-

parent. Consider

R~(z) =-- (¢, U(O)-’U(O)(z - 

= (q~(0), (z - ~(0))-’,(0)). 

Using our association of the singularity structure of a resolvent with the

spectrum of the operator, we see that the analytic structure of R°,(z) is

the same as that of R,(z) except that the branch cuts of RO,(z) are rotated
into the lower half plane, by angle 20. As R~(z)= R,(z) in the upper

half z-plane, these two functions are simply different integral representa-

tions of the same more general multisheeted analytic function. Each

representation has its own domain of validity, as the cut locations give

the natural boundaries of the representation. Thus in Figures 2 and 3,

R,(z) is valid for 0 ~ arg(z) ~< 2~r; R°,(z) is valid for --20 ~< arg(z) ~< (2~r
--20). The two representations are not equal on the segment 0 < arg(z)

~<--20, where Ra,(z) provides the (unique) analytic continuation 

www.annualreviews.org/aronline
Annual Reviews

A
n
n
u
. 
R

ev
. 
P

h
y
s.

 C
h
em

. 
1
9
8
2
.3

3
:2

2
3
-2

5
5
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 a

rj
o
u
rn

al
s.

an
n
u
al

re
v
ie

w
s.

o
rg

b
y
 U

n
iv

er
si

ty
 o

f 
C

al
if

o
rn

ia
 -

 L
o
s 

A
n
g
el

es
 o

n
 0

5
/2

7
/0

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.

http://www.annualreviews.org/aronline


COMPLEX SCALE TRANSFORMATIONS 233

R(z) into the lower half z-plane. This geometric interpretation involving

the Riemann sheet structure makes the statements 1, 2, and 4, above,
transparent. All follow from the fact that poles (bound states or reso-
nances) and branch points (thresholds) are intrinsic singularity properties

of an analytic function. As long as a representation restricted to a cut
plane "exposes" these singularities, they are independent of cut location;

but, as soon as the cuts move in such a way as to hide singularities, they

are (suddenly) no longer seen in a specific representation. The cuts

themselves, of course, are not singularities of the analytic function, but

only boundaries of a representation, and we may attempt to place them

as we wish. Those who prefer to see these properties exemplified in terms

of explicitly soluble model problems, rather than as following from

analytic function theory, should look at such solved problems in (20, 37,

38a, b), where complex coordinates have been explicitly included, and

(39), where it would be a useful exercise to do so.
Finally, many computational results, such as those involving atoms in

fields and molecular structure and dynamics (discussed below), indicate
that similar properties of spectra and resolvents exist for systems that

interact via nondilatation analytic potentials [see also Yaris et al (40)].

The restrictive requirements of dilatation analyticity are thus too strong.

What is the appropriate generalization of the concept of dilatation
analyticity? Where will results differ from those for dilatation analytic

potentials? If the past continues to be a guide to the future, positive

results of computation will be an important guide to mathematicians as

to the potential existence of theorems waiting to be discovered.

Theoretical Applications of Spectral Theory

Many quite strong additional theoretical results that apply to the
dynamics of atomic and molecular electronic structure have been

demonstrated using the dilatation analyticity of the N-body Coulomb

Hamiltonian. Briefly, dilatation analytieity has been used in the following

cases:

1. In combination with its cousin Boost Analyticity to establish disper-

sion relations (41, 42) in e÷-H scattering, and to suggest their

nonutility in e--H scattering, contrary to earlier conjecture (43 and

references therein).
2. To prove (24, 44, 45) nonexistence of discrete eigenvalues (real 

complex) of ,~(O) with Re(E)>~O. In this theorem E----0 is the

threshold for total breakup. A very simple proof was later found (33,

46) and warrants inspection.
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3. In derivation and discussion of the usual Born-Oppenheimer ap-

proximation (47). Are diatomic potentials analytic in the internuclear

distance, R?

4. In establishing fundamental results about convergence and summa-

bility of Rayleigh-Schr~Sdinger perturbation theory for resonances (48

and references therein) and time-dependent perturbation theory (24,

49).
5. In establishing the possible behavior of E(1/Z), the ground state

energy of an atomic system in 1/Z per~arbation theory (50), forcing

the conclusion that conjectured (50, 51 and.references therein) bound

states in the continuum are likely to occur only on sets of measure

zero in 1/Z.

6. In setting rigorous bounds on the rate of fall off in coordinate space

of bound state wave functions (52, 53) and on the rate of fall off 

time of resonant time evolution (54).

Other more technical mathematical results are discussed by Reed &

Simon (7) and Simon (33). However, it is important to note at this point
that for the N-body Coulomb problem the relationship of poles of

(~(0),(z- ~(0))-~(0)) to poles of scattering amplitudes, and 

observables, is not fully established. This general point is discussed by
Simon (33). More recently Nuttall & Singh (55) have given a proof of 

connection for e- atom scattering for energies below the lowest three-body
(the collisional dissociation or impact ionization) threshold. Thus there

are open theoretical questions, in contrast to the two-body case (e.g. 56

and references therein) and the N-body case with shorter ranged poten-
tials (e.g. 57 and references therein). The importance of such a gap in the

mathematical foundations is well illustrated by an experiment of Peart &

Dolder (58) observing a resonance (albeit very broad) E- above
E = 0. If observed resonances are in one-to-one correspondence with

complex eigenvalues of ~(O), this observation contradicts 2, above, and

we could conclude the experiment to be an artifact. This puzzling
situation is discussed by Doolen (59) and Nuttall (60). It is especially

unclear how to interpret the stabilization calculation of an Ha- reso-

nance with E well above zero (61) as this relates directly to the original
Hamiltonian, as do eigenvalues of ~(O), not even to the (remote)

possibility that (J~(0) has no eigenvalue corresponding to an S-matrix

pole.

COMPUTATIONAL APPLICATIONS

Applications to atomic and molecular autoionization, atomic structure in

ac and dc fields, molecular predissociation, and calculation of cross
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sections are discussed under this heading. The discussion of atomic

electronic structure is sufficiently detailed to reflect the changes in

computational strategy as they have developed since 1972.

Atoms." The Direct Approach

From a purely computational point of view the simplest way to imple-

ment the theoretical developments for N-body systems is to use standard

configuration interaction or other variational techniques which produce a

real symmetric matrix representation of the usual electronic Hamiltonian,

(c~)i j =

Then

9(~= KE + PE 18.

where KE and PE are the real symmetric representations of the kinetic

and potential energies in the variational basis. Rayleigh-Ritz theory now

directs us to find the eigenvalues of ~ as equivalent to a linear variation

in our space of trial functions. The extension to 9C(0), and thus to direct

determination of resonance eigenvalues as first suggested by J. Nuttall in

1972 (private communication), is to take (as follows at once from Eq. 

~(0) = -2i0 KE +e- i°~ 19.

where KE and PE are the same real symmetric matrices as in Eq. 18,

although we might expect to choose the trial function space differently.

Solution of the complex symmetric matrix eigen-problem

~{~(0)~i Ei? 20.

then yields the complex eigenvalues Ei, and the complex vectors ?i. All of

the burden of trying to represent a complex valued wave function is

placed on these vectors of expansion coefficients. We note at once that as

%(0) is not Hermitian, its spectral resolution involves both its left and

right eigenfunctions (62). However, elementary manipulation gives the

results that the left eigenfunction di corresponding to eigenvalue Ei is just

(?i)r where T is the transpose. (Note that the transpose is not the usual
Hermitian conjugate, which is the transpose complex conjugate.) Thus

~(0)= Ee,(- Ci)(Ci) 

i

This is a bi-orthogonal expansion (62, 63) and (~i)T(~j) = (rat her than
the usual (?~)t(gj) = 8~j for Hermitian problems).

The ansatz of Eq. 19 is very attractive as it i__mplies that standard,
existing variational codes may be used to generate ~J(~(O), leaving only the
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problem of solution of Eq. 20, which is almost always straightforward.

This is, in spite of the limitations discussed in the following subsection,

still an attractive feature for exploratory calculations. One can determine

whether the method will be of any utility without much work on code

development. We refer to the use of Eqs. 19 and 20 with real symmetric
representations of ~-~ and P---~ as the Direct Approach.2

The most important question about the Direct Approach is: Does it

work? This is answered affirmatively by Doolen et al (64, 65). Next, how

can we optimize the choice of 0, given that in a finite variational

expansion the resonance eigenvalues are not independent of 0 (although

in a complete basis they would be)? This is answered in an empirical
manner by Doolen (66). Doolen observed, for a fixed 2 expansion basis,

that approximate complex resonance eigenvalues, when plotted as a

function of 0 (note that in the Direct Approach no new matrix elements

need be calculated as 0 is changed!), followed trajectories (henceforth

0-trajectories) that paused for certain values of 0, suggesting some sort of

stationary property. This is illustrated in Figure 4 in a calculation of Eres
and 1"/2 for the lowest IS resonance in helium (2s2). The approximate
stationarity, easily observed in the figure, is even more dramatic for

larger basis sets (66). The analytic theory of the morphology of these

0-trajectories has been given by Moiseyev et al (67), and the existence

and interpretation of such stationarity analyzed in terms of an extension

of the usual virial theorem to complex scalings by Br~indas et al (68, 69),

Canuto & Goscinski (70), Winkler & Yaris (71, 72), Yamabe et al 

73), Certain (74), and Moiseyev et al (75-78). Application of the virial
results require that 0 in the ei° scaling be itself a complex number, thus

allowing optimization of ReO and ImO, to ensure simultaneous stationar-

ity of both the real and imaginary parts of the resonance eigenvalue. This

is completely consistent with the general theory of dilatation transforma-
tions; the restriction to real 0 in our earlier discussions was simply for

convenience.

A very large number of workers have used the 0-trajectory techniques

as the basis of computational algorithms to locate resonances. Winkler &

Yaris (79, 80) and Weinhold (81a) have shown that low-order perturba-

tion theory may sometimes be used to avoid repetition of eigenvalue
computations as a function of 0, although Moiseyev & Certain (8 lb) have

demonstrated that such a theory may not be expected to have a large

radius of convergence.

Applications of the Direct Approach to resonance structure of few

body atomic systems have been notably successful. A highly selective

2Ironically, the first published results (112) ostensibly using complex coordinates 

locate a resonance (following Nuttall’s suggestion) were by a different method, to 
discussed below.
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-0.2~80 -0.2975 -0.2970

Figure 4 0-trajectories for location of the complex eigenvalue corresponding to the lowest
IS Feshbach resonance in He. Trajectories show behavior of complex eigenvalue as a
function of the complex scaling angle 0, for three choices of nonlinear par~eters in a
Hylleraas-type basis. The trajectories ~, or pause near values of ~ appro~mately
consistent with the Vifi~ Theorem. Figure reproduced from (66), with permission.

sampling of recent papers (containing references to earlier work) follows:

Ho, in an extensive series of papers, has looked at autoionizing resonance

structure in He and H- associated with ~gher (n>2) excitation
thresholds in He+ and H (82-85). Ho (86) and Moiseyev & Weinhold

(87), have exa~ned a large number of isoelectronic series of resonances

from Z=l to 10; the latter authors, using data of Ho (82), have

exa~ned corrdation in the resonances as a function of 1/Z. Doolen et

al have established the e~stence of a very narrow Feshbach resonance in
e+-H scattering (88). Similarly, resonances in the (e-, +, e - ) system (8

and in the scattering of positronium (e+,e -) from H-atoms have been

found (90, 91).

A toms in Fields: The Direct Approach

The Direct Approach has been app~ed to problems involving the dc
Stark (electric field) and Zeeman (magnetic field) problems, and 

multiphoton ionization. The dc Stark Ha~ltonian (for hydrogen)

~ Stark __
V 2 1 + ft. F

21.
2 r

has no bound states, but for small fields (if) has long-lived states w~ch

may be treated as resonances. Using the Direct Approach ansatz,

= + e-’O + 22.
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Reinhardt (92) obtained excellent positions and widths of Stark broad-

ened hydrogenic states for n = 1, with subsequent extensions to n--2

states (93). Many others have subsequently used the Stark problem as 

test case, for example (68, 94-96). The same techniques were then
applied to the Stark broadening of autoionizing states by Wendoloski &

Reinhardt (97); to the combined Stark-Zeeman effect by Chu (98); 

to the multiphoton (ac Stark) ionization by Chu & Reinhardt (99),

Reinhardt (100), Chu (101, 102, and references therein), and Preob-
razhensky & Rapoport (103) for the case of an oscillatory classical field,

and for quantized fields by Grossman & Tip (104). Many of these results

were obtained before there was any real theoretical justif~ation for the
use of the dilatation transformation. The field coupling F-V is not well

behaved at ~, and is not encompassed by the standard theory of Refs.

(7, 21-25). Qualitative mathematical results were obtained by Cerjan 
al (105) and the whole theory finally put on a firm mathematical footing

by Herbst (106, 107) and Herbst & Simon (108a, b, 109). The clear lesson

is that there are many things to be discovered via computations, and that

in particular the numerical utility of complex scale transformations is
often ahead of rigorous mathematical foundation.

Critique and Extensions of Computational Technique

The Direct Approach has the following advantages:

1. Boundary conditions are ignored--often a nontrivial fact: for exam-

ple, for resonances near the n = 4 threshold (85) in, say, He, where 

sufficiently large number of open and almost open channels are

present as to make use of other methods problematic; or for the

problem of Stark broadening of the ~P2s2p shape resonance (97) 

H-, which lies above the n = 2 threshold, and in the presence of the

field a minimum of 12 important open channels are strongly coupled,

ignoring the problem of enforcing Stark boundary conditions. In
these cases, both of which were motivated by concurrent experimen-

tal work, no other computational techniques have even yet been

quantitatively applied.

2. It is possible to take existing codes and put them into the service of

the direct method without reprogramming integrals or integral trans-

formations. This means that exploratory calculations are easily un-

dertaken.

But there are problems. The Direct Approach very often requires

solution of large eigenproblems: in (85), Ho used Hylleraas bases of 

to 165 terms, in (88) Doolen et al used bases ranging from 286 to 680
Hylleraas terms. This latter is an extreme case, and quantitative results
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were obtained for a very narrow resonance (F/2--7)< -~ a. u.), ve ry

slightly below the n = 2 threshold in e+-H scattering, and where other

computational methods were not able to come to decisive conclusions. In

general, that widths are usually quite small implies the need for fairly

high precision, However, use of a large basis is aesthetically offensive to

some, and one can ask: Can some asymptotic information be included to

speed convergence? More fundamentally, the Direct Approach simply

runs out of steam for e--atom resonances involving several shells of

atomic electrons. In the Direct Approach the inner shells cause grave

difficulties. The origin of this difficulty, illustrated by o.ur elementary

discussion of the H atom, is that for a bound state, if

~(r)R(r)-~ ER(r), then ~(rei°)R(re i°)-= ER(rei°).

Thus, if an inner shell is orbital in, say, neon is well represented by
2e-Zr, with an effective Z of about 9, the corresponding ls orbital for the
scaled Hamiltonian ~(0), will be 2e-9rei°. This is highly oscillatory and

will be quite difficult to represent in the basis of real radial functions of

the Direct Approach, where, again, the expansion coefficients themselves

bear the whole burden of the fact that %(0) is not ~. This is all the more
frustrating as in e--Ne scattering resonance, the ls orbital probably

plays no real role in the resonance formation. Apparently somewhat

different, but in fact closely related, methods for solving this inner-shell

problem have been introduced. The simplest to describe is:

METHOD OF COMPLEX BASIS FUNCTIONS m matrix element of the scaled

Hamiltonian

which might occur in the Direct Approach, might well employ basis

functions of the form

Xi(fi’) = ..~ (d?i(i)(~ 1 )~i(2)(~2)... d~i(N+ 1)(ZN+, )) 23.

in scattering of an electron from an N electron atom, A being an

appropriately normalized antisymmetrizer. In the Direct Approach the

q~i0)(Fl) are of the form Ri(rl)Y~m(~l) with Ri(r~) a real radial function.
A moment’s reflection indicates that the variable change r~ 7e-i° in the

matrix element leaves it invariant:

and thus, it is possible to reinterpret the Direct Approach as keeping the
unscaled (normal) Hamiltonian, ~3(~, but working with the complex radial
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functions Rj(re-~°) implicit in

Xi( Te-iO) = h( dPi(i)( ~le-iO )dPi(2)( ~2e-iO )...dPi(N+ l)(~N+ 24.

However, as realized in a slightly different context by Rescigno &
Reinhardt (15, 16, 18), the use of complex basis functions with the

unscaled Ha~ltonian is more fle~ble than the Direct Approach if we

scMe the different ¢~(~) differently. The method is in general no longer
equivalent to the spectral theo~ of dilatation analyticity, as it may well

not correspond to an easily derived variable scMing of the operator.

Thus, in introducing the method of complex basis functions for reso-

nance deter~nation, ~esci~o & McCurdy (110, 111) have chosen 

t~e ~ unscaled and to t~e

Xi : A( *i(I)( ~)*i(2)( 

X (7~+,e -’°)...*i(N+ 
l,(~N+,e--’O)) 25.

where orbitals i(1) through i(k) correspond to a subspace of orbitals

important for the static interaction, polarization, and correlation, and
i(k+i) throu~ i(N+I) correspond to the orbitMs involved in reso-

nance formation and scattering. Thus, inner shells are simply not scaled,

thus avoiding the aforementioned inner-shell problem. T~s idea of not

scahng "tight" orbitMs and scaling "loose, or scattering" type orbitals is

intuitively related to the concept of exterior sealing discussed below. The

method has been appfied to e--Be scattering in the static exch~ge

appro~mation (111) ~d works well. More recently, K. T. Chung ~d 

Davis (private communication, 1981) have used ~ explicit multichannel

version of t~s tec~ique: They use ~(O) and a trim function of the form

~ = a ( ~1( ei0,- ¯ ", rNei°)

open

ch~nels

+ X ¢7~t(y,e’°,-..,~-,e’°)¢~(FN) 26.
i

where ~t(Ve i° ..... V~ei°) is just an L2 eigenfunction of ~(~, wMch

approfimates the resonance, with the indicated variable changes, and

¢~(~), wMch represents the scattering electron, is exp~ded in Slaters.

W~le this appears to differ from the Rescigno-McCurdy ansatz, note
that the change of variables ~ Ve-~°, in both %(8) and ~, yields the

former type ansatz. K. T. Chung and B. Davis have obtMned results of

exceptional stabi~ty for doubly excited states of He using t~s method.
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METHOD OF COMPLEX SIEGERT FUNCTIONS Bardsley et al (112, 113),
Junker & Huang (27, 114, 115), Junker (20, 116, 117), and Nicolaides 

al (118-121) have implemented a method closely related to the Siegert

method (3). The Bardsley & Junker paper (112) was the first computa-
tional application of any type of complex scaling to a resonance calcula-

tion. The use of complex coordinates was suggested to them by Nuttall,

who was rather surprised by the way they used his suggestion: he had

expected them to attempt a Direct Approach calculation.

Siegert proposed that one solve ~C~(r)= Eta(r) with the boundary

condition ~b(r)~ e+~kr/r. With this unusual boundary condition, reso-

nance solutions with complex E and k are found, but, k has a negative

imaginary part implying that ~(r) diverges as r -+ o0, making the method

problematic for computations. However, simply looking for formal solu-

tions of the Schr6dinger equation, if

%~(r) = E~(r), then ~(~(O)~(re ~°) = E~(r#°)

by simply regarding r as a dummy variable. Thus applying the Siegert

condition amounts to solving

% ( O )t~( ’° ) = E ~b( rei°)

with the rotated Siegert condition

~b( rei°) --+ eikre’7( ’°)

which, if O is large enough, is a decaying function even for k complex in

the lower half k plane: a far more palatable boundary condition for

actual applications. Thus if k = pe-~ (’p, a, real and positive), as long as

O > a, an L2 Siegert function may be found. Thus, an L2 eigenfunction in

a sense suddenly "appears" as O increases from 0 and finally becomes

larger than a; this is highly reminiscent of the dilatation analyticity
spectral theory, where a discrete eigenvalue "suddenly" appears as a cut

rotates far enough into the lower half plane.

In fact, both methods have found the same L2 eigenfunction, a fact

recognized (and often exploited) by numerous workers, in addition to the

above: for example, Nuttall (60); Atabek et al (122-124), the latter 

these (124) containing an interesting discussion of optimization of 19;

Isaacson et al (125, 126); Simons (127, 128). In particular, McCurdy 
Rescigno (129a), Yaris & Taylor (129b), and Baei6 & Simons (130) 

been able to determine partial resonance widths (i.e. fractional decay into
different open channels) via relationships involving Siegert boundary

conditions, an alternative method to that of Noro & Taylor (131). Thus,

excellent results for many atomic resonances are obtained using a trial
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function of the approximate form (written here for a single open channel)

~=A(~aixi(r~lei°,~2ei°,...,7~v+~ei°)+Cpt~r~et(~’ei°)f(r~v+lei°)) 27.

where f(re i°) --, eikre’8/rei° asymptotically, is used in diagonalization of

~(0) (not ~). In some cases k is determined self-consistently, in others

(27) the method is generalized by using k as a complex variational

parameter.

The two methods (complex coordinates and complex Siegert functions)

are not as dissimilar as they appear. The trial function, "I’, of Eq. 27 is
employed with 56(0). If both W and ~(0) are subject to the transforma-

tion t~ -~ ~.e-i° (for all j) and k ~ ke-iO, a trial function of the form of
Eq. 25 is obtained, which is to be used with 56, just as in the Rescigno-

McCurdy ansatz. The only difference is the expansion basis used for the

term f(?’u+~), which in both methods will be an ~ function f or 0 la rge

enough. Thus both methods solve the inner-shell problem in the same

way. Moiseyev et al (132) have carried out a study of the two methods

using a newly defined criterion for stabilized complex eigenvalues, with

the conclusion that neither method works well. This is in strong contrast

to the findings of other workers, and the origins of the differences should

be resolved as soon as possible.

COMPLEX VARIATIONAL THEORY The observation that (Eqs. 22, 24)

for all (i, j) implies that scaling all basis coordinates ~--, ~’e-~° and

leaving 56 unscaled is identically equivalent to a dilatation transform and

has an identical spectral theory, provided only that the basis functions

analytically continue. Thus, if a Direct Approach calculation gives a
stabilized complex eigenvalue E~(8) at 0 ---- ~, and

3(/~) being an eigenfunction of the matrix representation of 56(0) in 

Xi(~) basis, then the corresponding function in the rotated basis is

*R( 0 ) = X Ci( O )Xi( ~’e-id ) 29.
i

[with the identical G(d)] as 3(/~) is automatically an eigenfunction [with

the same E~_(/])] of the matrix representation unscaled Hamiltonian 56, 

the X.i(~e-i°) basis. As the spectral theory tells us to expect ,t,~(~) to 
L2, ~R(~) is also L2, establishing the complete equivalence of the pairs

(O(~(0) with basis Xi(~)) and {~, with Xi(?’e -i°)} as far as
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computations are concerned. This is the old rotation group (physical
rotations in this single occurrence!) duality: Do we rotate objects, or do

we rotate the coordinates?
If coordinates corresponding to different electrons are scaled differ-

ently, however, [as in Rescigno et al (111)] a new flexibility is obtained.

Further, if even coordinates in the radial expansion of a single electron

are scaled differently

(e.g. R(r)= re-~r + r2e-/~x, with ot--~ ote-i°’,fl--~ fle-io2)

use of complex basis functions gives still more flexibility. Note that even
in this most general case, as only radial (rather than angular) coordinates

are scaled, a stretching of coordinates (albeit nonuniform) is occurring

without any angular distortion. We thus call this most general type of

transformation a generalized dilatation transformation (GDT). It is de-

fined by its action on the wave ftmction. How are we to use this

flexibility? Stillinger et al (133a, b) and Herrick et al (133c, 134, 135),

beginning in the mid 1970s, have implicitly used a variational principle
for resonances based on locating complex energy stationary points of the

GDT functional (note that ~ is unsealed)

EGOT( xI~ ) 30.

The new quantity ~6z~r(*) we define as the generalized dilatation trans-
formation complex conjugate: GDT(*) implies that only those quantities

(such as spherical harmonics) not involved in the GDT are conjugated.

That is, only those quantities that would be conjugated in the absence of

a GDT. The new GDT notation is introduced to indicate the generality

of the variational theory implied. A simple example will make this clear.

Given a one-dimensional radial Hamiltonian ~(r), which might support

both bound states and resonances, we write

R(r, (ai)) = 
i

and take

e~o~(~,~,) f0~n(r, (~,))%(r)n(,, (~,)),~,~r 31.
£%e(~, (,,~))~r~,~r

with no conjugates at all in this one-dimensional problem. We now vary

all of the c~ and as independently, including independent complex varia-

tions. As the (possible) complex values of the ei and a~ are associated with

the GDT they are not involved in complex conjugation. This is clearly far
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more general than simply assuming, as would be the case in application

of the method of complex coordinates [as in (111)] to a one-dimensional

problem, that the trial function be of the form

R(re~O, (ctj} ) = ~cj(re-ia)e-~J"e-i°,

J

with real ctj, which would then be made stationary without conjugation

of the e-i°’s. It is also more general than the variational theories

discussed in (68, 70, 73), for example. Such a variation can only give

stationarity, rather than the usual variational upper bound (which would

be regained were ordinary *’s reinserted) even for the (real) ground state.

Herrick attempted to publish an explicit discussion of these points (D. R.

Herrick, 1978 preprint, 1981 private communication), but the complex-

coordinate community was not yet prepared to understand the real

import of his remarks: his 1978 paper was rejected. Quite independently,

Junker (20, 96, 136, 137 and references therein) intuitively rediscovered
the utility of Eq. 30 and applied it to several systems. Junker’s broad

grasp of the many forms of complex basis functions led him to the
correct conclusions, even though one is confused by his implication (20,

96) that ~’R(/~) of Eq. 29 is the continuation of ~R(~) to 0 -~ 0. It simply

isn’t, unless all the ci’s are independent of 0: they are not. This misinter-
pretation does not affect his conclusions. Junker calls the method of Eq.

30 complex stabilization, from its similarity to ordinary stabilization

(138), and he cogently points out that the method can wreak havoc with
boundary conditions. Additionally, Junker has, in a very successful series

of calculations (20, 96), applied the method to a model problem, a e--Be

resonance, and to the Stark effect, and has pointed out that an earlier
e--Be calculation by Donnelly & Simons (140) also exemplifies the

method. [Taylor & Yaris (139a) and Simons et al (139b, c) have discussed
aspects of the relationship of various complex coordinate methods to the

usual stabilization techniques.] Perhaps the most spectacular example is

that of McCurdy et al (141), in which, in an SCF calculation of a Ca-

resonance employing real basis functions and a real Hamiltonian, use of
the scalar product implicit to Eq. 30 with respect to the radial expansion

coefficients (which are part of the GDT) gave a complex eigenvalue from

the otherwise ordinary SCF equations. This is clearly a very powerful

method, although its limitations are not yet defined. What is the distribu-

tion of eigenvalues for a large basis? The GDT(*) conjugation has clear

origins in contour distortion and dilatation transformation theory, but its
use as outlined in this section is of far greater generality.
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Molecular Electronic Structure." Real Axis Clamped Nuclei

The spectral theory of Refs. (7, 21-25) is immediately valid for the full

molecular problem, treating all nuclei and electrons as mobile particles. It

is also immediately consistent with the Born-Oppenheimer approxima-

tion, b_~ut with a twist. Consider the H~- Hamiltonian, with nuclei at

and R~ in the Born-Oppenheimer approximation (no nuclear kinetic
energies) and ~ denoting the electron coordinate

~_ V12
1 1

~ . 32.
2 ff l i l-

Can we simply take

~(0) = _e_2i0 V~ e_~0(
1 1 )

33.2 - o1 1

and, if so, what is its interpretation? This is transparently answered by
inspection of the Hamiltonian in confocal elliptic coordinates (e.g. 142).

If ra = I~ --/~, I and r¢ = 17~ -/~al, and R is the scalar distance between

nuclei, then

+ 1 _

+ ~ ~ R(~+n) n(t-n)
~4.

where ~ is the ~muthal angle and ~ = ( r~ + r¢)/r and n = (r,-
~20are dimensionless. In these variables the expected scaling e- KE, e- PE

can only arise if ~, ~ are unscaled, and R ~ ReiO. That is, under the

simultaneous scalings r~ ~ r~e~°, rB ~ rBe~° and R ~ Rei°. The conclusion
is that, for an N-electron molecule with arbitrarily many nuclei, the naive

transformation

~ -~ 3C(0) = e-Z~°KE + e i°pE

is consistent with the Born-Oppenheimer Approximation, but at complex

internuclear distances. We call this the CCBOA (Complex Coordinate

Born-Oppenheimer Approximation). There is absolutely nothing wrong
with this, as observables are always matrix elements of transition opera-

tors over appropriate vibrational functions, and we can distort the

contours! Thus, for a diatom, a transition moment between vibrational
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states q~i(R), q~j(R) might be written in the 

~x~ 2

fo q~i( Rei°)M( Rei°)~( Rei°)d( 35.

The electronic transition moment M(ReiO) in Eq. 35 is exactly what

would follow (automatically) from the use of e-2i°KE + e-~°PE. These

points have been noted by Bardsley (143), Junker (136), and informally

by the author and others (private communications from T. N. Rescigno,

C. W. McCurdy, V. McKoy, J. Simons). However, no calculations of the

CCBOA type have been carried out. There is an incredibly strong (and

largely irrational, in most cases) resistance to thinking of complex R.

What is done instead is to damp the nuclei on the real axis, and only

scale the electronic coordinates. We refer to this as the CCRACNA
(Complex Coordinate Real Axis Clamped Nuclei Approximation); 

initially caused no end of difficulty. Note carefully that the CCRACNA

is not simply the Born-Oppenheimer approximation, which is not at all

inconsistent with the simple scaling

~(0) = e-:~i°KE + e-i°pE.

The problems in the CCRACNA arise from the fact that if nuclear

coordinates are left real, and an electronic coordinate ~ is scaled F~ -~ ~ei°,

the nuclear-electron interaction

~ I~e~° -/~

is nonanalytic, (33), as the argument of the absolute value can vanish for

a continuous range of values such that

171 -- I~ol, ~i’h~ -- cos0,

giving rise to a continuous line of square root branch points. McCurdy &

Rescigno (144), and independently Moiseyev & Corcoran (145), neverthe-

less established that the CCRACNA could be made to work. In (144) 
application to H2+ and a model problem this was done by the method of

complex basis functions discussed above. Diffuse basis functions (only)

were scaled r-~ re-~°, in a sense performing the scaling for I~/I > I~1
and avoiding the singularities. In (145) in applications to autoionizing

states of H: and He-, matrix dements of the RACNA Hamiltonian were
analytically continued [see especially footnote 12 of (145) for an im-

portant remark on stability of this method for the Gaussian bases used in
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both (144) and (145)]. The success of these calculations prompted a quick

response by Simon (146), who suggested use of an exterior scaling, 
illustrated in Figure 5, where the coordinates are kept on the real r-axis

long enough to get past any interior nonanalyticities. This is an old idea

[Figure 5 is reproduced from (32)] but one that fills the bill, in that 
allows formulation of a solid mathematical foundation for the

CCRACNA. McCurdy (147) and Morgan & Simon (148) have analyzed

the relationship between actual computations and the complex exterior

scaling concept. Qualitatively, phrased in the language of GDT’s, if we

scale the diffuse basis functions, but not tight ones, a relationship (not an

identity) can be established between the idea of Figure 5 and actual

computations. This idea is implicit in the Siegert work of Isaacson &

Miller (126). More recently, Deguchi & Nishikawa (149, 150), using 

generator coordinate formulation of Lathouwers (151), have suggested 

related approach, which has the very attractive feature that through

generator coordinates nonadiabatic effects might well be included, al-

though this has not yet been explored. Actual computational applications

to molecules is a developing field. At present the only real electronic
structure results are the following: the He + H Penning ionization calcu-

lations of (126); the H2 and H2- work of (145); a calculation 

Rescigno et al (152) of an 2- shape r esonance [ using a complex SCF
formalism developed by McCurdy et al (153, 154) and concurrently 

Froelich (see 155)]; and the work on competition between dissociation

and autoionization of Moiseyev (156, 157).

~rn (r)

Re (r)

COMPLEX r- PLANE

Figure 5 Exterior scaling contour for r distortion appropriate to a situation where for
r < a the potential is nonanalytic. As r -, re~° as r ~ oo, the spectral theory is unchanged, as

the spectrum of ~(/~) is determined by asymptotic boundary conditions. Reproduced from

(32), with permission.
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Molecular Predissociation

All applications discussed so far (except the CCRACNA) have consisted

of systems with one- and two-body interactions that scale as PE -* e-~°PE

(or PE -~ e+i°pE for the Stark problem); however, the general techniques

have much greater applicability. For nuclear motion on a Born-

Oppenheimer potential surface V(Yl .... ,72v)

~( ~ ) = e- 2iOKE( 7) + V( eiO, ~e iO...~NeiO ). 36.

But where does one find V(~’ei°)? In a model this is simple; however, for

an ab initio surface it perhaps seems a formidable problem. It isn’t: We

note with amusement that precisely this potential function of complex
internuclear distance (~ e io ..... -~v e io) is that which would be immediately

obtained from the simple ansatz of the CCBOA, rather than from the

CCRACNA. Given such an ~3~(/~), one can, for example, look at rota-

tional predissociation of diatoms (e.g. (158, 159) or at various predissoci-

ating channels in a tri-atom, say Ar(H2). Chu (160) and Chu & Datta

(161) have looked at rotational predissociation of van der Waals com-

~.10

1,5

1,4

io-s I

-I0 EL
5,5

¯ 2,5
$3,5

Z
0

-- I00
¯ e3,3

~000

I
I0,000

I0 15

( E-E D~SSOC)

Figure 6 Imaginary parts of complex eigenvalues as a function of energy above dissocia-
tion for two coupled Morse oscillators. Parameters have been chosen to mimic interacting

symmetric and antisymmetric stretches in H20. The states where lifetimes are shown are
resonances corresponding to doubly excited states of the unperturbed oscillators. The

lifetimes of these states are certainly nonstatistical. The complex eigenvalues were obtained

by R. Hedges and W. P. Reinhardt using a spline basis.
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plexes via ~J{~(O) of Eq. 36 as a Direct Application, i.e. diagonalization 

a basis with no boundary conditions except square integrability. Chu has

subsequently extended the method to consider molecular dynamics in

strong laser fields (162).

Atabek & Lefebvre (163-165) and Bali6 & Simons 030, 166) have
developed multichannel Siegert-like formalisms which when used with

complex coordinates allow use of square integrable boundary conditions

using an L2 expansion (130, 166) or numerical solutions (163-165) of 

multichannel problem (see also 167). Model problems, usually involving

linear triatoms or van der Waals predissociation, have been solved by

these authors. Waite & Miller (168) and R. Hedges and W. P. Reinhardt

(unpublished), using the Direct Approach, have examined resonance

eigenvalue distributions for vibrational predissociation of very strongly

coupled triatom systems and investigated the effect of potential surface

on RRKM or non-RRKM (i.e. mode specific) decay rates. Typical
complex eigenvalues obtained by R. Hedges and W. P. Reinhardt for a

coupled Morse oscillator problem, modeling the symmetric and antisym-
metric stretch in H20, are shown in Figure 6, where strongly nonstatis-

tical behavior is seen for a sequence of multiply excited states above the

dissociation limit. These results contrast with the results of (168) for the

Henon-Heiles model problem, but are in rough consonance with a second

model problem considered by Waite & Miller, where some mode specific-
ity was observed.

CONCLUSIONS: THE FUTURE

Use of complex coordinate techniques in various guises is now widespread
for determination of complex resonance eigenvalues in all types of

physical situations: electronic autoionization, field ionization, molecular

predissociation. Progress has been made in sorting out the amplitudes for

decay into each of several decay channels when competing mechanisms

exist. The computational theory for carrying out such calculations is
becoming clearly defined. New computational variants, such as use of

complex coordinates with many-body optical potentials (169-172), are

continually appearing. What lies beyond?

Time Dependences

In many applications exponential decay is not a reasonable approxima-
tion. General time dependences are given by

It) = e-~°)’/hl0) 37.

where (~C(0) may be replaced by its biorthogonal spectral resolution, 
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thus

e-i~(°)’/h ~ ~ e iEit/h~j~

J

38.

where the Ei are complex. Equation 38 is a quadrature of continuum time

dependence and exponential decay, as appropriate. This would seem to

require that all vectors/eigenvalues of ~(0) be found, a prohibitive task
for large systems. However, this is not necessarily the case. Figure 7,

prepared by the author for tiffs discussion, shows time evolution of the

probability of an H atom leaving the ls state, on sudden application of a

strong dc field. There is much nonexponential structure due to the
sudden turn on. However, the most important feature of the results is

that they have been obtained by a sequence of simple power expansio~n of
Eq. 37 and Pad6 resummations: no eigenvalues or eigenvectors of ~(0)

were even estimated. Converged results for short times were even found

for 0 = 0! These results illustrate the capability of complex coordinate

methods to handle complex time evolution, and indicate that systems of

8 = 0.2 ~....

0.04

0,02

0.01
0 tO 20 .~0 40 50

TIME (o.u.)--’,"

Figure 7 Time evolution of the probability of leaving the ls state of atomic hydrogen
under the influence of a suddenly applied dc electric field as computed by expansion of the
exponential exp(-i%(0)t/h), without explicit determination of eigenparameters. 

technique allows the use of very large matrix representations, and thus should allow

extension to calculation of time evolution (and thus spectra) in molecular systems. The
method has no great difficulty in coping with a multi-timescale decay process.
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many degrees of freedom may well be approached, as time evolution can

be calculated directly, without solution of large complex eigenproblems.

Scattering

As mentioned in the introduction, early motivation for moving branch

cuts off the real axis was to make discretized solution of many-particle

scattering problems tractible. Except for application to photoabsorption

(173-176), a problem which can be reformulated as a complex eigenvalue

problem in any case (99), this aspect has not been actively pursued. Why?

Simply because scattering amplitudes of the form

I v(,)(z - t/)- 1 v(,) ),

the I k)’s being plane wave states, do not survive insertion of our unitary
transform U(O)U(O)-1 unless V(r)is exponentially damped, apparently

excluding the long-range interactions of atoms, molecules, and especially

charged systems such as ions and electrons. However, if mathematical

difficulties of this type had been taken too seriously many of the

computations discussed in this review would not have been even at-

tempted. One can only agree with the remarks of Taylor & Yaris (139a)
that there are many ways to by-pass this apparent obstacle. Thus, a

parting conjecture: Ways will soon be found to harness the power of

complex coordinate techniques for solution of atomic and molecular

scattering problems, as well as for determination of resonance parame-

ters, and of time evolution of initially bound systems.
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